Wir haben unsere Datenschutzbestimmungen aktualisiert. Klicke hier, um dir die _Einzelheiten anzusehen. Tippe hier, um dir die Einzelheiten anzusehen.
Aktiviere deine kostenlose 30-tägige Testversion, um unbegrenzt zu lesen.
Erstelle deine kostenlose 30-tägige Testversion, um weiterzulesen.
Herunterladen, um offline zu lesen
My workshop at the Learning Analytics Summer Institute (LASI) 2016: http://lasi16.snola.es/#!/schedule/113
Educational data continues to grow in volume, velocity and variety. Making sense of the educational data in such conditions requires deployment and usage of appropriate scalable, real-time processing tools supporting a flexible data schema. Elasticsearch is one of the popular open-source tools meeting the enlisted requirements. Initially envisioned as a search engine capable of operating at scale and in real time, Elasticsearch is used by organisations such as Wikimedia and Github, which deal with big data on daily basis. In addition, Elasticsearch is used increasingly often as analytics platform thanks to its scalable architecture and expressive query language. Until recently, the exploitation of Elasticsearch for (learning) analytical purposes by practitioners was hindered by a high entrance barrier due to the complexity of the query language and the query specificities. This is currently changing with the ongoing development of Kibana, an open-source tool that allows to conduct analysis and build visualisations of Elasticsearch data through a graphical user interface. Kibana does not require the user to dive into technical details of the queries (although it is still possible) and hence makes big educational data visualisations accessible to regular users. The additional value of Kibana comes in play whenever several visualisations are combined on a single dashboard, enabling to use multiple coordinated views for an interactive explorative analysis. Both Elasticsearch and Kibana, together with Logstash are part of an analytics stack often referred to as ELK. Logstash supports data acquisition from multiple sources (including twitter, RSS, event logs) thanks to its rich set of available connectors. Custom connectors can be developed for case-specific sources. In addition to the mentioned values, ELK enables building analytics infrastructures decoupled from the learning platform, i.e., it allows to host separately the learning environment (with the analytics functionalities) and the data storage without affecting the end-user experience.
My workshop at the Learning Analytics Summer Institute (LASI) 2016: http://lasi16.snola.es/#!/schedule/113
Educational data continues to grow in volume, velocity and variety. Making sense of the educational data in such conditions requires deployment and usage of appropriate scalable, real-time processing tools supporting a flexible data schema. Elasticsearch is one of the popular open-source tools meeting the enlisted requirements. Initially envisioned as a search engine capable of operating at scale and in real time, Elasticsearch is used by organisations such as Wikimedia and Github, which deal with big data on daily basis. In addition, Elasticsearch is used increasingly often as analytics platform thanks to its scalable architecture and expressive query language. Until recently, the exploitation of Elasticsearch for (learning) analytical purposes by practitioners was hindered by a high entrance barrier due to the complexity of the query language and the query specificities. This is currently changing with the ongoing development of Kibana, an open-source tool that allows to conduct analysis and build visualisations of Elasticsearch data through a graphical user interface. Kibana does not require the user to dive into technical details of the queries (although it is still possible) and hence makes big educational data visualisations accessible to regular users. The additional value of Kibana comes in play whenever several visualisations are combined on a single dashboard, enabling to use multiple coordinated views for an interactive explorative analysis. Both Elasticsearch and Kibana, together with Logstash are part of an analytics stack often referred to as ELK. Logstash supports data acquisition from multiple sources (including twitter, RSS, event logs) thanks to its rich set of available connectors. Custom connectors can be developed for case-specific sources. In addition to the mentioned values, ELK enables building analytics infrastructures decoupled from the learning platform, i.e., it allows to host separately the learning environment (with the analytics functionalities) and the data storage without affecting the end-user experience.
Sie haben diese Folie bereits ins Clipboard „“ geclippt.
Sie haben Ihre erste Folie geclippt!
Durch Clippen können Sie wichtige Folien sammeln, die Sie später noch einmal ansehen möchten. Passen Sie den Namen des Clipboards an, um Ihre Clips zu speichern.Die SlideShare-Familie hat sich gerade vergrößert. Genießen Sie nun Zugriff auf Millionen eBooks, Bücher, Hörbücher, Zeitschriften und mehr von Scribd.
Jederzeit kündbar.Unbegrenztes Lesevergnügen
Lerne schneller und intelligenter von Spitzenfachleuten
Unbegrenzte Downloads
Lade es dir zum Lernen offline und unterwegs herunter
Außerdem erhältst du auch kostenlosen Zugang zu Scribd!
Sofortiger Zugriff auf Millionen von E-Books, Hörbüchern, Zeitschriften, Podcasts und mehr.
Lese und höre offline mit jedem Gerät.
Kostenloser Zugang zu Premium-Diensten wie TuneIn, Mubi und mehr.
Wir haben unsere Datenschutzbestimmungen aktualisiert, um den neuen globalen Regeln zum Thema Datenschutzbestimmungen gerecht zu werden und dir einen Einblick in die begrenzten Möglichkeiten zu geben, wie wir deine Daten nutzen.
Die Einzelheiten findest du unten. Indem du sie akzeptierst, erklärst du dich mit den aktualisierten Datenschutzbestimmungen einverstanden.
Vielen Dank!