Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

No tube & experimenting with linked data to improve ux

1.308 Aufrufe

Veröffentlicht am

Presentation at Summer School on Multimedia Semantics, Amsterdam, 3rd September 2010.
http://ssms10.project.cwi.nl

  • Gehören Sie zu den Ersten, denen das gefällt!

No tube & experimenting with linked data to improve ux

  1. 1. NoTube - Experimenting with Linked Data to improve user experience Vicky Buser, Information Architect September 3 rd , 2010 – SSMS’10
  2. 2. NoTube is an example of using Linked Data for user- facing apps as these two short videos explain … <ul><li>Strategy & Direction </li></ul><ul><li>Highlights 11231965 for each area </li></ul>http://vimeo.com/11232681 http://vimeo.com/11231965
  3. 3. A bit about my background …
  4. 4. I’m an Information Architect
  5. 5. The BBC and t he semantic web Some background
  6. 6. It started with t he BBC Programmes site …
  7. 7. … following Linked Data principles, it ensures ONE page per programme http://www.bbc.co.uk/programmes/b00tllj9 http://www.bbc.co.uk/programmes/b00tjfys http://www.bbc.co.uk/programmes/b00tjflh
  8. 8. And it uses the BBC Programmes Ontology Drawing borrowed from Michael Smethurst at the BBC
  9. 9. Similarly, each artist in BBC Music has an RDF representation
  10. 10. BBC Wildlife Finder provides a URI for every species, habitat and adaption
  11. 11. The BBC’s World Cup site uses RDF and Linked Data to build and manage the site of 700 aggregation pages
  12. 13. The NoTube Project Networks and Ontologies for the Transformation and Unification of Broadcasting and the Internet
  13. 14. NoTube is part of the wider trend of TV and Web convergence
  14. 15. The BBC is leading one of the Use Cases in NoTube
  15. 16. The BBC’s Use Case: TV and the Social Web <ul><li>demonstrates APIs for linking the Social Web with broadcast and on-demand television, using linked data from broadcasters, audiences and across the web, to help make social content navigation applications and active TV communities. </li></ul>
  16. 17. Focus of the rest of this talk How we can use linked data to improve the user experience
  17. 18. Some observations relating to TV watching…
  18. 19. 1) Deciding what to watch on TV is hard
  19. 20. 2) People would often like to know more about a programme they’re watching (e.g. BBC Red Button)
  20. 21. 3) Watching TV is still predominantly a social activity
  21. 22. From a recent (Aug 2010) YouGov/Deloitte report <ul><li>42% of those UK adults who use the Internet while watching television do so to discuss or comment on the programmes they are watching at the time. </li></ul><ul><li>http://today.yougov.co.uk/consumer/television-going-social </li></ul>
  22. 23. So, how can we use Linked Data to help people to… <ul><li>Decide what to watch </li></ul><ul><li>Discover more information related to a programme </li></ul><ul><li>Have smarter conversations and social engagement around TV programmes </li></ul>
  23. 24. In our part of NoTube we are using three core techniques to help with this… <ul><li>Dereferencable URLs </li></ul><ul><li>Semantic enrichment </li></ul><ul><li>Social APIs </li></ul>
  24. 25. 1) Using dereferencable URLs to identify programmes
  25. 26. 2) Enriching programme metadata with Linked Data from the Web <ul><li>Using Ontotext's LUPedia and NoTube’s vocabulary alignment service to: </li></ul><ul><ul><li>Add background knowledge and context </li></ul></ul><ul><ul><li>Make new connections </li></ul></ul><ul><ul><li>Support serendipity </li></ul></ul>
  26. 27. 3) Linking the dereferencable URLs with Social APIs <ul><li>The idea is to connect people, their friends, their activities, and their televisions in a suitably privacy-preserving way in order to make TV in the future a more enjoyable and interesting experience. </li></ul><ul><li>E.g. by creating linkage points into social network discussions, as well as shared bookmarking and commenting systems </li></ul><ul><li>Using Semantics to enhance the data </li></ul><ul><li>Using community features for smart sharing and discussions </li></ul>
  27. 28. Our experiments… What we’ve been doing
  28. 29. Deciding what to watch – recommendations/filters <ul><li>POTENTIAL UX BENEFITS OF USING LINKED DATA </li></ul><ul><li>Recommendations are pushed in unobtrusive manner </li></ul><ul><li>Interesting explanations provide context </li></ul><ul><li>Can surface programmes of interest buried in the long-tail </li></ul>
  29. 30. Interesting explanations…
  30. 31. Surfacing programmes of interest buried in the long-tail
  31. 32. Recommendations – Year 1: matching up graphs
  32. 33. What we learnt… <ul><li>DBPedia-based recommendations not specific enough - “Eastenders recommended because you like programmes made in the 80s” </li></ul><ul><li>Recommendations based on BBC’s Lonclass might produce more interesting and useful results because Lonclass is: </li></ul><ul><ul><li>more TV-centric </li></ul></ul><ul><ul><li>more granular </li></ul></ul><ul><ul><li>used by human indexers </li></ul></ul><ul><ul><li>BUT it’s BBC-centric </li></ul></ul>
  33. 34. Recommendations – recent Lonclass work <ul><li>DEMO: Two-screen prototype for web-based on-demand video </li></ul>
  34. 35. Recommendations – some challenges <ul><li>Generating interesting links is difficult </li></ul><ul><li>We can't do Lonclass-based recommendations for recent content </li></ul>
  35. 36. Recommendations - what’s next? <ul><li>Reverse engineering user recommendations data to discover more about what makes interesting links </li></ul><ul><li>Looking at auto-classification of recently broadcast programmes with Lonclass </li></ul><ul><li>Mixing and matching Lonclass and other recommendations work with social influencers </li></ul><ul><li>Testing </li></ul>
  36. 37. Recommendations – reverse engineering interesting links <ul><li>Users A, B and F like programmes 1 and 5 which are both about Amsterdam, therefore location might be interesting to users… </li></ul>
  37. 38. Or the pathways through the graph could be further apart…
  38. 39. Recommendations – mixing with social influencers <ul><li>Such as: </li></ul><ul><ul><li>Twitter TV trends amongst my friends </li></ul></ul><ul><ul><li>What my friends are watching </li></ul></ul><ul><ul><li>What's most popular on Twitter right now </li></ul></ul>
  39. 40. Cross-domain recommendations
  40. 41. Bearing in mind privacy implications
  41. 42. Finding out more about a programme <ul><li>POTENTIAL UX BENEFITS OF USING LINKED DATA </li></ul><ul><li>User is pushed relevant background information </li></ul><ul><li>User doesn't have to search for anything </li></ul><ul><li>Supports content discovery/broadens knowledge </li></ul><ul><li>User is in control: now or later </li></ul>
  42. 43. Finding out more – in our year 1 demo
  43. 44. Finding out more – what we might do next
  44. 45. Creating the infrastructure to support online social activity around video content <ul><li>POTENTIAL UX BENEFITS OF USING LINKED DATA </li></ul><ul><li>Unique URLs support UGC </li></ul><ul><li>This enables all sorts of things to happen – “like electricity” </li></ul>
  45. 46. Creating the infrastructure: Libby’s Resolver <ul><li>Goes from broadcast TV to a webpage describing what's on </li></ul><ul><li>http://blog.notu.be/2010/08/26/connecting-broadcast-tv-and-the-web-using-a-resolver/ </li></ul>
  46. 47. Creating the infrastructure – what’s next <ul><li>Starting by linking up disparate sources of programme data internally within the BBC </li></ul><ul><li>Good business value for the BBC and good for end users </li></ul><ul><li>Deep/rich links into a part of the content, to provide a unique identifier for a particular in-programme event </li></ul><ul><li>Developing APIs for social TV apps </li></ul>
  47. 48. Summary and conclusions Within the context of the NoTube project , Linked Data techniques can improve user experiences by…
  48. 49. Supporting content discovery and serendipity <ul><li>Follow your nose </li></ul><ul><li>Find new video content </li></ul><ul><li>See related information </li></ul><ul><li>Find people with similar interests </li></ul>
  49. 50. Reducing the burden of choice <ul><li>Automatically filtering of programmes of interest </li></ul><ul><li>Delivering a more personalised experience </li></ul>
  50. 51. Allowing for smarter conversations around video content <ul><li>*This* is what I'm talking about </li></ul><ul><li>I like/don't like/recommend/disagree with *this* </li></ul><ul><li>*Here's* the evidence - using video rather than text to explain things </li></ul>
  51. 52. Call to action <ul><li>For maximum impact, consider how your work relates to real-world scenarios and how it can be used to improve the user experience </li></ul>
  52. 53. We start the process by making storyboards
  53. 54. Now, over to you… <ul><li>NoTube postcards and stickers to give you inspiration! </li></ul>
  54. 55. Further reading <ul><li>http://www.bbc.co.uk/ontologies/programmes/2009-09-07.shtml </li></ul><ul><li>http://www.bbc.co.uk/blogs/bbcinternet/2010/07/bbc_world_cup_2010_dynamic_sem.html </li></ul><ul><li>http://blog.dbtune.org/post/2009/10/27/Music-recommendation-and-Linked-Data </li></ul><ul><li>http://blog.notu.be/ </li></ul>
  55. 56. Photo credits <ul><li>http://www.flickr.com/photos/mcfarlandmo/3275419562/in/set-72157613720528518/ </li></ul><ul><li>http://www.flickr.com/photos/d-reichardt/4348924495 </li></ul><ul><li>http://www.flickr.com/photos/adambowie/2924076825/ </li></ul><ul><li>http://www.flickr.com/photos/disaster_area/3959753968/ </li></ul><ul><li>http://www.flickr.com/photos/nnova/2341090921/ </li></ul>
  56. 57. Thank you <ul><li>Questions/comments </li></ul>

×