SlideShare ist ein Scribd-Unternehmen logo
1 von 35
http://lawrencekok.blogspot.com
Prepared by
Lawrence Kok
Tutorial on Redox Titration, BOD and Biological
Oxygen Demand using Winkler method
Titration
Redox TitrationAcid Base Titration
Primary standard acids
- Potassium hydrogen phthalate
Primary standard bases
- Anhydrous sodium carbonate
10.6 g Na2CO3
Standard 0.1M Na2CO3
10.6g in 1 L
Volumetric Burette
Accurate
known conc
Unable to prepare accurate conc of NaOH/HCI due to
•Hygroscopic nature NaOH – Absorb water vapour
•HCI in vapour state – Difficult to measure amt
VolumetricBurette
Standard 0.1M KHP
20.4 g KHP20.4 g in 1L
Unknown
Conc NaOH
Unknown
Conc HCI
? ?
Standardize NaOH
using KHP
Standardize H
CI
using Na
2 CO
3
Accurate
known conc
Acid/Base Titration Redox Titration
Neutralization bet acid/base Redox bet oxidizing/reducing agent
Transfer proton/H+
from acid to base Transfer elec from reducing to oxidizing agent
Indicator for colour change No indicator needed
Acid Base Titration
- One reactant – must be standard (known conc) or capable being standardised
- Equivalent point – equal amt neutralize each other
- End point measurable/detectable by colour change (indicator), pH change /conductivity
Oxidizing
Agent
Reducing
Agent
MnO4
-
Fe2+
Cr2O7
2-
SO2
HNO3 I-
H2O2 H2S
CI2 SO3
2-
KIO3 Vitamin C
OCI-
/Cu2+
Oxalate/
C2O4
2-
Titration
Redox TitrationAcid Base Titration
Burette/Titrant
Oxidizing agent
?
Acid/Base Titration Redox Titration
Neutralization bet acid/base Redox bet oxidizing/reducing agent
Transfer proton/H+
from acid to base Transfer elec from reducing to oxidizing agent
Indicator for colour change No indicator needed
Redox Titration
- One reactant – must be standard (known conc) or capable being standardised
- Reaction bet Oxidizing agent/Titrant with Reducing agent/Analyte
- Titrant of known concentration
- Stoichiometrically equivalent amt titrant/titrand added
- No indicator needed. Detectable by colour change of Oxidizing/Reducing agent
Analyte/reducing agent
Titrand Redox Titration used to determine:
-Amount of copper in brass
-Amount Fe/iron in iron pill/food
-Amount H2O2 commercial peroxide solution
-Amount OCI -
/hypochlorite/CI2 in bleach
-Amount Vitamin C
-Amount Dissolve oxygen content/BOD
-Amount ethanol in beer/wine
-Amount oxalate acidAnalyte
to
be
determ
ine
?
MnO4
-
+ 5Fe2+
+ 8H+
Mn→ 2+
+ 5Fe3+
+ 4H2O Cr2O7
2-
+ 6Fe2+
+ 14H+
2Cr→ 3+
+ 6Fe3+
7H2O
Iron determination using MnO4
-
/ Cr2O7
2-
purple colourless orange green
add MnO4
-
till endpoint
↓
turn purple (excess MnO4
-
)
add Cr2O7
2-
till endpoint
↓
turn orange (excess Cr2O7
2-
)
Redox Titration Calculation- % Iron in iron tablet
Iron tablet contain hydrated iron (II) sulphate (FeSO4.7H2O). One tablet weighing 1.863g
crushed, dissolved in water and solution made up to total vol of 250ml. 10ml of this
solution added to 20ml of H2SO4 and titrated with 0.002M KMnO4. Average 24.5ml need
to reach end point. Cal % iron(II) sulphate in iron tablet.
1
10ml transfer
20ml acid added
1.863 g
250ml
KMnO4
M = 0.002M
V = 24.5 ml
Fe2+
M = ?
V = 30ml
MnO4- + 5Fe2+
+ 8H+
Mn→ 2+
+ 5Fe2+
+ 4H2O
M = 0.002M M = ?
V = 24.5ml
Mole ratio – 1: 5
Using mole ratio
Mole KMO4
-
= MV
= (0.002 x 0.0245)
= 4.90 x 10-5
Mole ratio (1 : 5)
• 1 mole KMO4
-
react 5 mole Fe2+
• 4.90 x 10-5
KMO4
-
react 2.45 x 10-4
Fe2+
M V = 1
M V 5
0.002 x 0.0245 = 1
Moles Fe2+
5
Moles = 2.45 x 10-4
Fe2+
Mass of (expt yield) = 1.703g
Mass of (Actual tablet) = 1.863g
% Fe in iron tablet = 1.703 x 100%
1.863
= 91.4%
Mole  Mass
Mole x RMM = Mass FeSO4
6.125 x 10-3
x 278.05 = 1.703g FeSO4
Using formula
10ml sol contain - 2.45 x 10-4
Fe2+
250ml sol contain - 250 x 2.45 x 10-4
Fe2+
10
= 6.125 x 10-3
mole Fe2+
FeSO4.7H2O  FeSO4 + 7H2O
1 mol  1 mol + 7 mol
FeSO4  Fe2+
+ SO4
2-
1 mol  1mol + 1mol
6.125 x 10-3
mol  6.125 x 10-3
mole Fe2+
1
2
3
4
Video on % Iron in iron tablet
Video on Fe2+
/KMnO4 titration calculation
Redox Titration Calculation- % Iron in iron tablet
One iron tablet weighing 2.00g crushed, dissolved in water/acid to convert it to Fe2+
and
solution titrated with 0.100M KMnO4. Average 27.5ml KMnO4 needed to reach end point.
Cal mass of iron and % iron in iron tablet. How equivalent point is detected ?
2
iron solution titrated
2.000 g
KMnO4
M = 0.100M
V = 27.5 ml
Fe2+
M = ?
1MnO4- + 5Fe2+
+ 8H+
Mn→ 2+
+ 5Fe2+
+ 4H2O
M = 0.100M M = ?
V = 27.5ml
Mole ratio – 1: 5
Using mole ratio
Mole KMO4
-
= MV
= (0.100 x 0.0275)
= 0.00275
Mole ratio (1 : 5)
• 1 mole KMO4
-
react 5 mole Fe2+
• 0.00275 KMO4
-
react 0.01375Fe2+
M aVa = 1
Mb Vb 5
0.100 x 0.0275 = 1
Moles Fe2+
5
Moles = 0.01375 mol Fe2+
Mass of (expt yield) = 0.7679g
Mass of (Actual tablet) = 2.000g
% Fe in iron tablet = 0.7679 x 100%
2.000
= 38.4 %
Mole  Mass
Mole x RMM = Mass Fe
0.01375 x 55.85 = 0.7679g Fe
Using formula
1
2
3
Video on % Iron in iron tablet
Video on Fe2+
/KMnO4 titration calculation
MnO4
-
– In burette is purple – Turns colourless react with Fe2+
All Fe2+
used up at equivalence point – excess KMnO4
-
turn purple
4
1 mol 1 mol
1OCI-
+ 2I-
+ 2H+
I→ 2 + 1CI-
+ H2O
I2 + 2S2O3
2-
S→ 4O6
2-
+ 2I-
1 mol 2 mol
10.0ml bleach (OCI -
) diluted to total vol of 250ml. 20.0ml is
added to 1g of KI (excess) and iodine produced is titrated with
0.0206M Na2S2O3.Using starch indicator, end point was 17.3ml.
Cal molarity of OCI-
in bleach.
Redox Titration Calculation – OCI-
in Bleach
3
Na2S2O3
M = 0.0206M
V = 17.3ml
I2
M = ?
2S2O3
2-
+ I2 S→ 4O6
2-
+ 2I-
M = 0.0206 Mole = ?
V = 17.3ml V = 0.02
Mole ratio (1 : 2)
1 mole OCI-
: 1 mole I2 : 2 mole S2O3
2-
1 mole OCI-
2 mole S2O3
2-
10.0ml OCI-
transfer
V = 250ml
M = 8.9 x 10-3
M
20ml transfer
1g KI excess
added
Mole S2O3
2-
= MV
= (0.0206 x 0.0173)
= 3.56 x 10-4
Mole ratio (2 : 1)
• 2 mole S2O3
2-
react 1 mole I2
• 3.56 x 10-4
S2O3
2--
react 1.78 x 10-4
I2
Mole ratio – 2: 1
1OCI-
+ 2I-
+ 2H+
I→ 2 + 1CI-
+ H2O
1CIO-
I2
Mole = ? Mole = 1.78 x 10-4
Mole ratio – 2: 1
Mole ratio (1 : 1)
• 1 mole OCI-
1 mole I2
• 1.78 x 10-4
OCI-
1.78 x 10-4
I2
Moles of OCI-
= M x V
M x V = 1.78 x 10-4
M x 0.02 = 1.78 x 10-4
M = 1.78 x 10-4
002
M = 8.9 x 10-3
M diluted 25x
Mole bef dilution = Mole aft dilution
M1 V1 = M2V2
M1 = Ini molarity M2
= Final molarity
V1
= Initial vol V2
= Final vol
M1 V1 = M2 V2
M1 x 10 = 8.9 x 10-3
x 250
M1 = 8.9 x 10-3
x 250
10
M1 = 0.222M
Diuted 25x
V = 10
M = ?
titrated
Water added
till 250ml
1
Using direct formula
M V(OCI+
) = 1 = 1
M V(S203
2-
) 2 2
Moles of OCI+
= 1
0.0206 x 0.0173 2
Moles of OCI-
= 1.78 x 10-4
2
3
4
5
6
Hypochlorous acid = bleach
Oxidizing agent = OCI-
Iodometric titration
I2/thiosulphate/starch
↓
I -
oxidized by OA to I2
↓
I2 react with starch
(blue black colour)
↓
S2O3
2-
added to reduce I2
↓
I2 used up – blue black
disappear
2I-
+ OCI-
↔ I2 + CI-
2S2O3
2-
+ I2 ↔S4O6
2-
+ 2I-
1 mol 1 mol
1OCI-
+ 2I-
+ 2H+
I→ 2 + CI-
+ H2O
I2 + 2S2O3
2-
S→ 4O6
2-
+ 2I-
1 mol 2 mol
10.0ml bleach (OCI-
) react with KI (excess), iodine produced is titrated
with 0.020M Na2S2O3.Using starch indicator, end point was 38.65 ml.
Cal molarity of OCI-
in bleach.
Redox Titration Calculation – OCI-
in Bleach
4
Na2S2O3
M = 0.020M
V = 38.5 ml
I2
M = ?
2S2O3
2-
+ I2 S→ 4O6
2-
+ 2I-
M = 0.020 Mole = ?
V = 38.55ml
Mole ratio ( 1 : 2)
1 mole OCI-
: 1 mole I2 : 2 mole S2O3
2-
1 mole OCI-
2 mole S2O3
2-
10ml bleach
transfer
1g KI excess
added
Mole S2O3
2-
= MV
= (0.020 x 0.03865)
= 7.73 x 10-4
Mole ratio (2 : 1)
• 2 mole S2O3
2-
react 1 mole I2
• 7.73 x 10-4
S2O3
2--
react 3.865 x 10-4
I2
Mole ratio – 2: 1
1OCI-
+ 2I-
+ 2H+
I→ 2 + 2CI-
+ H2O
1OCI-
I2
Mole = ? Mole = 3.865 x 10-4
Mole ratio – 1: 1
Mole ratio (1 : 1)
• 1 mole OCI-
1 mole I2
• 3.865 x 10-4
OCI-
3.865 x 10-4
I2
M x V = Moles OCI-
M x 10 = 3.865 x 10 -4
1000
M = 0.0387M
titrated
1
Using direct formula
M V(OCI+
) = 1 = 1
M V(S203
2-
) 2 2
Moles of OCI+
= 1
0.020 x 0.03865 2
Moles of OCI-
= 3.5865 x 10-4
2
3
4
5
Video on OCI-
in bleach
Sample OCI-
calculation. Click here to view
Conc OCI-
Hypochlorous acid = bleach
Active oxidizing agent = OCI-
Iodometric titration
I2/thiosulphate/starch
↓
I -
oxidized by OA to I2
↓
I2 react with starch
(blue black colour)
↓
S2O3
2-
added to reduce I2
↓
I2 used up – blue black
disappear
2I-
+ OCI-
↔ I2 + CI-
2S2O3
2-
+ I2 ↔S4O6
2-
+ 2I-
2 mol 1 mol
2Cu2+
+ 4I-
I→ 2 + 2CuI
I2 + 2S2O3
2-
S→ 4O6
2-
+ 2I-
1 mol 2 mol
2.5g brass react with 10ml conc HNO3 producing Cu2+
ions. Solution made up to 250ml using water in a
volumetric flask. Pipette 25ml of solution into conical flask. Na2CO3 added to neutralize excess acid. 1g KI
(excess) and few drops of starch added to flask. Titrate with 0.1M S2O3
2-
and end point, reached when 28.2ml
added. Find molarity copper ions and % copper found in brass.
Redox Titration Calculation - % Cu in Brass
5
Na2S2O3
M = 0.1M
V = 28.2ml
I2
M = ?
2S2O3
2-
+ I2 S→ 4O6
2-
+ 2I-
M = 0.1M Mole = ?
V = 28.2ml
Mole ratio ( 1 : 1)
2 mole Cu2+
: 1 mole I2 : 2 mole S2O3
2-
2 mole Cu2+
2 mole S2O3
2-
Pour into
Volumetric flask
V = 250ml
M = ?
25ml transfer
1g KI excess + starch
added
Mole S2O3
2-
= MV
= (0.1 x 0.0282)
= 2.82 x 10-3
Mole ratio (2 : 1)
• 2 mole S2O3
2-
react 1 mole I2
• 2.82 x 10-3
S2O3
2--
react 1.41 x 10-3
I2
Mole ratio – 2: 1
2Cu2+
+ 4I-
I→ 2 + 2CuI
Mole = ? 1.41 x 10-3
I2 Mole ratio – 2: 1
Mole ratio (2 : 1)
• 2 mole Cu2+
1 mole I2
• 2.82 x 10-3
Cu2+
1.41 x 10-3
I2
Mole of Cu2+
= M x V
M x V = 2.82 x 10-3
M x 0.025 = 2.82 x 10-3
M = 2.82 x 10-3
0.025
M = 1.13 x 10-1
M
Mass Cu = Molarity Cu x RAM
Mass Cu = (0.113 x 63.5)g Cu in 1000ml
= 7.18g  Cu in 1000ml
= 1.79g  Cu in 250ml
10 ml HNO3
titrated
Water added
till 250ml
2.5g brass
% Cu in brass = mass Cu x 100%
mass brass
= 1.79 x 100%
2.5
= 71.8%
Using formulaUsing mole ratio
Using formula
M V(Cu2+
) = 2 = 1
MV(S203
2-
) 2 1
Moles of Cu2+
= 1
0.1 x 0.0282 1
Moles of Cu2+
= 2.82 x 10-3
1
2
3
4
5
6
Iodometric titration
I2/thiosulphate/starch
↓
I -
oxidized by OA to I2
↓
I2 react with starch
(blue black colour)
↓
S2O3
2-
added to reduce I2
↓
I2 used up – blue black
disappear
4I-
+ 2Cu+
↔ I2 + 2CuI
2S2O3
2-
+ I2 ↔S4O6
2-
+ 2I-
Click here here for copper determination
2 mol 1 mol
2Cu2+
+ 4I-
I→ 2 + 2CuI
I2 + 2S2O3
2-
S→ 4O6
2-
+ 2I-
1 mol 2 mol
Brass is a copper alloy. Analysis carried out to determine copper.
Iodometric titration was performed.
Step 1 : Cu + 2HNO3 + 2H+
Cu→ 2+
+ 2NO2 + 2H2O
Step 2 : 4I-
+ 2Cu2+
2CuI + I→ 2
Step 3 : I2 + 2S2O3
2-
2I→ -
+ S4O6
2-
Average vol S2O3 2- was 28.50ml.
Redox Titration Calculation - % Cu in Brass
6
Na2S2O3
M = 0.1M
V = 28.5ml
I2
M = ?
V = 100ml
2S2O3
2-
+ I2 → S4O6
2-
+ 2I-
M = 0.1M Mole = ?
V = 28.5ml
Mole ratio ( 1 : 1)
2 mole Cu2+
: 1 mole I2 : 2 mole S2O3
2-
2 mole Cu2+
2 mole S2O3
2-
V = 100ml
M = ?
1g KI excess/starch
added
Mole S2O3
2-
= MV
= (0.1 x 0.0285)
= 2.85 x 10-3
Mole ratio (2 : 1)
• 2 mole S2O3
2-
react 1 mole I2
• 2.85 x 10-3
S2O3
2--
react 1.41 x 10-3
I2
Mole ratio – 2: 1
2Cu2+
+ 4I-
I→ 2 + 2CuI
Mole = ? 1.41 x 10-3
I2
Mole ratio – 2: 1
Mole ratio (2 : 1)
• 2 mole Cu2+
1 mole I2
• 2.82 x 10-3
Cu2+
1.41 x 10-3
I2
Mass Cu = Mole Cu x RAM
Mass Cu = (2.85 x 10-3
x 63.5) g Cu
= 0.181 g
titrated
HNO3 and water
added till 100ml
0.456g
brass
% Cu in brass = mass Cu x 100%
mass brass
= 0.181 x 100%
0.468
= 39.7%
Using formulaUsing mole ratio
Using formula
M V(Cu2+
) = 2 = 1
MV(S203
2-
) 2 1
Moles of Cu2+
= 1
0.1 x 0.0285 1
Mole of Cu 2+
= 2.85 x 10-3
M V(Cu2+
) = 2 = 1
MV(S203
2-
) 2 1
M x 0.100 = 1
0.1 x 0.0285 1
2+ -2
1
2
3
4
5
6
Iodometric titration
I2/thiosulphate/starch
↓
I -
oxidized by OA to I2
↓
I2 react with starch
(blue black colour)
↓
S2O3
2-
added to reduce I2
↓
I2 used up – blue black
disappear
4I-
+ 2Cu+
↔ I2 + 2CuI
2S2O3
2-
+ I2 ↔S4O6
2-
+ 2I-
Click here here for copper determination expt
Cal Amt S2O3
2-
Cal Conc/Mole/Mass Cu
Cal % Cu by mass in brass
Cal % error (Lit value = 44.2 % Cu)
% error = Expt value x 100%
Lit value
= (44.2 – 39.7) x 100%
44.2
= 10.2%
Redox Titration Calculation- % purity of oxalate ion
Purity of sodium oxalate Na2C2O4 is determine by redox titration with standard 0.040M KMnO4. 35.62 ml KMnO4 needed to
reach end point. Cal % w/w Na2C2O4 in sample. How equivalent point is detected ?
7
oxalate solution titrated
0.5116 g
KMnO4
M = 0.040M
V = 35.62 ml
C2O4
2-
M = ?
2MnO4- + 5C2O4
2-
+ 16H+
2Mn→ 2+
+ 10CO2 + 8H2O
M = 0.040M M = ?
V = 35.62 ml
Mole ratio – 2: 5
Using mole ratio
Mole KMO4
-
= MV
= (0.040 x 0.03562)
= 1.42 x 10-3
Mole ratio (2 : 5)
• 2 mol KMO4
-
react 5 mol C2O4
2-
• 1.42 x 10-3
KMO4
-
react 3.55 x 10-3
C2O4
2-
M aVa = 2
Mb Vb 5
0.04 x 0.03562 = 2
Mole C2O4
2-
5
Mol C2O4
2-
= 3.55 x 10-3
Mass of (expt yield) = 0.476 g
Mass of (Actual tablet) = 0.5116 g
% w/w in Na2C2O4 = 0.476 x 100 %
0.5116
= 93 %
Mole  Mass
Mole x RMM = Mass Na2C2O4
3.55 x 10-3
x 134 = 0.476 g Fe
Using formula
1
2
3
MnO4
-
– In burette is purple – Turns colourless react with C2O4
2-
All C2O4
2-
used up at equivalence point – excess KMnO4
-
turn purple
?
Oxidizing
Agent
Reducing
Agent
MnO4
-
Fe2+
Cr2O7
2-
SO2
HNO3 I-
H2O2 H2S
CI2 SO3
2-
KIO3 Vitamin C
CIO-
/Cu2+
Oxalate/
C2O4
2-
MnO4
–
reduced to Mn2+
C2O4
2-
oxidized to CO2
(+7) ON decrease ↓ (+2)
(+3) ON increase ↑ (+4)
4
M V(KIO3) = 1
MV (C6H8O6) 3
0.002 x 0.0255 = 1
Mole C6H8O6 3
Mole C6H8O6 = 1.53 x 10-4
Mole C6H8O6 = M x V
M x V = 1.53 x 10-4
M x 0.025 = 1.53 x 10-4
M = 1.53 x 10-4
0025
M = 6.12 x 10-3
M
1 mol 3 mol
KIO3 + 5KI + 6H+
3I→ 2 + 6K+
+ 3H2O
3C6H8O6 + 3I2 3C→ 6H6O6 + 6I-
+ 6H+
3 mol 3 mol
Iodometric titration was performed on Vit C, (C6H8O6). 25ml Vit C is titrated with 0.002M KIO3
from burette, using excess KI and starch. Average vol KIO3 is 25.5ml. Cal molarity of Vit C.
Redox Titration Calculation – Vitamin C quantification
8
KIO3
M = 0.002M
V = 25.5ml
Vit C
M = ?
V = 25ml
KIO3 + 5KI + 6H+
3I→ 2 + 3H2O + 6K=
M = 0.002M Mole = ?
V = 25.5ml
Mole ratio (1 :3)
1 mol KIO3 : 3 mol I2 : 3 mol C6H8O6
1 mol KIO3 3 mol C6H8O6
V = 25ml
M = ?
25ml transfer
1g KI excess + starch
added
Mole KIO3 = MV
= (0.002 x 0.0255)
= 5.10 x 10-5
Mole ratio (1 : 3)
• 1 mole KIO3 produce 3 mole I2
• 5.10 x 10-5
KIO3 produce 1.53 x 10-4
I2
Mole ratio – 1: 3
3C6H8O6 + 3I2 3C→ 6H6O6 + 6I-
+ 6H+
Mole = ? 1.53 x 10-4
Mole ratio – 3: 3
Mole ratio (1 : 3)
• 1 mol KIO3 react 3 mol C6H8O6
• 5.10 x 10-5
KIO3 react 1.53 x 10-4
C6H8O6
Mole C6H8O6 = M x V
M x V = 1.53 x 10-4
M x 0.025 = 1.53 x 10-4
M = 1.53 x 10-4
0025
M = 6.12 x 10-3
M
titrated
Using mole ratio Using formula
Using formula
Vitamin C
1
2
3
4
Click here here to view sample Vitamin C expt
?
Oxidizing
Agent
Reducing
Agent
MnO4
-
Fe2+
Cr2O7
2-
SO2
HNO3 I-
H2O2 H2S
CI2 SO3
2-
KIO3 Vitamin C
CIO-
/Cu2+
Oxalate/
C2O4
2-
25ml of undiluted H2O2 is transfer to 250ml volumetric flask. (Diluted 10x ). 25ml diluted sample was titrated with
standard 0.02114M KMnO4. 28.64 ml KMnO4 needed to reach end point. Cal conc in M H2O2 sample. Assuming
density is 1g/ml, calculate % H2O2 by weight. (Theoretical value H2O2 = 3%)
9
25ml pipette solution
KMnO4
M = 0.02114M
V = 28.64 ml
H2O2
M = ?
2MnO4
-
+ 5H2O2 + 6H+
2Mn→ 2+
+ 5O2 + 8H2O
M = 0.02114M M = ?
V = 28.64 ml
Mole ratio – 2: 5
Using mole ratio
Mole KMO4
-
= MV
= (0.02114 x 0.02864)
= 6.054 x 10-4
Mole ratio (2 : 5)
• 2 mol KMO4
-
react 5 mol H2O2
• 6.054 x 10-4
KMO4
-
react 1.513 x 10-3
H2O2
M V = 2
M V 5
0.02114 x 0.02864 = 2
Mole H2O2 5
Mol H2O2 = 1.5135 x 10-3
Using formula
1
2
?
Oxidizing
Agent
Reducing
Agent
MnO4
-
Fe2+
Cr2O7
2-
SO2
HNO3 I-
H2O2 H2S
CI2 SO3
2-
KIO3 Vitamin C
CIO-
/Cu2+
Oxalate/
C2O4
2-
MnO4
–
reduced to Mn2+
H2O2 oxidized to O2
(+7) ON decrease ↓ (+2)
(-1) ON increase ↑ (0)
Redox Titration H2O2 Calculation
Pour into
Volumetric flask
25 ml H2O2
Water added
till 250ml
Mol H2O2 = M x V
M x V = 1.513 x 10-3
M x 0.025 = 1.513 x 10-3
M = 1.513 x 10-3
0.025
M = 0.06052M (Diluted sample)
Original sample = 0.06052 x 10
= 0.6052 M
Conc H2O2 = 0.6052M
RMM H2O2 = 34
Mass H2O2 = 0.6052 x 34
= 20.60g in 1000 ml
= 2.06g in 100ml
= 2.06%
3
Stronger oxidizing agent
reduce weaker oxidizing agent
Cr2O7
2-
reduced to Cr3+
C2H5OH oxidized CH3COOH3
% C2H5OH by mass = mass C2H5OH x 100%
mass blood
= 0.351 x 100%
10.0
= 3.51 %
Alcohol in blood can be determined by redox titration with K2Cr2O7
3C2H5OH + 2Cr2O7
2-
+ 16H+
→ 3CH3COOH3 + 4Cr 3+
+ 11H2O
Calculate % by mass of ethanol. Explain how end point is determined?
10
Cr2O7
2-
M = 0.055M
V = 9.25 ml
C2H5 OH
M = ?
2Cr2O7
2-
+ 3C2H5OH + 16H+
3CH→ 3COOH3 + 4Cr 3+
+ 11H2O
M = 0.0550 M = ?
V = 9.25ml
Mole ratio – 3: 2
Using mole ratio
Mole Cr2O7
-2-
= MV
= (0.055 x 0.00925)
= 5.08 x 10-4
Mole ratio (2 : 3)
• 2 mol Cr2O7
2-
react 3 mol C2H5OH
• 5.08 x 10-4
Cr2O7
2-
react 7.63 x 10-3
C2H5OH
M V = 2
M V 3
0.055 x 0.0925 = 2
MV 3
Mol C2H5OH = 7.63 x 10-3
Using formula
1
2
(+7) ON decrease ↓ (+3)
(-2) ON increase ↑ (0)
Redox Titration Alcohol Calculation C2H2OH
10g of blood sample
Mass C2H5OH = Mol x RAM
Mass = 7.63 x 10-3
x 46
Mass = 0.351 g
3
Click here practical breath analyzer using dichromate
Alcohol
C2H5OH
Ethanoic acid
CH3COOH
Cr2O7
2-
– In burette is orange– Turns green react with C2H5OH
All C2H5OH used up at equivalence point – excess Cr2O7
2-
turn orange
oxidized
Dichromate
Cr2O7
2-
Chromate
Cr3+
reduced
Oxidizing
Agent
Reducing
Agent
MnO4
-
Fe2+
Cr2O7
2-
SO2
HNO3 I-
H2O2 H2S
CI2 SO3
2-
KIO3 Vitamin C
CIO-
/Cu2+
Ethanol/
C2H4OH
?
4
Biological Oxygen Demand
Measure amt dissolve oxygen needed by aerobic organism to break down
•Organic matter in water sample over 5 day period
•BOD polluted water – Amt dissolve oxygen need for biological decomposition
•Measure amt O2 used for biochemical decomposition of organic matter
•Measure amt O2 used to oxidize organic to produce energy for microbes
Lots of organic decomposition (uses O2)
↓
Dissolve oxygen Low used up↓
↓
Biological Oxygen Demand High ↑
↓
Level Pollution is HIGH ↑
↓
Aquatic life die /Toxic
Low Dissolve Oxygen, signify high O2 demand from microb
(organic waste contamination)
Breakdown organic matter in water consumes
oxygen by aerobic micro-organisms.
BOD High ↑
Dissolve O2 Low (O↓ 2 used up)
Level Pollution HIGH ↑
Organic waste decomposition ↑
Aquatic life die/Toxic
BOD Low ↓
Dissolve O2 High ↑ (O2 high)
Level Pollution LOW ↓
Organic waste decomposition ↓
Aquatic life thrive
BOD ↑ – No good
BOD ↓ - Good
Dissolve oxygen Level -
•Indicator of clean water
•Level of pollution
BOD ↓
Dissolve
Oxygen ↑
Click here carolina Winkler method BOD
Click here dissolve oxygen video
Water
Quality
Clean Lightly
polluted
Moderate
polluted
Severely
polluted
Dissolve O2,
mg/ml
DO > 6.5 4.5 – 6.5 2.0 – 4.5 < 2.0
BOD, mg/ml < 3 3 – 4.9 5 – 15 > 15
Explosive growth algae/bloom
Block sunlight for photosynthesis
Eutrophication on BOD
Excessive use fertilisers like phosphates/nitrates
Wash into river/water
Eutrophication
Explosive growth algae/bloom
↓
When die - organic decomposition
by bacteria
↓
Uses up dissolve oxygen
↓
BOD demand HIGH ↑
↓
Water polluted
Algae bloom
Dissolve oxygen Low ↓
BOD High ↑
Nutrient leach
Biological Oxygen Demand
Redox titration (Winkler Method)
measure dissolve O2
BOD index
Click here on Winkler titration method
Iodometric titration
I2/thiosulphate/starch
↓
Mn2+
oxidized by O2 to Mn4+
↓
Mn4+
oxidized I-
to I2
I2 react with starch
(blue black colour)
↓
S2O3
2-
added to reduce I2
↓
I2 used up – blue black
disappear
Measure BOD
Iodometric titration
Biological Oxygen Demand
Redox titration (Winkler Method)
measure dissolve O2
BOD index
1 mol 2 mol
2Mn2+
+ O2 + 4OH-
2MnO→ 2 + 2H2O
2MnO2 + 4I-
+ 4H+
4I→ 2 + 2Mn2-
+ 4H2O
4I2 + 4S2O3
2-
→ 4I-
+ 2S4O6
2-
Click here on Winkler titration method
Water Quality Clean Lightly
polluted
Moderately
polluted
Severely
polluted
Dissolve O2,
mg/ml
DO > 6.5 4.5 – 6.5 2.0 – 4.5 < 2.0
BOD, mg/ml < 3 3 – 4.9 5 – 15 > 15
Dissolve O2 reacts with alkaline manganese (Mn2+
) to form (Mn4+
)
4Mn2+
+ 4OH- 2Mn(OH)→ 2
1 mol 2 mol
2Mn(OH)2 + O2 2MnO(OH)→ 2
2MnO(OH)2 + 8H+
+ 6I-
→ 2I3
-
+ 6H2O
2 mol 2 mol
2I -
+ 4S O 2-
→ 6I-
+ 2S O 2-
Redox titration Winkler Method
DO bottle
Mn2+
salt
1g KI excess
alkaline/OH-
shake
White ppt Mn(OH)2
Conc
H2SO4
White ppt dissolve in acid
Na2S2O3
M = 0.05M
V = 12.5ml
titrated S2O3
2-
1O2 + 4S2O3
2-
products→
M = ? M = 0.05M
V = 12.5ml
I-
oxidized to I2 by Mn2+
O2
M = ?
V = 500ml
2 mol 4 mol
4 mol 4 mol
Mole ratio O2 : S2O3
2-
(1 : 4)
1 mol O2 : 4 mol I2 : 4 mol S2O3
2-
1 mol O2 4 mol S2O3
2-
Brown I2 sol form
Starch added
Iodometric titration
I2/thiosulphate/starch
↓
Mn2+
oxidized by O2 to Mn4+
↓
Mn4+
oxidized I-
to I2
I2 react with starch
(blue black colour)
↓
S2O3
2-
added to reduce I2
↓
I2 used up – blue black
disappear
Water sample
added
1 mol O2 : 4 mol S2O3
2-
1 mol 2 mol
2Mn2+
+ O2 + 4OH-
2MnO→ 2 + 2H2O
2MnO2 + 4I-
+ 4H+
4I→ 2 + 2Mn2-
+ 4H2O
4I2 + 4S2O3
2-
→ 4I-
+ 2S4O6
2-
Dissolve O2 reacts with alkaline manganese (Mn2+) to form (Mn4+)
Redox titration Winkler Method
DO bottle
Mn2+
salt
1g KI excess
alkaline/OH-
shake
White ppt Mn(OH)2
Conc
H2SO4
White ppt dissolve in acid
Na2S2O3
M = 0.05M
V = 12.5ml
titrated S2O3
2-
1O2 + 4S2O3
2-
product→
M = ? M = 0.05M
V = 12.5ml
I-
oxidized to I2 by Mn2+
O2
M = ?
V = 500ml
2 mol 4 mol
4 mol 4 mol
Mole ratio O2 : S2O3
2-
(1 : 4)
1 mol O2 : 4 mol I2 : 4 mol S2O3
2-
1 mol O2 4 mol S2O3
2-
Brown I2 sol
form
Starch added
Iodometric titration
I2/thiosulphate/starch
↓
Mn2+
oxidized by O2 to Mn4+
↓
Mn4+
oxidized I-
to I2
I2 react with starch
(blue black colour)
↓
S2O3
2-
added to reduce I2
↓
I2 used up – blue black
disappear
Water sample
added
500ml water tested for dissolve oxygen by adding Mn2+
in alkaline solution, followed by addition
of KI and acid. I2 produced is reduced by titrating with 0.05M S2O3
2-
. Average vol S2O3
2-
used is
12.50ml. Calculate dissolved oxygen in g/dm3
.
1
Mole S2O3
2-
= MV
= (0.05 x 0.0125)
= 6.25 x 10-4
Mole ratio (1 : 4)
• 1 mole O2 react 4 mole S2O3
2-
? 6.25 x 10-4
S2O2
2-
6.25 x 10-4
= 1.56 x 10-4
4
1 mol O2 : 4 mol S2O3
2-
2 3
Mole O2 = 1.56 x 10-4
mol
Mass O2 = Mole O2 x RAM
Mass O2 = (1.56 x 10-4
x 32.0)g
= (5.00 x 10-3
)g in 500ml
= 0.01 g in 1000ml
= 0.01g/dm3
4
Click here on Winkler titration methodClick here on Winkler titration method
Titration for IA (DCP) assessment
Acid Base Titration
Standardization HCI
with primary std Na2CO3
Click here for expt 4.2
Standardization NaOH
with primary std KHP
Click here or here for expt`
Titration bet NaOH
with std HCI
Click here for expt 4.2a
Titration bet HCI
with std NaOH
Click here for expt 4.2a
Determining water crystallization
in hydrated Na2CO3 with std HCI
Click here for expt 4.4
Standardization KMnO4
with std ammonium
iron(II) sulphate
Click here for expt 4.5
Iron (II) determination
with std KMnO4
Click here for expt 4.6
Hypochlorite (OCI-
) in bleach
with iodine/thiosulphate
Click here for expt 4.8
Determining ethanoic acid
in vinegar with std NaOH
Click here for expt 4.3
Copper(II) determination
in brass
with iodine/thiosulphate
Click here or here for expt`
Click here for more expt
Standardization KI/I2
with std KIO3
Click here for expt 4.7
Click here for more expt
Determining acetylsalicylic acid
in aspirin with std NaOH
Click here or here for expt`
Click here for more expt
Vit C determination with
iodine/thiosulphate
Click here or here for expt
Click here more detail expt
Standardization Expt Acid/Base Titration Expt
Standardization Expt
Redox Titration Expt
Redox Titration
Standardization KI/I2
with std
sodium thiosulphate
Click here for expt 4.7 Iodine/thiosulphate (iodometric titration)
CI2 + 2KBr-
2KCI→ + Br2
3CuO+ 2NH3 3H→ 2O+ 3Cu+ N2
Redox (Oxidation and Reduction)
(+7) (+2)Mn red - ON ↓
(+2) Fe oxi – ON ↑ (+3)
MnO4
-
+ Fe2+
+ 8H+
Mn→ 2+
+ Fe3+
4H2O
Oxidizing agent
↓
Reduction
Reducing agent
↓
Oxidation
Oxidizing
Agent
Reducing
Agent
MnO4
-
Fe2+
Reduction Oxidation
Oxidizing
Agent
Reducing
Agent
CI2 Br-
Reduction Oxidation
Oxidizing agent
↓
Reduction
Reducing agent
↓
Oxidation
(0) CI red – ON ↓ (-1)
(-1) Br-
oxi – ON ↑ (0)
Oxidizing
Agent
Reducing
Agent
CuO NH3
Reduction Oxidation
Reducing agent
↓
Oxidation
(-3) NH3 oxi – ON ↑ (0)
Oxidizing agent
↓
Reduction (+2) Cu red – ON ↓ (0)
2HCI + Zn H→ 2 + ZnCI2
(0) Zn oxi – ON ↑ (+2)Reducing agent
↓
Oxidation
Oxidizing agent
↓
Reduction
(+1) H red – ON ↓ (0)
Oxidizing
Agent
Reducing
Agent
HCI Zn
Reduction Oxidation
CI2 + 2KBr-
2KCI→ + Br2
3CuO+ 2NH3 3H→ 2O+ 3Cu+N2
Redox (Oxidation and Reduction)
(+7) (+2)Mn red - ON ↓
(+2) Fe oxi – ON ↑ (+3)
MnO4
-
+ 8H+
+ Fe2+
Mn→ 2+
+ Fe3+
4H2O
Oxidizing agent
↓
Reduction
Reducing agent
↓
Oxidation
Oxidizing Agent Reduction
MnO4
-
+ 5e Mn→ 2+
Oxidizing agent
↓
Reduction
Reducing agent
↓
Oxidation
(0) CI red – ON ↓ (-1)
(-1) Br -
oxi – ON ↑ (0)
Reducing agent
↓
Oxidation
(-3) NH3 oxi – ON ↑ (0)
Oxidizing agent
↓
Reduction (+2) Cu red – ON ↓ (0)
2HCI + Zn H→ 2 + ZnCI2
(0) Zn oxi – ON ↑ (+2)Reducing agent
↓
Oxidation
Oxidizing agent
↓
Reduction
(+1) H red – ON ↓ (0)
Reducing Agent Oxidation
Fe 2+
Fe→ 2+
+ e-
Loss electron
Increase ON ↑
Gain electron
Decrease ON ↓
Reducing Agent Oxidation
2Br -
Br→ 2 + 2e-
Loss electron
Increase ON ↑
Oxidizing Agent Reduction
CI2 + 2e 2CI→ - Gain electron
Decrease ON ↓
Reducing Agent Oxidation
(NH3) -N3-
N→ + 3e-
Loss electron
Increase ON ↑
Oxidizing Agent Reduction
(CuO) Cu2+
+ 2e Cu→
Gain electron
Decrease ON ↓
Reducing Agent Oxidation
Zn Zn→ 2+
+ 2e-
Loss electron
Increase ON ↑
Oxidizing Agent Reduction
2H+
+ 2e H→ 2
Gain electron
Decrease ON ↓
Redox (Oxidation and Reduction)
Half equations
Oxidation rxn
Oxidation half eqn Reduction half eqn
Loss electron ↓
Reduction rxn
Loss hydrogen ↓ Gain oxygen ↑ Gain ON ↑ Gain electron ↑ Gain hydrogen ↑ Loss oxygen ↓ Loss ON ↓
Oxidizing AgentReducing Agent
Oxidation rxn Reduction rxn
lose electron
Zn + 2H+
H→ 2 + Zn2+
Zn Zn→ 2+
+ 2e 2H+
+ 2e H→ 2
(0) ON increase ↑ (+2)
Zn Zn→ 2+
+ 2e
2H+
+ 2e H→ 2
2H+
+ Zn Zn→ 2+
+ H2
lose electron gain electron
(+1) ON decrease ↓ (0)
Complete full eqn
Zn + Cu2+
Zn→ 2+
+ CuOxidation half eqn
Zn Zn→ 2+
+ 2e
lose electron
(0) ON increase ↑ (+2)
Reduction half eqn
Cu2+
+ 2e Cu→
(+2) ON decrease ↓ (0)
gain electron
Zn Zn→ 2+
+ 2e
Cu2+
+ 2e Cu→
Cu2+
+ Zn Zn→ 2+
+ Cu
Half equations
Redox (Oxidation and Reduction)
Half equations
Oxidation half eqn Reduction half eqn
Zn Zn→ 2+
+ 2e 2H+
+ 2e H→ 2
(0) ON increase ↑ (+2)
Zn Zn→ 2+
+ 2e
2H+
+ 2e H→ 2
2H+
+ Zn Zn→ 2+
+ H2
lose electron gain electron
(+1) ON decrease ↓ (0)
Complete full eqn
Oxidation half eqn
Zn Zn→ 2+
+ 2e
lose electron
(0) ON increase ↑ (+2)
Reduction half eqn
Cu2+
+ 2e Cu→
(+2) ON decrease ↓ (0)
gain electron
Zn Zn→ 2+
+ 2e
Cu2+
+ 2e Cu→
Cu2+
+ Zn Zn→ 2+
+ Cu
Half equations
Zn + 2HCI H→ 2 + ZnCI2
Zn + 2H+
+ 2CI-
H→ 2 + Zn2+
+ 2CI -
Complete ionic/redox eqn
Zn + 2H+
H→ 2 + Zn2+
spectator ionsspectator ions
Zn + 2H+
H→ 2 + Zn2+
Zn + CuSO4 ZnSO→ 4 + Cu
Zn + Cu2+
+ SO4
2-
Zn→ 2+
+ SO4
2-
+ Cu
Complete full eqn
Complete ionic/redox eqn
spectator ions
Zn + Cu2+
Zn→ 2+
+ Cu
Half equations Half equations
Zn + Cu2+
Zn→ 2+
+ Cu
Redox (Oxidation and Reduction)
Half equations
Oxidation half eqn Reduction half eqn
Mg Mg→ 2+
+ 2e Pb2+
+ 2e Pb→
(0) ON increase ↑ (+2)
Mg Mg→ 2+
+ 2e
Pb2+
+ 2e Pb→
Pb2+
+ Mg Mg→ 2+
+ Pb
lose electron gain electron
(+2) ON decrease ↓ (0)
Complete full eqn
Oxidation half eqn
2Br-
Br→ 2 + 2e
lose electron
(-1) ON increase ↑ (0)
Reduction half eqn
CI2 + 2e 2CI→ -
(0) ON decrease ↓ (-1)
gain electron
2Br-
Br→ 2 + 2e
CI2 + 2e 2CI→ -
CI2 + 2Br-
2CI→ -
+ Br2
Half equations
Mg + PbO Pb→ + MgO
Mg + Pb2+
+ O2-
Pb→ + Mg2+
+ O 2-
Complete ionic/redox eqn
spectator ionsspectator ions
Mg + Pb2+
Pb→ + Mg2+
2KBr + CI2 Br→ 2 + 2KCI
2K+
+ 2Br-
+ CI2 Br→ 2 + 2K+
+ 2CI -
Complete full eqn
Complete ionic/redox eqn
spectator ions
2Br-
+ CI2 Br→ 2 + 2CI-
Half equations Half equations
Mg + Pb2+
Pb→ + Mg2+
2Br-
+ CI2 Br→ 2 + 2CI-
lose electron
MnO4
-
+ 8H+
+ 5Fe2+
Mn→ 2+
+ 5Fe3+
+ 4H2O
Constructing Half and complete redox equation
(+7) (+2)Mn red - ON ↓
(+2) Fe oxi – ON ↑ (+3)
MnO4
-
+ 5Fe2+
+ 8H+
Mn→ 2+
+ 5Fe3+
+ 4H2O
Oxidizing agent
↓
Reduction
Reducing agent
↓
Oxidation
Oxidizing Agent Reduction
MnO4
-
+ 5e Mn→ 2+
Reducing Agent Oxidation
Fe 2+
Fe→ 2+
+ e-
Loss electron
Increase ON ↑
Gain electron
Decrease ON ↓
Complete full eqn
Oxidation half eqnReduction half eqn
1. Balance # O -add H2O
2. Balance # H add H+
3. Balance # charges -add electrons
4. Balance # electron transfer
MnO4
-
Mn→ 2+
MnO4
-
Mn→ 2+
+ 4H2O
MnO4
-
+ 8H+
Mn→ 2+
+ 4H2O
MnO4
-
+ 8H+
+ 5e- Mn→ 2+
+ 4H2O
Fe2+
Fe→ 3+
Fe2+
Fe→ 3+
+ e-
5Fe2+
5Fe→ 3+
+ 5e-
MnO4
-
+ 8H+
+ 5e- Mn→ 2+
+ 4H2O
x 5x 1
MnO4
-
+ 8H+
+ 5e-
Mn→ 2+
+ 4H2O
5Fe2+
5Fe→ 3+
+ 5e-
+
MnO4
-
- In acidic medium
- Strong oxidizing agent
MnO4
-
+ 8H+
+ 5Fe2+
Mn→ 2+
+ 5Fe3+
4H2O
2MnO4
-
+ 5SO2+ 2H2O 2Mn→ 2+
+ 5SO4
2-
+ 4H+
Constructing Half and complete redox equation
(+7) (+2)Mn red - ON ↓
(+4) SO2 oxi – ON ↑ (+6)
2MnO4
-
+ 5SO2 + 2H2O 2Mn→ 2+
+ 5SO4
2-
+ 4H+
Oxidizing agent
↓
Reduction
Reducing agent
↓
Oxidation
Oxidizing Agent Reduction
MnO4
-
+ 5e Mn→ 2+
Reducing Agent Oxidation
SO2 SO→ 4
2-
+ 2e-
Loss electron
Increase ON ↑
Gain electron
Decrease ON ↓
Complete full eqn
Oxidation half eqnReduction half eqn
1. Balance # O - add H2O
2. Balance # H add H+
3. Balance # charges - add electrons
4. Balance # electron transfer
MnO4
-
Mn→ 2+
MnO4
-
Mn→ 2+
+ 4H2O
MnO4
-
+ 8H+
Mn→ 2+
+ 4H2O
MnO4
-
+ 8H+
+ 5e- Mn→ 2+
+ 4H2O
SO2 SO→ 4
2-
2MnO4
-
+ 16H+
+ 10e- 2Mn→ 2+
+ 8H2O
x 5x 2
2MnO4
-
+ 16H+
+ 10e-
2Mn→ 2+
+ 8H2O
5SO2 + 10H2O 5SO→ 4
2-
+ 20H+
+ 10e-
+
2MnO4
-
+ 5SO2 + 2H2O 2Mn→ 2+
+ 5SO4
2-
4H+
SO2 + 2H2O SO→ 4
2-
SO2 + 2H2O SO→ 4
2-
+ 4H+
SO2 + 2H2O SO→ 4
2-
+ 4H+
+ 2e-
5SO2 + 10H2O 5SO→ 4
2-
+ 20H+
+ 10e-
2MnO4
-
+ 5H2O2 + 6H+
2Mn→ 2+
+ 5O2 + 8H2O
Constructing Half and complete redox equations
(+7) (+2)Mn red - ON ↓
(-1) H2O2 oxi – ON ↑ (0)
2MnO4
-
+ 5H2O2 + 6H+
2Mn→ 2+
+ 5O2 + 8H2O
Oxidizing agent
↓
Reduction
Reducing agent
↓
Oxidation
Oxidizing Agent Reduction
MnO4
-
+ 5e Mn→ 2+
Reducing Agent Oxidation
H2O2 O→ 2 + 2e-
Loss electron
Increase ON ↑
Gain electron
Decrease ON ↓
Complete full eqn
Oxidation half eqnReduction half eqn
1. Balance # O - add H2O
2. Balance # H add H+
3. Balance # charges - add electrons
4. Balance # electron transfer
MnO4
-
Mn→ 2+
MnO4
-
Mn→ 2+
+ 4H2O
MnO4
-
+ 8H+
Mn→ 2+
+ 4H2O
MnO4
-
+ 8H+
+ 5e- Mn→ 2+
+ 4H2O
2MnO4
-
+ 16H+
+ 10e- 2Mn→ 2+
+ 8H2O
x 5x 2
2MnO4
-
+ 16H+
+ 10e-
2Mn→ 2+
+ 8H2O
5H2O2 5O→ 2 + 10H+
+ 10e-
+
2MnO4
-
+ 5H2O2 + 6H+
2Mn→ 2+
+ 5O2 + 8H2O
H2O2 O→ 2
H2O2 O→ 2 + 2H+
H2O2 O→ 2 + 2H+
+ 2e-
5H2O2 5O→ 2 + 10H+
+ 10e-
Cr2O7
2-
+ 3NO2
-
+ 8H+
2Cr→ 3+
+ 3NO3
-
+ 4H2O
Cr2O7
2-
2Cr→ 3+
Constructing Half and complete redox equations
(+6) (+3)Cr red - ON ↓
(+3) NO2
-
oxi – ON ↑ (+5)
Cr2O7
2-
+ 3NO2
-
+ 8H+
2Cr→ 3+
+ 3NO3
-
+ 4H2O
Oxidizing agent
↓
Reduction
Reducing agent
↓
Oxidation
Oxidizing Agent Reduction
Cr2O7
2-
+ 6e- 2Cr→ 3+
Reducing Agent Oxidation
NO2
-
NO→ 3
-
+ 2e-
Loss electron
Increase ON ↑
Gain electron
Decrease ON ↓
Complete full eqn
Oxidation half eqnReduction half eqn
1. Balance # O - add H2O
2. Balance # H add H+
3. Balance # charges - add electrons
4. Balance # electron transfer
x 3x 1
Cr2O7
2-
+ 14H+
+ 6e-
2Cr→ 3+
+ 7H2O
3NO2
-
+ 3H2O 3NO→ 3
-
+ 6H+
+ 6e-
+
Cr2O7
2-
+ 3NO2
-
+ 8H+
2Cr→ 3+
+ 3NO3
-
+ 4H2O
Cr2O7
2-
2Cr→ 3+
+ 7H2O
Cr2O7
2-
+ 14H+
2Cr→ 3+
+ 7H2O
Cr2O7
2-
+ 14H+
+ 6e-
2Cr→ 3+
+ 7H2O
Cr2O7
2-
+ 14H+
+ 6e-
2Cr→ 3+
+ 7H2O
NO2
-
NO→ 3
-
NO2
-
+ H2O NO→ 3
-
NO2
-
+ H2O NO→ 3
-
+ 2H+
NO2
-
+ H2O NO→ 3
-
+ 2H+
+ 2e-
3NO2
-
+ 3H2O 3NO→ 3
-
+ 6H+
+ 6e-
Cr2O7
2-
+ 6Fe2+
+ 14H+
2Cr→ 3+
+ 6Fe3+
+ 7H2O
Cr2O7
2-
2Cr→ 3+
Constructing Half and complete redox equations
(+6) (+3)Cr red - ON ↓
(+2) Fe2+
oxi – ON ↑ (+3)
Cr2O7
2-
+ 6Fe2+
+ 14H+
2Cr→ 3+
+ 6Fe3+
+ 7H2O
Oxidizing agent
↓
Reduction
Reducing agent
↓
Oxidation
Oxidizing Agent Reduction
Cr2O7
2-
+ 6e- 2Cr→ 3+
Reducing Agent Oxidation
Fe2+
Fe→ 3+
+ e-
Loss electron
Increase ON ↑
Gain electron
Decrease ON ↓
Complete full eqn
Oxidation half eqnReduction half eqn
1. Balance # O - add H2O
2. Balance # H add H+
3. Balance # charges - add electrons
4. Balance # electron transfer
x 6x 1
Cr2O7
2-
+ 14H+
+ 6e-
2Cr→ 3+
+ 7H2O
6Fe2+
6Fe→ 3+
+ 6e-
+
Cr2O7
2-
2Cr→ 3+
+ 7H2O
Cr2O7
2-
+ 14H+
2Cr→ 3+
+ 7H2O
Cr2O7
2-
+ 14H+
+ 6e-
2Cr→ 3+
+ 7H2O
Cr2O7
2-
+ 14H+
+ 6e-
2Cr→ 3+
+ 7H2O
Cr2O7
2-
+ 6Fe2+
+ 14H+
2Cr→ 3+
+ 6Fe3+
7H2O
Fe2+
Fe→ 3+
Fe2+
Fe→ 3+
+ e
6Fe2+
6Fe→ 3+
+ 6e
Constructing Half and complete redox equations
(+5) (-1)CIO3
-
red - ON ↓
(-1) I-
oxi – ON ↑ (0)
CIO3
-
+ 6I-
+ 6H+
3I→ 2 + CI-
+ 3H2O
Oxidizing agent
↓
Reduction
Reducing agent
↓
Oxidation
Oxidizing Agent Reduction
CIO3
-
+ 6e- CI→ -
Reducing Agent Oxidation
2I-
I→ 2 + 2e-
Loss electron
Increase ON ↑
Gain electron
Decrease ON ↓
Complete full eqn
Oxidation half eqnReduction half eqn
1. Balance # O - add H2O
2. Balance # H add H+
3. Balance # charges - add electrons
4. Balance # electron transfer
x 3x 1
CIO3
-
+ 6H+
+ 6e-
CI→ -
+ 3H2O
6I-
3I→ 2 + 6e-
+
CIO3
-
+ 6I-
+ 6H+
3I→ 2 + CI-
+ 3H2O
CIO3
-
CI→ -
CIO3
-
CI→ -
+ 3H2O
CIO3
-
+ 6H+
CI→ -
+ 3H2O
CIO3
-
+ 6H+
+ 6e- CI→ -
+ 3H2O
CIO3
-
+ 6H+
+ 6e- CI→ -
+ 3H2O
2I-
I→ 2
2I-
I→ 2 + 2e-
6I-
3I→ 2 + 6e-
CIO3
-
+ 6H+
+ 6I-
3I→ 2 + 3H2O
Constructing Half and complete redox equations
(+5) (+2)NO3
-
red - ON ↓
(0) Cu oxi – ON ↑ (+2)
2NO3
-
+ 3Cu + 8H+
3Cu→ 2+
+ 2NO+ 4H2O
Oxidizing agent
↓
Reduction
Reducing agent
↓
Oxidation
Oxidizing Agent Reduction
NO3
-
+ 3e- NO→
Reducing Agent Oxidation
Cu Cu→ 2+
+ 2e-
Loss electron
Increase ON ↑
Gain electron
Decrease ON ↓
Complete full eqn
Oxidation half eqnReduction half eqn
1. Balance # O - add H2O
2. Balance # H add H+
3. Balance # charges - add electrons
4. Balance # electron transfer
x 3x 2
2NO3
-
+ 8H+
+ 6e-
2NO→ + 4H2O
3Cu 3Cu→ 2+
+ 6e-
+
2NO3
-
+ 3Cu + 8H+
3Cu→ 2+
+ 2NO+ 4H2O
NO3
-
NO→
NO3
-
NO + 2H→ 2O
NO3
-
+ 4H+
NO + 2H→ 2O
NO3
-
+ 4H+
+ 3e- NO + 2H→ 2O
2NO3
-
+ 8H+
+ 6e- 2NO + 4H→ 2O
Cu Cu→ 2+
Cu Cu→ 2+
+ 2e-
3Cu 3Cu→ 2+
+ 6e-
2NO3
-
+ 8H+
+ 3Cu 3Cu→ 2+
+2NO+ 4H2O
HNO3 +3Fe2+
+ 3H+
3Fe→ 3+
+ NO+ 2H2O
Constructing Half and complete redox equations
(+5) (+2)HNO3 red - ON ↓
(+2) Fe oxi – ON ↑ (+3)
HNO3 + 3Fe2+
+ 3H+
3Fe→ 3+
+ NO+ 2H2O
Oxidizing agent
↓
Reduction
Reducing agent
↓
Oxidation
Oxidizing Agent Reduction
HNO3 + 3e- NO→
Reducing Agent Oxidation
Fe 2+
Fe→ 3+
+ e-
Loss electron
Increase ON ↑
Gain electron
Decrease ON ↓
Complete full eqn
Oxidation half eqnReduction half eqn
1. Balance # O - add H2O
2. Balance # H add H+
3. Balance # charges - add electrons
4. Balance # electron transfer
x 3x 1
HNO3 + 3H+
+ 3e-
NO→ + 2H2O
3Fe2+
3Fe→ 3+
+ 3e-
+
HNO3 NO + 2H→ 2O
HNO3+ 3H+
NO + 2H→ 2O
HNO3 + 3H+
+ 3e- NO + 2H→ 2O
HNO3 + 3H+
+ 3e- NO + 2H→ 2O
Fe2+
Fe→ 3+
HNO3 + 3Fe2+
+ 3H+
3Fe→ 3+
+ NO+ 2H2O
HNO3 NO→
Fe2+
Fe→ 3+
+ e-
3Fe2+
3Fe→ 3+
+ 3e-
H2O2 + 2Fe2+
+2H+
2Fe→ 3+
+ 2H2O
Constructing Half and complete redox equations
(-1) (-2)H2O3 red - ON ↓
(+2) Fe oxi – ON ↑ (+3)
H2O2 + 2Fe2+
+ 2H+
2Fe→ 3+
+ 2H2O
Oxidizing agent
↓
Reduction
Reducing agent
↓
Oxidation
Oxidizing Agent Reduction
H2O3 + e- H→ 2O
Reducing Agent Oxidation
Fe 2+
Fe→ 3+
+ e-
Loss electron
Increase ON ↑
Gain electron
Decrease ON ↓
Complete full eqn
Oxidation half eqnReduction half eqn
1. Balance # O - add H2O
2. Balance # H add H+
3. Balance # charges - add electrons
4. Balance # electron transfer
x 2x 1
H2O2 + 2H+
+ 2e-
2H→ 2O
2Fe2+
2Fe→ 3+
+ 2e-
+
Fe2+
Fe→ 3+
Fe2+
Fe→ 3+
+ e-
2Fe2+
2Fe→ 3+
+ 2e-
H2O2 + 2Fe2+
+ 2H+
2Fe→ 3+
+ 2H2O
H2O2 H→ 2O
H2O2 2H→ 2O
H2O2 + 2H+
2H→ 2O
H2O2 + 2H+
+ 2e- 2H→ 2O
H2O2 + 2H+
+ 2e- 2H→ 2O
CI2 + SO2 + 2H2O 2CI→ -
+ SO4
2-
+ 4H+
Constructing Half and complete redox equations
(0) (-1)CI2 red - ON ↓
(+4) SO2 oxi – ON ↑ (+6)
CI2 + SO2 + 2H2O 2CI→ -
+ SO4
2-
+ 4H+
Oxidizing agent
↓
Reduction
Reducing agent
↓
Oxidation
Oxidizing Agent Reduction
CI2 + 2e 2CI→ -
Reducing Agent Oxidation
SO2 SO→ 4
2-
+ 2e-
Loss electron
Increase ON ↑
Gain electron
Decrease ON ↓
Complete full eqn
Oxidation half eqnReduction half eqn
1. Balance # O - add H2O
2. Balance # H add H+
3. Balance # charges - add electrons
4. Balance # electron transfer
SO2 SO→ 4
2-
x 1x 1
CI2 + 2e-
2CI→ -
SO2 + 2H2O SO→ 4
2-
+ 4H+
+ 2e-
+
SO2 + 2H2O SO→ 4
2-
SO2 + 2H2O SO→ 4
2-
+ 4H+
SO2 + 2H2O SO→ 4
2-
+ 4H+
+ 2e-
CI2 + SO2 + 2H2O 2CI→ -
+ SO4
2-
+ 4H+
CI2 2CI→ -
CI2 + 2e- 2CI→ -
CI2 + 2e- 2CI→ -
SO2 + 2H2O SO→ 4
2-
+ 4H+
+ 2e-
Sn2+
+ 2Fe3+
Sn→ 4+
+ 2Fe2+
2Fe2+
+ CI2 2Fe→ 3+
+ 2CI-
Ca + 2H+
Ca→ 2+
+ H2
IB Redox Questions
Deduce half eqn of oxidation and reduction for the following
Ca + 2H+
Ca→ 2+
+ H2
2Fe2+
+ CI2 2Fe→ 3+
+ 2CI-
Sn2+
+ 2Fe3+
Sn→ 4+
+ 2Fe2+
0 +1 +2 0
Ca Ca→ 2+
+ 2e
2H+
+ 2e H→ 2
oxidation
reduction
+2 0 +3 -1
2Fe2+
Fe→ 3+
+ 2e
CI2 + 2e 2CI→ -
oxidation
reduction
+2 +3 +4 +2
Sn2+
Sn→ 4+
+ 2e
2Fe3+
+ 2e 2Fe→ 2+
Substances acting as oxidizing and reducing agent
2MnO4
-
+ 5H2O2 + 6H+
2Mn→ 2+
+ 5O2 + 8H2O
H2O2 + 2Fe2+
+ 2H+
2Fe→ 3+
+ 2H2O
H2O2 + 2I-
+ 2H+
I→ 2 + 2H2O
Oxidizing Agent Reducing Agent
MnO4
-
Fe2+
Cr2O7
2- SO2
HNO3 I-
H2O2 H2S
CI2 SO3
2-
Acidified H2O2 act as oxidizing agent
- Oxidizes Fe2+
to Fe3+
- Oxidizes I-
to I2
Acidified MnO4
-
act as more powerful oxidizing agent
-Oxidizes weaker oxidizing agent
H2O2 to H2O and O2
- H2O2 act as reducing agent
Identify oxidizing and reducing agent for following rxn.
5As2O3 + 2MnO4
-
+ 16H+
2Mn→ 2+
+ 5As2O5 + 8H2O 2NO3
-
+ 3Cu + 8H+
3Cu→ 2+
+ 2NO+ 4H2O
Cr2O7
2-
+ 3NO2
-
+ 8H+
2Cr→ 3+
+ 3NO3
-
+ 4H2O
1 2
3
oxidizing
agent
oxidizing
agent
oxidizing
agent
reducing
agent
reducing
agent
reducing
agent
Acknowledgements
Thanks to source of pictures and video used in this presentation
Thanks to Creative Commons for excellent contribution on licenses
http://creativecommons.org/licenses/
Prepared by Lawrence Kok
Check out more video tutorials from my site and hope you enjoy this tutorial
http://lawrencekok.blogspot.com

Weitere ähnliche Inhalte

Was ist angesagt?

Estimate the amount Ni by EDTA
Estimate the amount Ni by EDTAEstimate the amount Ni by EDTA
Estimate the amount Ni by EDTAMithil Fal Desai
 
Water : A Green Solvent With A Difference
Water : A Green Solvent With A DifferenceWater : A Green Solvent With A Difference
Water : A Green Solvent With A DifferenceBalmukund Thakkar
 
The production and characterization of activated carbon using local agricultu...
The production and characterization of activated carbon using local agricultu...The production and characterization of activated carbon using local agricultu...
The production and characterization of activated carbon using local agricultu...PT carbon indonesia
 
Ti o2 as photocatalyst
Ti o2  as photocatalystTi o2  as photocatalyst
Ti o2 as photocatalystRAMESWAR GOUDA
 
Renewable Fuels by Photocatalytic Reduction of carbondioxide (CO2); (Artifici...
Renewable Fuels by Photocatalytic Reduction of carbondioxide (CO2); (Artifici...Renewable Fuels by Photocatalytic Reduction of carbondioxide (CO2); (Artifici...
Renewable Fuels by Photocatalytic Reduction of carbondioxide (CO2); (Artifici...SAAD ARIF
 
PhD presentation 3rd feb 2016
PhD presentation 3rd feb 2016PhD presentation 3rd feb 2016
PhD presentation 3rd feb 2016Anirban Kundu
 
Carboxylic acid derivatives
Carboxylic acid  derivativesCarboxylic acid  derivatives
Carboxylic acid derivativesjagan vana
 
Oxyacids of sulphur
Oxyacids of sulphurOxyacids of sulphur
Oxyacids of sulphurRabia Aziz
 
Photocatalytic application of TiO2/SiO2-based magnetic nanocomposite (Fe3O4@S...
Photocatalytic application of TiO2/SiO2-based magnetic nanocomposite (Fe3O4@S...Photocatalytic application of TiO2/SiO2-based magnetic nanocomposite (Fe3O4@S...
Photocatalytic application of TiO2/SiO2-based magnetic nanocomposite (Fe3O4@S...Iranian Chemical Society
 
Permanganometry, iodometry in analytical technique, P K MANI
Permanganometry, iodometry in analytical technique, P K MANIPermanganometry, iodometry in analytical technique, P K MANI
Permanganometry, iodometry in analytical technique, P K MANIP.K. Mani
 
Photo fries rearrangement & Barton reaction
Photo fries rearrangement & Barton reactionPhoto fries rearrangement & Barton reaction
Photo fries rearrangement & Barton reactionKeshav Singh
 
1 oxygen
1 oxygen1 oxygen
1 oxygenfelna00
 
3 modren sodium hydroxide manufacturing methods
3 modren sodium hydroxide manufacturing methods3 modren sodium hydroxide manufacturing methods
3 modren sodium hydroxide manufacturing methodsrita martin
 
Enhanced Arsenic Removal from Groundwater by Using an Advance Adsorbent - Fer...
Enhanced Arsenic Removal from Groundwater by Using an Advance Adsorbent - Fer...Enhanced Arsenic Removal from Groundwater by Using an Advance Adsorbent - Fer...
Enhanced Arsenic Removal from Groundwater by Using an Advance Adsorbent - Fer...Hanna Stahlberg
 
B. Sc. Part - I (Sem-II) Unit-IV (C) Epoxides by Dr Pramod R Padole
B. Sc. Part - I (Sem-II) Unit-IV (C) Epoxides  by Dr Pramod R PadoleB. Sc. Part - I (Sem-II) Unit-IV (C) Epoxides  by Dr Pramod R Padole
B. Sc. Part - I (Sem-II) Unit-IV (C) Epoxides by Dr Pramod R Padolepramod padole
 

Was ist angesagt? (20)

Estimate the amount Ni by EDTA
Estimate the amount Ni by EDTAEstimate the amount Ni by EDTA
Estimate the amount Ni by EDTA
 
Water : A Green Solvent With A Difference
Water : A Green Solvent With A DifferenceWater : A Green Solvent With A Difference
Water : A Green Solvent With A Difference
 
The production and characterization of activated carbon using local agricultu...
The production and characterization of activated carbon using local agricultu...The production and characterization of activated carbon using local agricultu...
The production and characterization of activated carbon using local agricultu...
 
Ti o2 as photocatalyst
Ti o2  as photocatalystTi o2  as photocatalyst
Ti o2 as photocatalyst
 
Renewable Fuels by Photocatalytic Reduction of carbondioxide (CO2); (Artifici...
Renewable Fuels by Photocatalytic Reduction of carbondioxide (CO2); (Artifici...Renewable Fuels by Photocatalytic Reduction of carbondioxide (CO2); (Artifici...
Renewable Fuels by Photocatalytic Reduction of carbondioxide (CO2); (Artifici...
 
Zeolite and its uses
 Zeolite and its uses Zeolite and its uses
Zeolite and its uses
 
PhD presentation 3rd feb 2016
PhD presentation 3rd feb 2016PhD presentation 3rd feb 2016
PhD presentation 3rd feb 2016
 
Carboxylic acid derivatives
Carboxylic acid  derivativesCarboxylic acid  derivatives
Carboxylic acid derivatives
 
Oxyacids of sulphur
Oxyacids of sulphurOxyacids of sulphur
Oxyacids of sulphur
 
Contact Process
Contact ProcessContact Process
Contact Process
 
Photocatalytic application of TiO2/SiO2-based magnetic nanocomposite (Fe3O4@S...
Photocatalytic application of TiO2/SiO2-based magnetic nanocomposite (Fe3O4@S...Photocatalytic application of TiO2/SiO2-based magnetic nanocomposite (Fe3O4@S...
Photocatalytic application of TiO2/SiO2-based magnetic nanocomposite (Fe3O4@S...
 
Permanganometry, iodometry in analytical technique, P K MANI
Permanganometry, iodometry in analytical technique, P K MANIPermanganometry, iodometry in analytical technique, P K MANI
Permanganometry, iodometry in analytical technique, P K MANI
 
Photo fries rearrangement & Barton reaction
Photo fries rearrangement & Barton reactionPhoto fries rearrangement & Barton reaction
Photo fries rearrangement & Barton reaction
 
1 oxygen
1 oxygen1 oxygen
1 oxygen
 
3 modren sodium hydroxide manufacturing methods
3 modren sodium hydroxide manufacturing methods3 modren sodium hydroxide manufacturing methods
3 modren sodium hydroxide manufacturing methods
 
Enhanced Arsenic Removal from Groundwater by Using an Advance Adsorbent - Fer...
Enhanced Arsenic Removal from Groundwater by Using an Advance Adsorbent - Fer...Enhanced Arsenic Removal from Groundwater by Using an Advance Adsorbent - Fer...
Enhanced Arsenic Removal from Groundwater by Using an Advance Adsorbent - Fer...
 
CO2 Separation - A Proposal
CO2 Separation - A Proposal CO2 Separation - A Proposal
CO2 Separation - A Proposal
 
B. Sc. Part - I (Sem-II) Unit-IV (C) Epoxides by Dr Pramod R Padole
B. Sc. Part - I (Sem-II) Unit-IV (C) Epoxides  by Dr Pramod R PadoleB. Sc. Part - I (Sem-II) Unit-IV (C) Epoxides  by Dr Pramod R Padole
B. Sc. Part - I (Sem-II) Unit-IV (C) Epoxides by Dr Pramod R Padole
 
Synthesis of Chloropentaamminecobalt(iii) chloride
Synthesis of Chloropentaamminecobalt(iii) chlorideSynthesis of Chloropentaamminecobalt(iii) chloride
Synthesis of Chloropentaamminecobalt(iii) chloride
 
Sulphuric Acid
Sulphuric AcidSulphuric Acid
Sulphuric Acid
 

Ähnlich wie IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox.

IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox.
IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox.IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox.
IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox.Lawrence kok
 
IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...
IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...
IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...Lawrence kok
 
IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...
IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...
IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...Lawrence kok
 
Quantitative Determination of Total Hardness in Drinking Water by Complexomet...
Quantitative Determination of Total Hardness in Drinking Water by Complexomet...Quantitative Determination of Total Hardness in Drinking Water by Complexomet...
Quantitative Determination of Total Hardness in Drinking Water by Complexomet...Nathan Nogales
 
The Nature of Solution
The Nature of SolutionThe Nature of Solution
The Nature of SolutionAdmin Jan
 
Ch4 z5e reactions
Ch4 z5e reactionsCh4 z5e reactions
Ch4 z5e reactionsblachman
 
Exp.1 ppt slides_Procedure Steps.pdf
Exp.1 ppt slides_Procedure Steps.pdfExp.1 ppt slides_Procedure Steps.pdf
Exp.1 ppt slides_Procedure Steps.pdfFatimaAhmed16888
 
PHYSICAL CHEMISTRY 1.5-SOLUBILITY
PHYSICAL CHEMISTRY 1.5-SOLUBILITYPHYSICAL CHEMISTRY 1.5-SOLUBILITY
PHYSICAL CHEMISTRY 1.5-SOLUBILITYshahzadebaujiti
 
Writing More Complex Redox Equations
Writing More Complex Redox EquationsWriting More Complex Redox Equations
Writing More Complex Redox Equationsscuffruff
 
Chem1020 examples for chapters 8-9-10
Chem1020 examples for chapters 8-9-10Chem1020 examples for chapters 8-9-10
Chem1020 examples for chapters 8-9-10Ahmad Al-Dallal
 
1. redox reactions summary presentation.ppt
1. redox reactions summary presentation.ppt1. redox reactions summary presentation.ppt
1. redox reactions summary presentation.pptNongaloThozamile
 
IB Chemistry Limiting, Excess, Theoretical and Percentage Yield
IB Chemistry Limiting, Excess, Theoretical and Percentage YieldIB Chemistry Limiting, Excess, Theoretical and Percentage Yield
IB Chemistry Limiting, Excess, Theoretical and Percentage YieldLawrence kok
 
22 solution stoichiometry new
22 solution stoichiometry new22 solution stoichiometry new
22 solution stoichiometry newmrtangextrahelp
 

Ähnlich wie IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox. (20)

IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox.
IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox.IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox.
IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox.
 
IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...
IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...
IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...
 
IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...
IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...
IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...
 
Matter2
Matter2Matter2
Matter2
 
Quantitative Determination of Total Hardness in Drinking Water by Complexomet...
Quantitative Determination of Total Hardness in Drinking Water by Complexomet...Quantitative Determination of Total Hardness in Drinking Water by Complexomet...
Quantitative Determination of Total Hardness in Drinking Water by Complexomet...
 
The Nature of Solution
The Nature of SolutionThe Nature of Solution
The Nature of Solution
 
Ch4 z5e reactions
Ch4 z5e reactionsCh4 z5e reactions
Ch4 z5e reactions
 
Exp.1 ppt slides_Procedure Steps.pdf
Exp.1 ppt slides_Procedure Steps.pdfExp.1 ppt slides_Procedure Steps.pdf
Exp.1 ppt slides_Procedure Steps.pdf
 
PHYSICAL CHEMISTRY 1.5-SOLUBILITY
PHYSICAL CHEMISTRY 1.5-SOLUBILITYPHYSICAL CHEMISTRY 1.5-SOLUBILITY
PHYSICAL CHEMISTRY 1.5-SOLUBILITY
 
Writing More Complex Redox Equations
Writing More Complex Redox EquationsWriting More Complex Redox Equations
Writing More Complex Redox Equations
 
Chem1020 examples for chapters 8-9-10
Chem1020 examples for chapters 8-9-10Chem1020 examples for chapters 8-9-10
Chem1020 examples for chapters 8-9-10
 
#13 Key
#13 Key#13 Key
#13 Key
 
#17 Key
#17 Key#17 Key
#17 Key
 
1. redox reactions summary presentation.ppt
1. redox reactions summary presentation.ppt1. redox reactions summary presentation.ppt
1. redox reactions summary presentation.ppt
 
Chapter 8 salt part 4
Chapter 8 salt part 4Chapter 8 salt part 4
Chapter 8 salt part 4
 
IB Chemistry Limiting, Excess, Theoretical and Percentage Yield
IB Chemistry Limiting, Excess, Theoretical and Percentage YieldIB Chemistry Limiting, Excess, Theoretical and Percentage Yield
IB Chemistry Limiting, Excess, Theoretical and Percentage Yield
 
#19 key
#19 key#19 key
#19 key
 
22 solution stoichiometry new
22 solution stoichiometry new22 solution stoichiometry new
22 solution stoichiometry new
 
4. redox titrations
4. redox titrations4. redox titrations
4. redox titrations
 
Balancing equations
Balancing equationsBalancing equations
Balancing equations
 

Mehr von Lawrence kok

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...Lawrence kok
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...Lawrence kok
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...Lawrence kok
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...Lawrence kok
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...Lawrence kok
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...Lawrence kok
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...Lawrence kok
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...Lawrence kok
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...Lawrence kok
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...Lawrence kok
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...Lawrence kok
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...Lawrence kok
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...Lawrence kok
 

Mehr von Lawrence kok (20)

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
 

Kürzlich hochgeladen

week 1 cookery 8 fourth - quarter .pptx
week 1 cookery 8  fourth  -  quarter .pptxweek 1 cookery 8  fourth  -  quarter .pptx
week 1 cookery 8 fourth - quarter .pptxJonalynLegaspi2
 
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...DhatriParmar
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptxmary850239
 
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptxDecoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptxDhatriParmar
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptxMan or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptxDhatriParmar
 
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxGrade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxkarenfajardo43
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmStan Meyer
 
MS4 level being good citizen -imperative- (1) (1).pdf
MS4 level   being good citizen -imperative- (1) (1).pdfMS4 level   being good citizen -imperative- (1) (1).pdf
MS4 level being good citizen -imperative- (1) (1).pdfMr Bounab Samir
 
Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1GloryAnnCastre1
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptxmary850239
 
How to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseHow to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseCeline George
 
Multi Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP ModuleMulti Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP ModuleCeline George
 
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxBIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxSayali Powar
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Projectjordimapav
 
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
Unraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptxUnraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptx
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptxDhatriParmar
 

Kürzlich hochgeladen (20)

week 1 cookery 8 fourth - quarter .pptx
week 1 cookery 8  fourth  -  quarter .pptxweek 1 cookery 8  fourth  -  quarter .pptx
week 1 cookery 8 fourth - quarter .pptx
 
Faculty Profile prashantha K EEE dept Sri Sairam college of Engineering
Faculty Profile prashantha K EEE dept Sri Sairam college of EngineeringFaculty Profile prashantha K EEE dept Sri Sairam college of Engineering
Faculty Profile prashantha K EEE dept Sri Sairam college of Engineering
 
Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"
 
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx
 
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptxDecoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptxMan or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
 
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxGrade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
 
prashanth updated resume 2024 for Teaching Profession
prashanth updated resume 2024 for Teaching Professionprashanth updated resume 2024 for Teaching Profession
prashanth updated resume 2024 for Teaching Profession
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and Film
 
MS4 level being good citizen -imperative- (1) (1).pdf
MS4 level   being good citizen -imperative- (1) (1).pdfMS4 level   being good citizen -imperative- (1) (1).pdf
MS4 level being good citizen -imperative- (1) (1).pdf
 
Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx
 
How to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseHow to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 Database
 
Multi Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP ModuleMulti Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP Module
 
Paradigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTAParadigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTA
 
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxBIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Project
 
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
Unraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptxUnraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptx
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
 

IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox.

  • 1. http://lawrencekok.blogspot.com Prepared by Lawrence Kok Tutorial on Redox Titration, BOD and Biological Oxygen Demand using Winkler method
  • 2. Titration Redox TitrationAcid Base Titration Primary standard acids - Potassium hydrogen phthalate Primary standard bases - Anhydrous sodium carbonate 10.6 g Na2CO3 Standard 0.1M Na2CO3 10.6g in 1 L Volumetric Burette Accurate known conc Unable to prepare accurate conc of NaOH/HCI due to •Hygroscopic nature NaOH – Absorb water vapour •HCI in vapour state – Difficult to measure amt VolumetricBurette Standard 0.1M KHP 20.4 g KHP20.4 g in 1L Unknown Conc NaOH Unknown Conc HCI ? ? Standardize NaOH using KHP Standardize H CI using Na 2 CO 3 Accurate known conc Acid/Base Titration Redox Titration Neutralization bet acid/base Redox bet oxidizing/reducing agent Transfer proton/H+ from acid to base Transfer elec from reducing to oxidizing agent Indicator for colour change No indicator needed Acid Base Titration - One reactant – must be standard (known conc) or capable being standardised - Equivalent point – equal amt neutralize each other - End point measurable/detectable by colour change (indicator), pH change /conductivity
  • 3. Oxidizing Agent Reducing Agent MnO4 - Fe2+ Cr2O7 2- SO2 HNO3 I- H2O2 H2S CI2 SO3 2- KIO3 Vitamin C OCI- /Cu2+ Oxalate/ C2O4 2- Titration Redox TitrationAcid Base Titration Burette/Titrant Oxidizing agent ? Acid/Base Titration Redox Titration Neutralization bet acid/base Redox bet oxidizing/reducing agent Transfer proton/H+ from acid to base Transfer elec from reducing to oxidizing agent Indicator for colour change No indicator needed Redox Titration - One reactant – must be standard (known conc) or capable being standardised - Reaction bet Oxidizing agent/Titrant with Reducing agent/Analyte - Titrant of known concentration - Stoichiometrically equivalent amt titrant/titrand added - No indicator needed. Detectable by colour change of Oxidizing/Reducing agent Analyte/reducing agent Titrand Redox Titration used to determine: -Amount of copper in brass -Amount Fe/iron in iron pill/food -Amount H2O2 commercial peroxide solution -Amount OCI - /hypochlorite/CI2 in bleach -Amount Vitamin C -Amount Dissolve oxygen content/BOD -Amount ethanol in beer/wine -Amount oxalate acidAnalyte to be determ ine ? MnO4 - + 5Fe2+ + 8H+ Mn→ 2+ + 5Fe3+ + 4H2O Cr2O7 2- + 6Fe2+ + 14H+ 2Cr→ 3+ + 6Fe3+ 7H2O Iron determination using MnO4 - / Cr2O7 2- purple colourless orange green add MnO4 - till endpoint ↓ turn purple (excess MnO4 - ) add Cr2O7 2- till endpoint ↓ turn orange (excess Cr2O7 2- )
  • 4. Redox Titration Calculation- % Iron in iron tablet Iron tablet contain hydrated iron (II) sulphate (FeSO4.7H2O). One tablet weighing 1.863g crushed, dissolved in water and solution made up to total vol of 250ml. 10ml of this solution added to 20ml of H2SO4 and titrated with 0.002M KMnO4. Average 24.5ml need to reach end point. Cal % iron(II) sulphate in iron tablet. 1 10ml transfer 20ml acid added 1.863 g 250ml KMnO4 M = 0.002M V = 24.5 ml Fe2+ M = ? V = 30ml MnO4- + 5Fe2+ + 8H+ Mn→ 2+ + 5Fe2+ + 4H2O M = 0.002M M = ? V = 24.5ml Mole ratio – 1: 5 Using mole ratio Mole KMO4 - = MV = (0.002 x 0.0245) = 4.90 x 10-5 Mole ratio (1 : 5) • 1 mole KMO4 - react 5 mole Fe2+ • 4.90 x 10-5 KMO4 - react 2.45 x 10-4 Fe2+ M V = 1 M V 5 0.002 x 0.0245 = 1 Moles Fe2+ 5 Moles = 2.45 x 10-4 Fe2+ Mass of (expt yield) = 1.703g Mass of (Actual tablet) = 1.863g % Fe in iron tablet = 1.703 x 100% 1.863 = 91.4% Mole  Mass Mole x RMM = Mass FeSO4 6.125 x 10-3 x 278.05 = 1.703g FeSO4 Using formula 10ml sol contain - 2.45 x 10-4 Fe2+ 250ml sol contain - 250 x 2.45 x 10-4 Fe2+ 10 = 6.125 x 10-3 mole Fe2+ FeSO4.7H2O  FeSO4 + 7H2O 1 mol  1 mol + 7 mol FeSO4  Fe2+ + SO4 2- 1 mol  1mol + 1mol 6.125 x 10-3 mol  6.125 x 10-3 mole Fe2+ 1 2 3 4 Video on % Iron in iron tablet Video on Fe2+ /KMnO4 titration calculation
  • 5. Redox Titration Calculation- % Iron in iron tablet One iron tablet weighing 2.00g crushed, dissolved in water/acid to convert it to Fe2+ and solution titrated with 0.100M KMnO4. Average 27.5ml KMnO4 needed to reach end point. Cal mass of iron and % iron in iron tablet. How equivalent point is detected ? 2 iron solution titrated 2.000 g KMnO4 M = 0.100M V = 27.5 ml Fe2+ M = ? 1MnO4- + 5Fe2+ + 8H+ Mn→ 2+ + 5Fe2+ + 4H2O M = 0.100M M = ? V = 27.5ml Mole ratio – 1: 5 Using mole ratio Mole KMO4 - = MV = (0.100 x 0.0275) = 0.00275 Mole ratio (1 : 5) • 1 mole KMO4 - react 5 mole Fe2+ • 0.00275 KMO4 - react 0.01375Fe2+ M aVa = 1 Mb Vb 5 0.100 x 0.0275 = 1 Moles Fe2+ 5 Moles = 0.01375 mol Fe2+ Mass of (expt yield) = 0.7679g Mass of (Actual tablet) = 2.000g % Fe in iron tablet = 0.7679 x 100% 2.000 = 38.4 % Mole  Mass Mole x RMM = Mass Fe 0.01375 x 55.85 = 0.7679g Fe Using formula 1 2 3 Video on % Iron in iron tablet Video on Fe2+ /KMnO4 titration calculation MnO4 - – In burette is purple – Turns colourless react with Fe2+ All Fe2+ used up at equivalence point – excess KMnO4 - turn purple 4
  • 6. 1 mol 1 mol 1OCI- + 2I- + 2H+ I→ 2 + 1CI- + H2O I2 + 2S2O3 2- S→ 4O6 2- + 2I- 1 mol 2 mol 10.0ml bleach (OCI - ) diluted to total vol of 250ml. 20.0ml is added to 1g of KI (excess) and iodine produced is titrated with 0.0206M Na2S2O3.Using starch indicator, end point was 17.3ml. Cal molarity of OCI- in bleach. Redox Titration Calculation – OCI- in Bleach 3 Na2S2O3 M = 0.0206M V = 17.3ml I2 M = ? 2S2O3 2- + I2 S→ 4O6 2- + 2I- M = 0.0206 Mole = ? V = 17.3ml V = 0.02 Mole ratio (1 : 2) 1 mole OCI- : 1 mole I2 : 2 mole S2O3 2- 1 mole OCI- 2 mole S2O3 2- 10.0ml OCI- transfer V = 250ml M = 8.9 x 10-3 M 20ml transfer 1g KI excess added Mole S2O3 2- = MV = (0.0206 x 0.0173) = 3.56 x 10-4 Mole ratio (2 : 1) • 2 mole S2O3 2- react 1 mole I2 • 3.56 x 10-4 S2O3 2-- react 1.78 x 10-4 I2 Mole ratio – 2: 1 1OCI- + 2I- + 2H+ I→ 2 + 1CI- + H2O 1CIO- I2 Mole = ? Mole = 1.78 x 10-4 Mole ratio – 2: 1 Mole ratio (1 : 1) • 1 mole OCI- 1 mole I2 • 1.78 x 10-4 OCI- 1.78 x 10-4 I2 Moles of OCI- = M x V M x V = 1.78 x 10-4 M x 0.02 = 1.78 x 10-4 M = 1.78 x 10-4 002 M = 8.9 x 10-3 M diluted 25x Mole bef dilution = Mole aft dilution M1 V1 = M2V2 M1 = Ini molarity M2 = Final molarity V1 = Initial vol V2 = Final vol M1 V1 = M2 V2 M1 x 10 = 8.9 x 10-3 x 250 M1 = 8.9 x 10-3 x 250 10 M1 = 0.222M Diuted 25x V = 10 M = ? titrated Water added till 250ml 1 Using direct formula M V(OCI+ ) = 1 = 1 M V(S203 2- ) 2 2 Moles of OCI+ = 1 0.0206 x 0.0173 2 Moles of OCI- = 1.78 x 10-4 2 3 4 5 6 Hypochlorous acid = bleach Oxidizing agent = OCI- Iodometric titration I2/thiosulphate/starch ↓ I - oxidized by OA to I2 ↓ I2 react with starch (blue black colour) ↓ S2O3 2- added to reduce I2 ↓ I2 used up – blue black disappear 2I- + OCI- ↔ I2 + CI- 2S2O3 2- + I2 ↔S4O6 2- + 2I-
  • 7. 1 mol 1 mol 1OCI- + 2I- + 2H+ I→ 2 + CI- + H2O I2 + 2S2O3 2- S→ 4O6 2- + 2I- 1 mol 2 mol 10.0ml bleach (OCI- ) react with KI (excess), iodine produced is titrated with 0.020M Na2S2O3.Using starch indicator, end point was 38.65 ml. Cal molarity of OCI- in bleach. Redox Titration Calculation – OCI- in Bleach 4 Na2S2O3 M = 0.020M V = 38.5 ml I2 M = ? 2S2O3 2- + I2 S→ 4O6 2- + 2I- M = 0.020 Mole = ? V = 38.55ml Mole ratio ( 1 : 2) 1 mole OCI- : 1 mole I2 : 2 mole S2O3 2- 1 mole OCI- 2 mole S2O3 2- 10ml bleach transfer 1g KI excess added Mole S2O3 2- = MV = (0.020 x 0.03865) = 7.73 x 10-4 Mole ratio (2 : 1) • 2 mole S2O3 2- react 1 mole I2 • 7.73 x 10-4 S2O3 2-- react 3.865 x 10-4 I2 Mole ratio – 2: 1 1OCI- + 2I- + 2H+ I→ 2 + 2CI- + H2O 1OCI- I2 Mole = ? Mole = 3.865 x 10-4 Mole ratio – 1: 1 Mole ratio (1 : 1) • 1 mole OCI- 1 mole I2 • 3.865 x 10-4 OCI- 3.865 x 10-4 I2 M x V = Moles OCI- M x 10 = 3.865 x 10 -4 1000 M = 0.0387M titrated 1 Using direct formula M V(OCI+ ) = 1 = 1 M V(S203 2- ) 2 2 Moles of OCI+ = 1 0.020 x 0.03865 2 Moles of OCI- = 3.5865 x 10-4 2 3 4 5 Video on OCI- in bleach Sample OCI- calculation. Click here to view Conc OCI- Hypochlorous acid = bleach Active oxidizing agent = OCI- Iodometric titration I2/thiosulphate/starch ↓ I - oxidized by OA to I2 ↓ I2 react with starch (blue black colour) ↓ S2O3 2- added to reduce I2 ↓ I2 used up – blue black disappear 2I- + OCI- ↔ I2 + CI- 2S2O3 2- + I2 ↔S4O6 2- + 2I-
  • 8. 2 mol 1 mol 2Cu2+ + 4I- I→ 2 + 2CuI I2 + 2S2O3 2- S→ 4O6 2- + 2I- 1 mol 2 mol 2.5g brass react with 10ml conc HNO3 producing Cu2+ ions. Solution made up to 250ml using water in a volumetric flask. Pipette 25ml of solution into conical flask. Na2CO3 added to neutralize excess acid. 1g KI (excess) and few drops of starch added to flask. Titrate with 0.1M S2O3 2- and end point, reached when 28.2ml added. Find molarity copper ions and % copper found in brass. Redox Titration Calculation - % Cu in Brass 5 Na2S2O3 M = 0.1M V = 28.2ml I2 M = ? 2S2O3 2- + I2 S→ 4O6 2- + 2I- M = 0.1M Mole = ? V = 28.2ml Mole ratio ( 1 : 1) 2 mole Cu2+ : 1 mole I2 : 2 mole S2O3 2- 2 mole Cu2+ 2 mole S2O3 2- Pour into Volumetric flask V = 250ml M = ? 25ml transfer 1g KI excess + starch added Mole S2O3 2- = MV = (0.1 x 0.0282) = 2.82 x 10-3 Mole ratio (2 : 1) • 2 mole S2O3 2- react 1 mole I2 • 2.82 x 10-3 S2O3 2-- react 1.41 x 10-3 I2 Mole ratio – 2: 1 2Cu2+ + 4I- I→ 2 + 2CuI Mole = ? 1.41 x 10-3 I2 Mole ratio – 2: 1 Mole ratio (2 : 1) • 2 mole Cu2+ 1 mole I2 • 2.82 x 10-3 Cu2+ 1.41 x 10-3 I2 Mole of Cu2+ = M x V M x V = 2.82 x 10-3 M x 0.025 = 2.82 x 10-3 M = 2.82 x 10-3 0.025 M = 1.13 x 10-1 M Mass Cu = Molarity Cu x RAM Mass Cu = (0.113 x 63.5)g Cu in 1000ml = 7.18g  Cu in 1000ml = 1.79g  Cu in 250ml 10 ml HNO3 titrated Water added till 250ml 2.5g brass % Cu in brass = mass Cu x 100% mass brass = 1.79 x 100% 2.5 = 71.8% Using formulaUsing mole ratio Using formula M V(Cu2+ ) = 2 = 1 MV(S203 2- ) 2 1 Moles of Cu2+ = 1 0.1 x 0.0282 1 Moles of Cu2+ = 2.82 x 10-3 1 2 3 4 5 6 Iodometric titration I2/thiosulphate/starch ↓ I - oxidized by OA to I2 ↓ I2 react with starch (blue black colour) ↓ S2O3 2- added to reduce I2 ↓ I2 used up – blue black disappear 4I- + 2Cu+ ↔ I2 + 2CuI 2S2O3 2- + I2 ↔S4O6 2- + 2I- Click here here for copper determination
  • 9. 2 mol 1 mol 2Cu2+ + 4I- I→ 2 + 2CuI I2 + 2S2O3 2- S→ 4O6 2- + 2I- 1 mol 2 mol Brass is a copper alloy. Analysis carried out to determine copper. Iodometric titration was performed. Step 1 : Cu + 2HNO3 + 2H+ Cu→ 2+ + 2NO2 + 2H2O Step 2 : 4I- + 2Cu2+ 2CuI + I→ 2 Step 3 : I2 + 2S2O3 2- 2I→ - + S4O6 2- Average vol S2O3 2- was 28.50ml. Redox Titration Calculation - % Cu in Brass 6 Na2S2O3 M = 0.1M V = 28.5ml I2 M = ? V = 100ml 2S2O3 2- + I2 → S4O6 2- + 2I- M = 0.1M Mole = ? V = 28.5ml Mole ratio ( 1 : 1) 2 mole Cu2+ : 1 mole I2 : 2 mole S2O3 2- 2 mole Cu2+ 2 mole S2O3 2- V = 100ml M = ? 1g KI excess/starch added Mole S2O3 2- = MV = (0.1 x 0.0285) = 2.85 x 10-3 Mole ratio (2 : 1) • 2 mole S2O3 2- react 1 mole I2 • 2.85 x 10-3 S2O3 2-- react 1.41 x 10-3 I2 Mole ratio – 2: 1 2Cu2+ + 4I- I→ 2 + 2CuI Mole = ? 1.41 x 10-3 I2 Mole ratio – 2: 1 Mole ratio (2 : 1) • 2 mole Cu2+ 1 mole I2 • 2.82 x 10-3 Cu2+ 1.41 x 10-3 I2 Mass Cu = Mole Cu x RAM Mass Cu = (2.85 x 10-3 x 63.5) g Cu = 0.181 g titrated HNO3 and water added till 100ml 0.456g brass % Cu in brass = mass Cu x 100% mass brass = 0.181 x 100% 0.468 = 39.7% Using formulaUsing mole ratio Using formula M V(Cu2+ ) = 2 = 1 MV(S203 2- ) 2 1 Moles of Cu2+ = 1 0.1 x 0.0285 1 Mole of Cu 2+ = 2.85 x 10-3 M V(Cu2+ ) = 2 = 1 MV(S203 2- ) 2 1 M x 0.100 = 1 0.1 x 0.0285 1 2+ -2 1 2 3 4 5 6 Iodometric titration I2/thiosulphate/starch ↓ I - oxidized by OA to I2 ↓ I2 react with starch (blue black colour) ↓ S2O3 2- added to reduce I2 ↓ I2 used up – blue black disappear 4I- + 2Cu+ ↔ I2 + 2CuI 2S2O3 2- + I2 ↔S4O6 2- + 2I- Click here here for copper determination expt Cal Amt S2O3 2- Cal Conc/Mole/Mass Cu Cal % Cu by mass in brass Cal % error (Lit value = 44.2 % Cu) % error = Expt value x 100% Lit value = (44.2 – 39.7) x 100% 44.2 = 10.2%
  • 10. Redox Titration Calculation- % purity of oxalate ion Purity of sodium oxalate Na2C2O4 is determine by redox titration with standard 0.040M KMnO4. 35.62 ml KMnO4 needed to reach end point. Cal % w/w Na2C2O4 in sample. How equivalent point is detected ? 7 oxalate solution titrated 0.5116 g KMnO4 M = 0.040M V = 35.62 ml C2O4 2- M = ? 2MnO4- + 5C2O4 2- + 16H+ 2Mn→ 2+ + 10CO2 + 8H2O M = 0.040M M = ? V = 35.62 ml Mole ratio – 2: 5 Using mole ratio Mole KMO4 - = MV = (0.040 x 0.03562) = 1.42 x 10-3 Mole ratio (2 : 5) • 2 mol KMO4 - react 5 mol C2O4 2- • 1.42 x 10-3 KMO4 - react 3.55 x 10-3 C2O4 2- M aVa = 2 Mb Vb 5 0.04 x 0.03562 = 2 Mole C2O4 2- 5 Mol C2O4 2- = 3.55 x 10-3 Mass of (expt yield) = 0.476 g Mass of (Actual tablet) = 0.5116 g % w/w in Na2C2O4 = 0.476 x 100 % 0.5116 = 93 % Mole  Mass Mole x RMM = Mass Na2C2O4 3.55 x 10-3 x 134 = 0.476 g Fe Using formula 1 2 3 MnO4 - – In burette is purple – Turns colourless react with C2O4 2- All C2O4 2- used up at equivalence point – excess KMnO4 - turn purple ? Oxidizing Agent Reducing Agent MnO4 - Fe2+ Cr2O7 2- SO2 HNO3 I- H2O2 H2S CI2 SO3 2- KIO3 Vitamin C CIO- /Cu2+ Oxalate/ C2O4 2- MnO4 – reduced to Mn2+ C2O4 2- oxidized to CO2 (+7) ON decrease ↓ (+2) (+3) ON increase ↑ (+4) 4
  • 11. M V(KIO3) = 1 MV (C6H8O6) 3 0.002 x 0.0255 = 1 Mole C6H8O6 3 Mole C6H8O6 = 1.53 x 10-4 Mole C6H8O6 = M x V M x V = 1.53 x 10-4 M x 0.025 = 1.53 x 10-4 M = 1.53 x 10-4 0025 M = 6.12 x 10-3 M 1 mol 3 mol KIO3 + 5KI + 6H+ 3I→ 2 + 6K+ + 3H2O 3C6H8O6 + 3I2 3C→ 6H6O6 + 6I- + 6H+ 3 mol 3 mol Iodometric titration was performed on Vit C, (C6H8O6). 25ml Vit C is titrated with 0.002M KIO3 from burette, using excess KI and starch. Average vol KIO3 is 25.5ml. Cal molarity of Vit C. Redox Titration Calculation – Vitamin C quantification 8 KIO3 M = 0.002M V = 25.5ml Vit C M = ? V = 25ml KIO3 + 5KI + 6H+ 3I→ 2 + 3H2O + 6K= M = 0.002M Mole = ? V = 25.5ml Mole ratio (1 :3) 1 mol KIO3 : 3 mol I2 : 3 mol C6H8O6 1 mol KIO3 3 mol C6H8O6 V = 25ml M = ? 25ml transfer 1g KI excess + starch added Mole KIO3 = MV = (0.002 x 0.0255) = 5.10 x 10-5 Mole ratio (1 : 3) • 1 mole KIO3 produce 3 mole I2 • 5.10 x 10-5 KIO3 produce 1.53 x 10-4 I2 Mole ratio – 1: 3 3C6H8O6 + 3I2 3C→ 6H6O6 + 6I- + 6H+ Mole = ? 1.53 x 10-4 Mole ratio – 3: 3 Mole ratio (1 : 3) • 1 mol KIO3 react 3 mol C6H8O6 • 5.10 x 10-5 KIO3 react 1.53 x 10-4 C6H8O6 Mole C6H8O6 = M x V M x V = 1.53 x 10-4 M x 0.025 = 1.53 x 10-4 M = 1.53 x 10-4 0025 M = 6.12 x 10-3 M titrated Using mole ratio Using formula Using formula Vitamin C 1 2 3 4 Click here here to view sample Vitamin C expt ? Oxidizing Agent Reducing Agent MnO4 - Fe2+ Cr2O7 2- SO2 HNO3 I- H2O2 H2S CI2 SO3 2- KIO3 Vitamin C CIO- /Cu2+ Oxalate/ C2O4 2-
  • 12. 25ml of undiluted H2O2 is transfer to 250ml volumetric flask. (Diluted 10x ). 25ml diluted sample was titrated with standard 0.02114M KMnO4. 28.64 ml KMnO4 needed to reach end point. Cal conc in M H2O2 sample. Assuming density is 1g/ml, calculate % H2O2 by weight. (Theoretical value H2O2 = 3%) 9 25ml pipette solution KMnO4 M = 0.02114M V = 28.64 ml H2O2 M = ? 2MnO4 - + 5H2O2 + 6H+ 2Mn→ 2+ + 5O2 + 8H2O M = 0.02114M M = ? V = 28.64 ml Mole ratio – 2: 5 Using mole ratio Mole KMO4 - = MV = (0.02114 x 0.02864) = 6.054 x 10-4 Mole ratio (2 : 5) • 2 mol KMO4 - react 5 mol H2O2 • 6.054 x 10-4 KMO4 - react 1.513 x 10-3 H2O2 M V = 2 M V 5 0.02114 x 0.02864 = 2 Mole H2O2 5 Mol H2O2 = 1.5135 x 10-3 Using formula 1 2 ? Oxidizing Agent Reducing Agent MnO4 - Fe2+ Cr2O7 2- SO2 HNO3 I- H2O2 H2S CI2 SO3 2- KIO3 Vitamin C CIO- /Cu2+ Oxalate/ C2O4 2- MnO4 – reduced to Mn2+ H2O2 oxidized to O2 (+7) ON decrease ↓ (+2) (-1) ON increase ↑ (0) Redox Titration H2O2 Calculation Pour into Volumetric flask 25 ml H2O2 Water added till 250ml Mol H2O2 = M x V M x V = 1.513 x 10-3 M x 0.025 = 1.513 x 10-3 M = 1.513 x 10-3 0.025 M = 0.06052M (Diluted sample) Original sample = 0.06052 x 10 = 0.6052 M Conc H2O2 = 0.6052M RMM H2O2 = 34 Mass H2O2 = 0.6052 x 34 = 20.60g in 1000 ml = 2.06g in 100ml = 2.06% 3 Stronger oxidizing agent reduce weaker oxidizing agent
  • 13. Cr2O7 2- reduced to Cr3+ C2H5OH oxidized CH3COOH3 % C2H5OH by mass = mass C2H5OH x 100% mass blood = 0.351 x 100% 10.0 = 3.51 % Alcohol in blood can be determined by redox titration with K2Cr2O7 3C2H5OH + 2Cr2O7 2- + 16H+ → 3CH3COOH3 + 4Cr 3+ + 11H2O Calculate % by mass of ethanol. Explain how end point is determined? 10 Cr2O7 2- M = 0.055M V = 9.25 ml C2H5 OH M = ? 2Cr2O7 2- + 3C2H5OH + 16H+ 3CH→ 3COOH3 + 4Cr 3+ + 11H2O M = 0.0550 M = ? V = 9.25ml Mole ratio – 3: 2 Using mole ratio Mole Cr2O7 -2- = MV = (0.055 x 0.00925) = 5.08 x 10-4 Mole ratio (2 : 3) • 2 mol Cr2O7 2- react 3 mol C2H5OH • 5.08 x 10-4 Cr2O7 2- react 7.63 x 10-3 C2H5OH M V = 2 M V 3 0.055 x 0.0925 = 2 MV 3 Mol C2H5OH = 7.63 x 10-3 Using formula 1 2 (+7) ON decrease ↓ (+3) (-2) ON increase ↑ (0) Redox Titration Alcohol Calculation C2H2OH 10g of blood sample Mass C2H5OH = Mol x RAM Mass = 7.63 x 10-3 x 46 Mass = 0.351 g 3 Click here practical breath analyzer using dichromate Alcohol C2H5OH Ethanoic acid CH3COOH Cr2O7 2- – In burette is orange– Turns green react with C2H5OH All C2H5OH used up at equivalence point – excess Cr2O7 2- turn orange oxidized Dichromate Cr2O7 2- Chromate Cr3+ reduced Oxidizing Agent Reducing Agent MnO4 - Fe2+ Cr2O7 2- SO2 HNO3 I- H2O2 H2S CI2 SO3 2- KIO3 Vitamin C CIO- /Cu2+ Ethanol/ C2H4OH ? 4
  • 14. Biological Oxygen Demand Measure amt dissolve oxygen needed by aerobic organism to break down •Organic matter in water sample over 5 day period •BOD polluted water – Amt dissolve oxygen need for biological decomposition •Measure amt O2 used for biochemical decomposition of organic matter •Measure amt O2 used to oxidize organic to produce energy for microbes Lots of organic decomposition (uses O2) ↓ Dissolve oxygen Low used up↓ ↓ Biological Oxygen Demand High ↑ ↓ Level Pollution is HIGH ↑ ↓ Aquatic life die /Toxic Low Dissolve Oxygen, signify high O2 demand from microb (organic waste contamination) Breakdown organic matter in water consumes oxygen by aerobic micro-organisms. BOD High ↑ Dissolve O2 Low (O↓ 2 used up) Level Pollution HIGH ↑ Organic waste decomposition ↑ Aquatic life die/Toxic BOD Low ↓ Dissolve O2 High ↑ (O2 high) Level Pollution LOW ↓ Organic waste decomposition ↓ Aquatic life thrive BOD ↑ – No good BOD ↓ - Good Dissolve oxygen Level - •Indicator of clean water •Level of pollution BOD ↓ Dissolve Oxygen ↑ Click here carolina Winkler method BOD Click here dissolve oxygen video
  • 15. Water Quality Clean Lightly polluted Moderate polluted Severely polluted Dissolve O2, mg/ml DO > 6.5 4.5 – 6.5 2.0 – 4.5 < 2.0 BOD, mg/ml < 3 3 – 4.9 5 – 15 > 15 Explosive growth algae/bloom Block sunlight for photosynthesis Eutrophication on BOD Excessive use fertilisers like phosphates/nitrates Wash into river/water Eutrophication Explosive growth algae/bloom ↓ When die - organic decomposition by bacteria ↓ Uses up dissolve oxygen ↓ BOD demand HIGH ↑ ↓ Water polluted Algae bloom Dissolve oxygen Low ↓ BOD High ↑ Nutrient leach Biological Oxygen Demand Redox titration (Winkler Method) measure dissolve O2 BOD index Click here on Winkler titration method Iodometric titration I2/thiosulphate/starch ↓ Mn2+ oxidized by O2 to Mn4+ ↓ Mn4+ oxidized I- to I2 I2 react with starch (blue black colour) ↓ S2O3 2- added to reduce I2 ↓ I2 used up – blue black disappear Measure BOD Iodometric titration
  • 16. Biological Oxygen Demand Redox titration (Winkler Method) measure dissolve O2 BOD index 1 mol 2 mol 2Mn2+ + O2 + 4OH- 2MnO→ 2 + 2H2O 2MnO2 + 4I- + 4H+ 4I→ 2 + 2Mn2- + 4H2O 4I2 + 4S2O3 2- → 4I- + 2S4O6 2- Click here on Winkler titration method Water Quality Clean Lightly polluted Moderately polluted Severely polluted Dissolve O2, mg/ml DO > 6.5 4.5 – 6.5 2.0 – 4.5 < 2.0 BOD, mg/ml < 3 3 – 4.9 5 – 15 > 15 Dissolve O2 reacts with alkaline manganese (Mn2+ ) to form (Mn4+ ) 4Mn2+ + 4OH- 2Mn(OH)→ 2 1 mol 2 mol 2Mn(OH)2 + O2 2MnO(OH)→ 2 2MnO(OH)2 + 8H+ + 6I- → 2I3 - + 6H2O 2 mol 2 mol 2I - + 4S O 2- → 6I- + 2S O 2- Redox titration Winkler Method DO bottle Mn2+ salt 1g KI excess alkaline/OH- shake White ppt Mn(OH)2 Conc H2SO4 White ppt dissolve in acid Na2S2O3 M = 0.05M V = 12.5ml titrated S2O3 2- 1O2 + 4S2O3 2- products→ M = ? M = 0.05M V = 12.5ml I- oxidized to I2 by Mn2+ O2 M = ? V = 500ml 2 mol 4 mol 4 mol 4 mol Mole ratio O2 : S2O3 2- (1 : 4) 1 mol O2 : 4 mol I2 : 4 mol S2O3 2- 1 mol O2 4 mol S2O3 2- Brown I2 sol form Starch added Iodometric titration I2/thiosulphate/starch ↓ Mn2+ oxidized by O2 to Mn4+ ↓ Mn4+ oxidized I- to I2 I2 react with starch (blue black colour) ↓ S2O3 2- added to reduce I2 ↓ I2 used up – blue black disappear Water sample added 1 mol O2 : 4 mol S2O3 2-
  • 17. 1 mol 2 mol 2Mn2+ + O2 + 4OH- 2MnO→ 2 + 2H2O 2MnO2 + 4I- + 4H+ 4I→ 2 + 2Mn2- + 4H2O 4I2 + 4S2O3 2- → 4I- + 2S4O6 2- Dissolve O2 reacts with alkaline manganese (Mn2+) to form (Mn4+) Redox titration Winkler Method DO bottle Mn2+ salt 1g KI excess alkaline/OH- shake White ppt Mn(OH)2 Conc H2SO4 White ppt dissolve in acid Na2S2O3 M = 0.05M V = 12.5ml titrated S2O3 2- 1O2 + 4S2O3 2- product→ M = ? M = 0.05M V = 12.5ml I- oxidized to I2 by Mn2+ O2 M = ? V = 500ml 2 mol 4 mol 4 mol 4 mol Mole ratio O2 : S2O3 2- (1 : 4) 1 mol O2 : 4 mol I2 : 4 mol S2O3 2- 1 mol O2 4 mol S2O3 2- Brown I2 sol form Starch added Iodometric titration I2/thiosulphate/starch ↓ Mn2+ oxidized by O2 to Mn4+ ↓ Mn4+ oxidized I- to I2 I2 react with starch (blue black colour) ↓ S2O3 2- added to reduce I2 ↓ I2 used up – blue black disappear Water sample added 500ml water tested for dissolve oxygen by adding Mn2+ in alkaline solution, followed by addition of KI and acid. I2 produced is reduced by titrating with 0.05M S2O3 2- . Average vol S2O3 2- used is 12.50ml. Calculate dissolved oxygen in g/dm3 . 1 Mole S2O3 2- = MV = (0.05 x 0.0125) = 6.25 x 10-4 Mole ratio (1 : 4) • 1 mole O2 react 4 mole S2O3 2- ? 6.25 x 10-4 S2O2 2- 6.25 x 10-4 = 1.56 x 10-4 4 1 mol O2 : 4 mol S2O3 2- 2 3 Mole O2 = 1.56 x 10-4 mol Mass O2 = Mole O2 x RAM Mass O2 = (1.56 x 10-4 x 32.0)g = (5.00 x 10-3 )g in 500ml = 0.01 g in 1000ml = 0.01g/dm3 4 Click here on Winkler titration methodClick here on Winkler titration method
  • 18. Titration for IA (DCP) assessment Acid Base Titration Standardization HCI with primary std Na2CO3 Click here for expt 4.2 Standardization NaOH with primary std KHP Click here or here for expt` Titration bet NaOH with std HCI Click here for expt 4.2a Titration bet HCI with std NaOH Click here for expt 4.2a Determining water crystallization in hydrated Na2CO3 with std HCI Click here for expt 4.4 Standardization KMnO4 with std ammonium iron(II) sulphate Click here for expt 4.5 Iron (II) determination with std KMnO4 Click here for expt 4.6 Hypochlorite (OCI- ) in bleach with iodine/thiosulphate Click here for expt 4.8 Determining ethanoic acid in vinegar with std NaOH Click here for expt 4.3 Copper(II) determination in brass with iodine/thiosulphate Click here or here for expt` Click here for more expt Standardization KI/I2 with std KIO3 Click here for expt 4.7 Click here for more expt Determining acetylsalicylic acid in aspirin with std NaOH Click here or here for expt` Click here for more expt Vit C determination with iodine/thiosulphate Click here or here for expt Click here more detail expt Standardization Expt Acid/Base Titration Expt Standardization Expt Redox Titration Expt Redox Titration Standardization KI/I2 with std sodium thiosulphate Click here for expt 4.7 Iodine/thiosulphate (iodometric titration)
  • 19. CI2 + 2KBr- 2KCI→ + Br2 3CuO+ 2NH3 3H→ 2O+ 3Cu+ N2 Redox (Oxidation and Reduction) (+7) (+2)Mn red - ON ↓ (+2) Fe oxi – ON ↑ (+3) MnO4 - + Fe2+ + 8H+ Mn→ 2+ + Fe3+ 4H2O Oxidizing agent ↓ Reduction Reducing agent ↓ Oxidation Oxidizing Agent Reducing Agent MnO4 - Fe2+ Reduction Oxidation Oxidizing Agent Reducing Agent CI2 Br- Reduction Oxidation Oxidizing agent ↓ Reduction Reducing agent ↓ Oxidation (0) CI red – ON ↓ (-1) (-1) Br- oxi – ON ↑ (0) Oxidizing Agent Reducing Agent CuO NH3 Reduction Oxidation Reducing agent ↓ Oxidation (-3) NH3 oxi – ON ↑ (0) Oxidizing agent ↓ Reduction (+2) Cu red – ON ↓ (0) 2HCI + Zn H→ 2 + ZnCI2 (0) Zn oxi – ON ↑ (+2)Reducing agent ↓ Oxidation Oxidizing agent ↓ Reduction (+1) H red – ON ↓ (0) Oxidizing Agent Reducing Agent HCI Zn Reduction Oxidation
  • 20. CI2 + 2KBr- 2KCI→ + Br2 3CuO+ 2NH3 3H→ 2O+ 3Cu+N2 Redox (Oxidation and Reduction) (+7) (+2)Mn red - ON ↓ (+2) Fe oxi – ON ↑ (+3) MnO4 - + 8H+ + Fe2+ Mn→ 2+ + Fe3+ 4H2O Oxidizing agent ↓ Reduction Reducing agent ↓ Oxidation Oxidizing Agent Reduction MnO4 - + 5e Mn→ 2+ Oxidizing agent ↓ Reduction Reducing agent ↓ Oxidation (0) CI red – ON ↓ (-1) (-1) Br - oxi – ON ↑ (0) Reducing agent ↓ Oxidation (-3) NH3 oxi – ON ↑ (0) Oxidizing agent ↓ Reduction (+2) Cu red – ON ↓ (0) 2HCI + Zn H→ 2 + ZnCI2 (0) Zn oxi – ON ↑ (+2)Reducing agent ↓ Oxidation Oxidizing agent ↓ Reduction (+1) H red – ON ↓ (0) Reducing Agent Oxidation Fe 2+ Fe→ 2+ + e- Loss electron Increase ON ↑ Gain electron Decrease ON ↓ Reducing Agent Oxidation 2Br - Br→ 2 + 2e- Loss electron Increase ON ↑ Oxidizing Agent Reduction CI2 + 2e 2CI→ - Gain electron Decrease ON ↓ Reducing Agent Oxidation (NH3) -N3- N→ + 3e- Loss electron Increase ON ↑ Oxidizing Agent Reduction (CuO) Cu2+ + 2e Cu→ Gain electron Decrease ON ↓ Reducing Agent Oxidation Zn Zn→ 2+ + 2e- Loss electron Increase ON ↑ Oxidizing Agent Reduction 2H+ + 2e H→ 2 Gain electron Decrease ON ↓
  • 21. Redox (Oxidation and Reduction) Half equations Oxidation rxn Oxidation half eqn Reduction half eqn Loss electron ↓ Reduction rxn Loss hydrogen ↓ Gain oxygen ↑ Gain ON ↑ Gain electron ↑ Gain hydrogen ↑ Loss oxygen ↓ Loss ON ↓ Oxidizing AgentReducing Agent Oxidation rxn Reduction rxn lose electron Zn + 2H+ H→ 2 + Zn2+ Zn Zn→ 2+ + 2e 2H+ + 2e H→ 2 (0) ON increase ↑ (+2) Zn Zn→ 2+ + 2e 2H+ + 2e H→ 2 2H+ + Zn Zn→ 2+ + H2 lose electron gain electron (+1) ON decrease ↓ (0) Complete full eqn Zn + Cu2+ Zn→ 2+ + CuOxidation half eqn Zn Zn→ 2+ + 2e lose electron (0) ON increase ↑ (+2) Reduction half eqn Cu2+ + 2e Cu→ (+2) ON decrease ↓ (0) gain electron Zn Zn→ 2+ + 2e Cu2+ + 2e Cu→ Cu2+ + Zn Zn→ 2+ + Cu Half equations
  • 22. Redox (Oxidation and Reduction) Half equations Oxidation half eqn Reduction half eqn Zn Zn→ 2+ + 2e 2H+ + 2e H→ 2 (0) ON increase ↑ (+2) Zn Zn→ 2+ + 2e 2H+ + 2e H→ 2 2H+ + Zn Zn→ 2+ + H2 lose electron gain electron (+1) ON decrease ↓ (0) Complete full eqn Oxidation half eqn Zn Zn→ 2+ + 2e lose electron (0) ON increase ↑ (+2) Reduction half eqn Cu2+ + 2e Cu→ (+2) ON decrease ↓ (0) gain electron Zn Zn→ 2+ + 2e Cu2+ + 2e Cu→ Cu2+ + Zn Zn→ 2+ + Cu Half equations Zn + 2HCI H→ 2 + ZnCI2 Zn + 2H+ + 2CI- H→ 2 + Zn2+ + 2CI - Complete ionic/redox eqn Zn + 2H+ H→ 2 + Zn2+ spectator ionsspectator ions Zn + 2H+ H→ 2 + Zn2+ Zn + CuSO4 ZnSO→ 4 + Cu Zn + Cu2+ + SO4 2- Zn→ 2+ + SO4 2- + Cu Complete full eqn Complete ionic/redox eqn spectator ions Zn + Cu2+ Zn→ 2+ + Cu Half equations Half equations Zn + Cu2+ Zn→ 2+ + Cu
  • 23. Redox (Oxidation and Reduction) Half equations Oxidation half eqn Reduction half eqn Mg Mg→ 2+ + 2e Pb2+ + 2e Pb→ (0) ON increase ↑ (+2) Mg Mg→ 2+ + 2e Pb2+ + 2e Pb→ Pb2+ + Mg Mg→ 2+ + Pb lose electron gain electron (+2) ON decrease ↓ (0) Complete full eqn Oxidation half eqn 2Br- Br→ 2 + 2e lose electron (-1) ON increase ↑ (0) Reduction half eqn CI2 + 2e 2CI→ - (0) ON decrease ↓ (-1) gain electron 2Br- Br→ 2 + 2e CI2 + 2e 2CI→ - CI2 + 2Br- 2CI→ - + Br2 Half equations Mg + PbO Pb→ + MgO Mg + Pb2+ + O2- Pb→ + Mg2+ + O 2- Complete ionic/redox eqn spectator ionsspectator ions Mg + Pb2+ Pb→ + Mg2+ 2KBr + CI2 Br→ 2 + 2KCI 2K+ + 2Br- + CI2 Br→ 2 + 2K+ + 2CI - Complete full eqn Complete ionic/redox eqn spectator ions 2Br- + CI2 Br→ 2 + 2CI- Half equations Half equations Mg + Pb2+ Pb→ + Mg2+ 2Br- + CI2 Br→ 2 + 2CI- lose electron
  • 24. MnO4 - + 8H+ + 5Fe2+ Mn→ 2+ + 5Fe3+ + 4H2O Constructing Half and complete redox equation (+7) (+2)Mn red - ON ↓ (+2) Fe oxi – ON ↑ (+3) MnO4 - + 5Fe2+ + 8H+ Mn→ 2+ + 5Fe3+ + 4H2O Oxidizing agent ↓ Reduction Reducing agent ↓ Oxidation Oxidizing Agent Reduction MnO4 - + 5e Mn→ 2+ Reducing Agent Oxidation Fe 2+ Fe→ 2+ + e- Loss electron Increase ON ↑ Gain electron Decrease ON ↓ Complete full eqn Oxidation half eqnReduction half eqn 1. Balance # O -add H2O 2. Balance # H add H+ 3. Balance # charges -add electrons 4. Balance # electron transfer MnO4 - Mn→ 2+ MnO4 - Mn→ 2+ + 4H2O MnO4 - + 8H+ Mn→ 2+ + 4H2O MnO4 - + 8H+ + 5e- Mn→ 2+ + 4H2O Fe2+ Fe→ 3+ Fe2+ Fe→ 3+ + e- 5Fe2+ 5Fe→ 3+ + 5e- MnO4 - + 8H+ + 5e- Mn→ 2+ + 4H2O x 5x 1 MnO4 - + 8H+ + 5e- Mn→ 2+ + 4H2O 5Fe2+ 5Fe→ 3+ + 5e- + MnO4 - - In acidic medium - Strong oxidizing agent MnO4 - + 8H+ + 5Fe2+ Mn→ 2+ + 5Fe3+ 4H2O
  • 25. 2MnO4 - + 5SO2+ 2H2O 2Mn→ 2+ + 5SO4 2- + 4H+ Constructing Half and complete redox equation (+7) (+2)Mn red - ON ↓ (+4) SO2 oxi – ON ↑ (+6) 2MnO4 - + 5SO2 + 2H2O 2Mn→ 2+ + 5SO4 2- + 4H+ Oxidizing agent ↓ Reduction Reducing agent ↓ Oxidation Oxidizing Agent Reduction MnO4 - + 5e Mn→ 2+ Reducing Agent Oxidation SO2 SO→ 4 2- + 2e- Loss electron Increase ON ↑ Gain electron Decrease ON ↓ Complete full eqn Oxidation half eqnReduction half eqn 1. Balance # O - add H2O 2. Balance # H add H+ 3. Balance # charges - add electrons 4. Balance # electron transfer MnO4 - Mn→ 2+ MnO4 - Mn→ 2+ + 4H2O MnO4 - + 8H+ Mn→ 2+ + 4H2O MnO4 - + 8H+ + 5e- Mn→ 2+ + 4H2O SO2 SO→ 4 2- 2MnO4 - + 16H+ + 10e- 2Mn→ 2+ + 8H2O x 5x 2 2MnO4 - + 16H+ + 10e- 2Mn→ 2+ + 8H2O 5SO2 + 10H2O 5SO→ 4 2- + 20H+ + 10e- + 2MnO4 - + 5SO2 + 2H2O 2Mn→ 2+ + 5SO4 2- 4H+ SO2 + 2H2O SO→ 4 2- SO2 + 2H2O SO→ 4 2- + 4H+ SO2 + 2H2O SO→ 4 2- + 4H+ + 2e- 5SO2 + 10H2O 5SO→ 4 2- + 20H+ + 10e-
  • 26. 2MnO4 - + 5H2O2 + 6H+ 2Mn→ 2+ + 5O2 + 8H2O Constructing Half and complete redox equations (+7) (+2)Mn red - ON ↓ (-1) H2O2 oxi – ON ↑ (0) 2MnO4 - + 5H2O2 + 6H+ 2Mn→ 2+ + 5O2 + 8H2O Oxidizing agent ↓ Reduction Reducing agent ↓ Oxidation Oxidizing Agent Reduction MnO4 - + 5e Mn→ 2+ Reducing Agent Oxidation H2O2 O→ 2 + 2e- Loss electron Increase ON ↑ Gain electron Decrease ON ↓ Complete full eqn Oxidation half eqnReduction half eqn 1. Balance # O - add H2O 2. Balance # H add H+ 3. Balance # charges - add electrons 4. Balance # electron transfer MnO4 - Mn→ 2+ MnO4 - Mn→ 2+ + 4H2O MnO4 - + 8H+ Mn→ 2+ + 4H2O MnO4 - + 8H+ + 5e- Mn→ 2+ + 4H2O 2MnO4 - + 16H+ + 10e- 2Mn→ 2+ + 8H2O x 5x 2 2MnO4 - + 16H+ + 10e- 2Mn→ 2+ + 8H2O 5H2O2 5O→ 2 + 10H+ + 10e- + 2MnO4 - + 5H2O2 + 6H+ 2Mn→ 2+ + 5O2 + 8H2O H2O2 O→ 2 H2O2 O→ 2 + 2H+ H2O2 O→ 2 + 2H+ + 2e- 5H2O2 5O→ 2 + 10H+ + 10e-
  • 27. Cr2O7 2- + 3NO2 - + 8H+ 2Cr→ 3+ + 3NO3 - + 4H2O Cr2O7 2- 2Cr→ 3+ Constructing Half and complete redox equations (+6) (+3)Cr red - ON ↓ (+3) NO2 - oxi – ON ↑ (+5) Cr2O7 2- + 3NO2 - + 8H+ 2Cr→ 3+ + 3NO3 - + 4H2O Oxidizing agent ↓ Reduction Reducing agent ↓ Oxidation Oxidizing Agent Reduction Cr2O7 2- + 6e- 2Cr→ 3+ Reducing Agent Oxidation NO2 - NO→ 3 - + 2e- Loss electron Increase ON ↑ Gain electron Decrease ON ↓ Complete full eqn Oxidation half eqnReduction half eqn 1. Balance # O - add H2O 2. Balance # H add H+ 3. Balance # charges - add electrons 4. Balance # electron transfer x 3x 1 Cr2O7 2- + 14H+ + 6e- 2Cr→ 3+ + 7H2O 3NO2 - + 3H2O 3NO→ 3 - + 6H+ + 6e- + Cr2O7 2- + 3NO2 - + 8H+ 2Cr→ 3+ + 3NO3 - + 4H2O Cr2O7 2- 2Cr→ 3+ + 7H2O Cr2O7 2- + 14H+ 2Cr→ 3+ + 7H2O Cr2O7 2- + 14H+ + 6e- 2Cr→ 3+ + 7H2O Cr2O7 2- + 14H+ + 6e- 2Cr→ 3+ + 7H2O NO2 - NO→ 3 - NO2 - + H2O NO→ 3 - NO2 - + H2O NO→ 3 - + 2H+ NO2 - + H2O NO→ 3 - + 2H+ + 2e- 3NO2 - + 3H2O 3NO→ 3 - + 6H+ + 6e-
  • 28. Cr2O7 2- + 6Fe2+ + 14H+ 2Cr→ 3+ + 6Fe3+ + 7H2O Cr2O7 2- 2Cr→ 3+ Constructing Half and complete redox equations (+6) (+3)Cr red - ON ↓ (+2) Fe2+ oxi – ON ↑ (+3) Cr2O7 2- + 6Fe2+ + 14H+ 2Cr→ 3+ + 6Fe3+ + 7H2O Oxidizing agent ↓ Reduction Reducing agent ↓ Oxidation Oxidizing Agent Reduction Cr2O7 2- + 6e- 2Cr→ 3+ Reducing Agent Oxidation Fe2+ Fe→ 3+ + e- Loss electron Increase ON ↑ Gain electron Decrease ON ↓ Complete full eqn Oxidation half eqnReduction half eqn 1. Balance # O - add H2O 2. Balance # H add H+ 3. Balance # charges - add electrons 4. Balance # electron transfer x 6x 1 Cr2O7 2- + 14H+ + 6e- 2Cr→ 3+ + 7H2O 6Fe2+ 6Fe→ 3+ + 6e- + Cr2O7 2- 2Cr→ 3+ + 7H2O Cr2O7 2- + 14H+ 2Cr→ 3+ + 7H2O Cr2O7 2- + 14H+ + 6e- 2Cr→ 3+ + 7H2O Cr2O7 2- + 14H+ + 6e- 2Cr→ 3+ + 7H2O Cr2O7 2- + 6Fe2+ + 14H+ 2Cr→ 3+ + 6Fe3+ 7H2O Fe2+ Fe→ 3+ Fe2+ Fe→ 3+ + e 6Fe2+ 6Fe→ 3+ + 6e
  • 29. Constructing Half and complete redox equations (+5) (-1)CIO3 - red - ON ↓ (-1) I- oxi – ON ↑ (0) CIO3 - + 6I- + 6H+ 3I→ 2 + CI- + 3H2O Oxidizing agent ↓ Reduction Reducing agent ↓ Oxidation Oxidizing Agent Reduction CIO3 - + 6e- CI→ - Reducing Agent Oxidation 2I- I→ 2 + 2e- Loss electron Increase ON ↑ Gain electron Decrease ON ↓ Complete full eqn Oxidation half eqnReduction half eqn 1. Balance # O - add H2O 2. Balance # H add H+ 3. Balance # charges - add electrons 4. Balance # electron transfer x 3x 1 CIO3 - + 6H+ + 6e- CI→ - + 3H2O 6I- 3I→ 2 + 6e- + CIO3 - + 6I- + 6H+ 3I→ 2 + CI- + 3H2O CIO3 - CI→ - CIO3 - CI→ - + 3H2O CIO3 - + 6H+ CI→ - + 3H2O CIO3 - + 6H+ + 6e- CI→ - + 3H2O CIO3 - + 6H+ + 6e- CI→ - + 3H2O 2I- I→ 2 2I- I→ 2 + 2e- 6I- 3I→ 2 + 6e- CIO3 - + 6H+ + 6I- 3I→ 2 + 3H2O
  • 30. Constructing Half and complete redox equations (+5) (+2)NO3 - red - ON ↓ (0) Cu oxi – ON ↑ (+2) 2NO3 - + 3Cu + 8H+ 3Cu→ 2+ + 2NO+ 4H2O Oxidizing agent ↓ Reduction Reducing agent ↓ Oxidation Oxidizing Agent Reduction NO3 - + 3e- NO→ Reducing Agent Oxidation Cu Cu→ 2+ + 2e- Loss electron Increase ON ↑ Gain electron Decrease ON ↓ Complete full eqn Oxidation half eqnReduction half eqn 1. Balance # O - add H2O 2. Balance # H add H+ 3. Balance # charges - add electrons 4. Balance # electron transfer x 3x 2 2NO3 - + 8H+ + 6e- 2NO→ + 4H2O 3Cu 3Cu→ 2+ + 6e- + 2NO3 - + 3Cu + 8H+ 3Cu→ 2+ + 2NO+ 4H2O NO3 - NO→ NO3 - NO + 2H→ 2O NO3 - + 4H+ NO + 2H→ 2O NO3 - + 4H+ + 3e- NO + 2H→ 2O 2NO3 - + 8H+ + 6e- 2NO + 4H→ 2O Cu Cu→ 2+ Cu Cu→ 2+ + 2e- 3Cu 3Cu→ 2+ + 6e- 2NO3 - + 8H+ + 3Cu 3Cu→ 2+ +2NO+ 4H2O
  • 31. HNO3 +3Fe2+ + 3H+ 3Fe→ 3+ + NO+ 2H2O Constructing Half and complete redox equations (+5) (+2)HNO3 red - ON ↓ (+2) Fe oxi – ON ↑ (+3) HNO3 + 3Fe2+ + 3H+ 3Fe→ 3+ + NO+ 2H2O Oxidizing agent ↓ Reduction Reducing agent ↓ Oxidation Oxidizing Agent Reduction HNO3 + 3e- NO→ Reducing Agent Oxidation Fe 2+ Fe→ 3+ + e- Loss electron Increase ON ↑ Gain electron Decrease ON ↓ Complete full eqn Oxidation half eqnReduction half eqn 1. Balance # O - add H2O 2. Balance # H add H+ 3. Balance # charges - add electrons 4. Balance # electron transfer x 3x 1 HNO3 + 3H+ + 3e- NO→ + 2H2O 3Fe2+ 3Fe→ 3+ + 3e- + HNO3 NO + 2H→ 2O HNO3+ 3H+ NO + 2H→ 2O HNO3 + 3H+ + 3e- NO + 2H→ 2O HNO3 + 3H+ + 3e- NO + 2H→ 2O Fe2+ Fe→ 3+ HNO3 + 3Fe2+ + 3H+ 3Fe→ 3+ + NO+ 2H2O HNO3 NO→ Fe2+ Fe→ 3+ + e- 3Fe2+ 3Fe→ 3+ + 3e-
  • 32. H2O2 + 2Fe2+ +2H+ 2Fe→ 3+ + 2H2O Constructing Half and complete redox equations (-1) (-2)H2O3 red - ON ↓ (+2) Fe oxi – ON ↑ (+3) H2O2 + 2Fe2+ + 2H+ 2Fe→ 3+ + 2H2O Oxidizing agent ↓ Reduction Reducing agent ↓ Oxidation Oxidizing Agent Reduction H2O3 + e- H→ 2O Reducing Agent Oxidation Fe 2+ Fe→ 3+ + e- Loss electron Increase ON ↑ Gain electron Decrease ON ↓ Complete full eqn Oxidation half eqnReduction half eqn 1. Balance # O - add H2O 2. Balance # H add H+ 3. Balance # charges - add electrons 4. Balance # electron transfer x 2x 1 H2O2 + 2H+ + 2e- 2H→ 2O 2Fe2+ 2Fe→ 3+ + 2e- + Fe2+ Fe→ 3+ Fe2+ Fe→ 3+ + e- 2Fe2+ 2Fe→ 3+ + 2e- H2O2 + 2Fe2+ + 2H+ 2Fe→ 3+ + 2H2O H2O2 H→ 2O H2O2 2H→ 2O H2O2 + 2H+ 2H→ 2O H2O2 + 2H+ + 2e- 2H→ 2O H2O2 + 2H+ + 2e- 2H→ 2O
  • 33. CI2 + SO2 + 2H2O 2CI→ - + SO4 2- + 4H+ Constructing Half and complete redox equations (0) (-1)CI2 red - ON ↓ (+4) SO2 oxi – ON ↑ (+6) CI2 + SO2 + 2H2O 2CI→ - + SO4 2- + 4H+ Oxidizing agent ↓ Reduction Reducing agent ↓ Oxidation Oxidizing Agent Reduction CI2 + 2e 2CI→ - Reducing Agent Oxidation SO2 SO→ 4 2- + 2e- Loss electron Increase ON ↑ Gain electron Decrease ON ↓ Complete full eqn Oxidation half eqnReduction half eqn 1. Balance # O - add H2O 2. Balance # H add H+ 3. Balance # charges - add electrons 4. Balance # electron transfer SO2 SO→ 4 2- x 1x 1 CI2 + 2e- 2CI→ - SO2 + 2H2O SO→ 4 2- + 4H+ + 2e- + SO2 + 2H2O SO→ 4 2- SO2 + 2H2O SO→ 4 2- + 4H+ SO2 + 2H2O SO→ 4 2- + 4H+ + 2e- CI2 + SO2 + 2H2O 2CI→ - + SO4 2- + 4H+ CI2 2CI→ - CI2 + 2e- 2CI→ - CI2 + 2e- 2CI→ - SO2 + 2H2O SO→ 4 2- + 4H+ + 2e-
  • 34. Sn2+ + 2Fe3+ Sn→ 4+ + 2Fe2+ 2Fe2+ + CI2 2Fe→ 3+ + 2CI- Ca + 2H+ Ca→ 2+ + H2 IB Redox Questions Deduce half eqn of oxidation and reduction for the following Ca + 2H+ Ca→ 2+ + H2 2Fe2+ + CI2 2Fe→ 3+ + 2CI- Sn2+ + 2Fe3+ Sn→ 4+ + 2Fe2+ 0 +1 +2 0 Ca Ca→ 2+ + 2e 2H+ + 2e H→ 2 oxidation reduction +2 0 +3 -1 2Fe2+ Fe→ 3+ + 2e CI2 + 2e 2CI→ - oxidation reduction +2 +3 +4 +2 Sn2+ Sn→ 4+ + 2e 2Fe3+ + 2e 2Fe→ 2+ Substances acting as oxidizing and reducing agent 2MnO4 - + 5H2O2 + 6H+ 2Mn→ 2+ + 5O2 + 8H2O H2O2 + 2Fe2+ + 2H+ 2Fe→ 3+ + 2H2O H2O2 + 2I- + 2H+ I→ 2 + 2H2O Oxidizing Agent Reducing Agent MnO4 - Fe2+ Cr2O7 2- SO2 HNO3 I- H2O2 H2S CI2 SO3 2- Acidified H2O2 act as oxidizing agent - Oxidizes Fe2+ to Fe3+ - Oxidizes I- to I2 Acidified MnO4 - act as more powerful oxidizing agent -Oxidizes weaker oxidizing agent H2O2 to H2O and O2 - H2O2 act as reducing agent Identify oxidizing and reducing agent for following rxn. 5As2O3 + 2MnO4 - + 16H+ 2Mn→ 2+ + 5As2O5 + 8H2O 2NO3 - + 3Cu + 8H+ 3Cu→ 2+ + 2NO+ 4H2O Cr2O7 2- + 3NO2 - + 8H+ 2Cr→ 3+ + 3NO3 - + 4H2O 1 2 3 oxidizing agent oxidizing agent oxidizing agent reducing agent reducing agent reducing agent
  • 35. Acknowledgements Thanks to source of pictures and video used in this presentation Thanks to Creative Commons for excellent contribution on licenses http://creativecommons.org/licenses/ Prepared by Lawrence Kok Check out more video tutorials from my site and hope you enjoy this tutorial http://lawrencekok.blogspot.com