Aieee Maths 2004

aieEE–Past papers,[object Object],MATHEMATICS- UNSOLVED PAPER - 2004,[object Object]
SECTION – A,[object Object],Single Correct Answer Type,[object Object],There are five parts in this question. Four choices are given for each part and one of them is correct.  Indicate  you choice of  the correct  answer for  each part in  your answer-book by  writing  the letter (a), (b), (c) or (d)  whichever  is appropriate,[object Object]
01,[object Object],Problem,[object Object],Let R = {(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)} be a relation on the set A = {1, 2, 3, 4}. The relation R is,[object Object],a function,[object Object],reflexive,[object Object],not symmetric ,[object Object],transitive,[object Object]
Problem,[object Object],02,[object Object],The range of the function f(x)= 7-xPx-3 is,[object Object],{1, 2, 3},[object Object],{1, 2, 3, 4, 5},[object Object],{1, 2, 3, 4} ,[object Object],{1, 2, 3, 4, 5, 6},[object Object]
Problem,[object Object],03,[object Object],Let z, w be complex numbers such that                          and argzw = π. Then arg z equals,[object Object],4/π,[object Object],5π/4,[object Object],3π/4,[object Object],2/π,[object Object]
Problem,[object Object],04,[object Object],If z = x – i y and Z1/33 = p + iq ,                  then is equal to,[object Object],1,[object Object],-2,[object Object],2 ,[object Object],-1,[object Object]
Problem,[object Object],05,[object Object],                           then z lies on,[object Object],the real axis,[object Object],an ellipse,[object Object],a circle ,[object Object],the imaginary axis.,[object Object]
Problem,[object Object],06,[object Object],Let A                        The only correct statement about the matrix A is,[object Object],A is a zero matrix ,[object Object],A2 = I,[object Object],A−1does not exist ,[object Object],A = (−1)I, where I is a unit matrix,[object Object]
Problem,[object Object],07,[object Object],Let A=                    (10)B=                    . If B is the inverse of matrix A, ,[object Object],then α is,[object Object],-2 ,[object Object],5,[object Object],2,[object Object],-1,[object Object]
Problem,[object Object],08,[object Object],If a1, a2, a3 , ....,an , .... are in G.P., then the value of the determinant,[object Object], 0 ,[object Object], -2,[object Object], 2 ,[object Object], 1,[object Object]
Problem,[object Object],09,[object Object],Let two numbers have arithmetic mean 9 and geometric mean 4. Then these numbers are the roots of the quadratic equation,[object Object],x2 + 18x + 16 = 0 ,[object Object],x2 −18x −16 = 0,[object Object],x2 + 18x −16 = 0 ,[object Object],x2 −18x + 16 = 0,[object Object]
Problem,[object Object],10,[object Object],If (1 – p) is a root of quadratic equation x2 + px + (1− p) = 0 , then its roots are,[object Object],0, 1 ,[object Object], -1, 2,[object Object],0, -1 ,[object Object],-1, 1,[object Object]
Problem,[object Object],11,[object Object],Let S(K) = 1+ 3 + 5 + ... + (2K −1) = 3 + K2 . Then which of the following is true?,[object Object],S(1) is correct,[object Object],Principle of mathematical induction can be used to prove the formula,[object Object],S(K) ⇒ S(K + 1),[object Object],S(K)⇒ S(K + 1),[object Object]
Problem,[object Object],12,[object Object],How many ways are there to arrange the letters in the word GARDEN with the vowels in alphabetical order?,[object Object],120 ,[object Object],480,[object Object],360,[object Object],240,[object Object]
Problem,[object Object],13,[object Object],The number of ways of distributing 8 identical balls in 3 distinct boxes so that none of the boxes is empty is,[object Object],5 ,[object Object],8C3,[object Object],38,[object Object],21,[object Object]
Problem,[object Object],14,[object Object],If one root of the equation x2 + px + 12 = 0 is 4, while the equation x2 + px + q = 0 has equal roots, then the value of ‘q’ is,[object Object],49/4,[object Object],4,[object Object],3 ,[object Object],12,[object Object]
Problem,[object Object],15,[object Object],The coefficient of the middle term in the binomial expansion in powers of x of (1+ αx)4 and of (1− αx)6 is the same if α equals,[object Object],- 5/3,[object Object],3/5,[object Object],-3/10,[object Object],10/3,[object Object]
Problem,[object Object],16,[object Object],The coefficient of xn in expansion of (1+ x) (1− x)n is,[object Object],(n – 1) ,[object Object],(-1)n(1− n)	,[object Object],(-1)n-1(1− n)2,[object Object],(-1)n-1n ,[object Object]
Problem,[object Object],17,[object Object],If = and                             , then       n,[object Object],is equal to,[object Object],a.,[object Object],b.,[object Object],c. n-1,[object Object],d.,[object Object]
Problem,[object Object],18,[object Object],Let Tr be the rth term of an A.P. whose first term is a and common difference is d. If for some positive integers m, n, m ≠ n                   , and              , then a – d equals,[object Object],a. 0,[object Object],b. 1,[object Object],c. 1/mn,[object Object],d.,[object Object]
Problem,[object Object],19,[object Object],The sum of the first n terms of the series 12 + 2 ⋅ 22 + 32 + 2 ⋅ 42 + 52 + 2 ⋅ 62 +                ... iswhen n is even. When n is odd the sum is,[object Object],a.,[object Object],b.,[object Object],c.,[object Object],d.,[object Object]
Problem,[object Object],20,[object Object],The sum of series                                is,[object Object],a.,[object Object],b.,[object Object],c.,[object Object],d.,[object Object]
Problem,[object Object],21,[object Object],Let α, β be such that π < α - β < 3π. If sinα + sinβ =           and cosα + cosβ =          , then the value of cos,[object Object],a.,[object Object],b.,[object Object],c.,[object Object],d.,[object Object]
Problem,[object Object],22,[object Object],If u =                                                                                 , then the difference between the maximum and minimum values of u2 is given by,[object Object],a. 2(a2 + b2 ) ,[object Object],b. ,[object Object],c. (a + b)2,[object Object],d. (a -b)2,[object Object]
Problem,[object Object],23,[object Object],The sides of a triangle are sinα, cosα and                             for some                   . Then the greatest angle of the triangle is,[object Object],60o,[object Object],90o,[object Object],120o ,[object Object],150o,[object Object]
Problem,[object Object],24,[object Object],A person standing on the bank of a river observes that the angle of elevation of the top of a tree on the opposite bank of the river is 60o and when he retires 40 meter away from the tree the angle of elevation becomes30o . The breadth of the river is,[object Object],20 m ,[object Object],30 m,[object Object],40 m ,[object Object],60 m,[object Object]
Problem,[object Object],25,[object Object],If f :R -> S, defined by f(x) = sin x − √3 cos x + 1, is onto, then the interval of S is,[object Object],[0, 3] ,[object Object],[-1, 1],[object Object],[0, 1] ,[object Object],[-1, 3],[object Object]
Problem,[object Object],26,[object Object],The graph of the function y = f(x) is symmetrical about the line x = 2, then,[object Object],f(x + 2)= f(x – 2) ,[object Object],f(2 + x) = f(2 – x),[object Object],f(x) = f(-x) ,[object Object],f(x) = - f(-x),[object Object]
Problem,[object Object],27,[object Object],The domain of the function                         is,[object Object],[2, 3] ,[object Object],[2, 3),[object Object],[1, 2] ,[object Object],[1, 2),[object Object]
Problem,[object Object],28,[object Object],If                                          , then the values of a and b, are,[object Object],a∈      , b∈,[object Object],a = 1, b∈,[object Object],a∈      , b = 2 ,[object Object],a = 1 and b = 2,[object Object]
Problem,[object Object],29,[object Object],Let f(x) .   If f(x) is continuous in                 , then f         is,[object Object],a. 1 ,[object Object],b. 1/2,[object Object],c. -1/2,[object Object],d. -1,[object Object]
Problem,[object Object],30,[object Object],If xy+e y+...to  ∞ , x > 0, then dy/dx  is,[object Object],x/1+ x,[object Object],1/x,[object Object],1-x/x,[object Object],1+x/x,[object Object]
Problem,[object Object],31,[object Object],A point on the parabola y2 = 18x at which the ordinate increases at twice the rate of the abscissa is,[object Object],a.(2, 4) ,[object Object],b. (2, -4),[object Object],c.,[object Object],d.,[object Object]
Problem,[object Object],32,[object Object],A function y = f(x) has a second order derivative f″(x) = 6(x – 1). If its graph passes through the point (2, 1) and at that point the tangent to the graph is y = 3x – 5, then the function is,[object Object],(x −1)2 ,[object Object],(x −1)2,[object Object],(x+1)3 ,[object Object],(x+1)2,[object Object]
Problem,[object Object],33,[object Object],The normal to the curve x = a(1 + cosθ), y = asinθ at ‘θ’ always passes through the fixed point,[object Object],(a, 0) ,[object Object],(0, a),[object Object],(0, 0) ,[object Object],(a, a),[object Object]
Problem,[object Object],34,[object Object],If 2a + 3b + 6c =0, then at least one root of the equation ax2 + bx + c = 0 lies in the interval,[object Object],(0, 1) ,[object Object], (1, 2),[object Object],(2, 3) ,[object Object],(1, 3),[object Object]
Problem,[object Object],35,[object Object],                              is,[object Object],e ,[object Object],e – 1,[object Object],1 – e ,[object Object],e + 1,[object Object]
Problem,[object Object],36,[object Object],If                           dx=Ax+ B log sin(x ) C sin(x- α ) , then value of (A, B) is,[object Object],(sinα, cosα) ,[object Object],(cosα, sinα),[object Object],(- sinα, cosα),[object Object],(- cosα, sinα),[object Object]
Problem,[object Object],37,[object Object],is equal to,[object Object],a.,[object Object],b.,[object Object],c.,[object Object],d.,[object Object]
Problem,[object Object],38,[object Object],The value of                      dx is,[object Object],28/3,[object Object],14/3,[object Object],7/3,[object Object],1/3,[object Object]
Problem,[object Object],39,[object Object],The value of I =                                    dxis,[object Object],0 ,[object Object],1,[object Object],2 ,[object Object],3,[object Object]
Problem,[object Object],40,[object Object],If       xf(sin x)dx=A f         (sin x) then A is,[object Object],0 ,[object Object],π,[object Object],4/π,[object Object],2π,[object Object]
Problem,[object Object],41,[object Object],If f(x) =                                      xg{x(1 x)}dx and                            g{x(1 x)}dx then the ,[object Object],value of          is,[object Object],2 ,[object Object],–3,[object Object],–1 ,[object Object],1,[object Object]
Problem,[object Object],42,[object Object],The area of the region bounded by the curves y = |x – 2|, x = 1, x = 3 and the x-axis is,[object Object],1 ,[object Object],2,[object Object],3 ,[object Object],4,[object Object]
Problem,[object Object],43,[object Object],The differential equation for the family of curves x2 + y2 − 2ay = 0 , where a is an arbitrary constant is,[object Object],2(x2 − y2 )y′ = xy,[object Object],2(x2 + y2 )y′ = xy,[object Object],(x2 − y2 )y′ = 2xy ,[object Object],(x2 + y2 )y′ = 2xy,[object Object]
Problem,[object Object],44,[object Object],The solution of the differential equation y dx + (x + x2y) dy = 0 is,[object Object],a.,[object Object],b.,[object Object],c.,[object Object],d.,[object Object]
Problem,[object Object],45,[object Object],Let A (2, –3) and B(–2, 1) be vertices of a triangle ABC. If the centroid of this triangle moves on the line 2x + 3y = 1, then the locus of the vertex C is the line,[object Object],2x + 3y = 9 ,[object Object],2x – 3y = 7,[object Object],3x + 2y = 5 ,[object Object],3x – 2y = 3,[object Object]
Problem,[object Object],46,[object Object],The equation of the straight line passing through the point (4, 3) and making intercepts on the co-ordinate axes whose sum is –1 is,[object Object],a.,[object Object],b.,[object Object],c.,[object Object],d.,[object Object]
Problem,[object Object],47,[object Object],If the sum of the slopes of the lines given by x2 − 2cxy − 7y2 = 0 is four times their product, then c has the value,[object Object],1 ,[object Object],-1,[object Object],2 ,[object Object],-2,[object Object]
Problem,[object Object],48,[object Object],If one of the lines given by 6x2 − xy + 4cy2 = 0 is 3x + 4y = 0, then c equals,[object Object],1 ,[object Object],-1,[object Object],3 ,[object Object],-3,[object Object]
Problem,[object Object],49,[object Object],If a circle passes through the point (a, b) and cuts the circle x2 + y2 = 4 orthogonally, then the locus of its centre is,[object Object],2ax + 2by + (a2 + b2 + 4) = 0 ,[object Object],2ax + 2by − (a2 + b2 + 4) = 0,[object Object],2ax − 2by + (a2 + b2 + 4) = 0 ,[object Object],2ax − 2by − (a2 + b2 + 4) = 0,[object Object]
Problem,[object Object],50,[object Object],A variable circle passes through the fixed point A (p, q) and touches x-axis. The locus of the other end of the diameter through A is,[object Object],(x − p)2 = 4qy ,[object Object],(x − q)2 = 4py,[object Object],(y − p)2 = 4qx ,[object Object],(y − q)2 = 4px,[object Object]
Problem,[object Object],51,[object Object],If the lines 2x + 3y + 1 = 0 and 3x – y – 4 = 0 lie along diameters of a circle of circumference 10π, then the equation of the circle is,[object Object],x2 + y2 − 2x + 2y − 23 = 0,[object Object],x2 + y2 − 2x − 2y − 23 = 0,[object Object],x2 + y2 + 2x + 2y − 23 = 0,[object Object],x2 + y2 + 2x − 2y − 23 = 0,[object Object]
Problem,[object Object],52,[object Object],The intercept on the line y = x by the circle x2 + y2 − 2x = 0 is AB. Equation of the circle on AB as a diameter is,[object Object],x2 + y2 − x − y = 0 ,[object Object], x2 + y2 − x + y = 0,[object Object],x2 + y2 + x + y = 0 ,[object Object],x2 + y2 + x − y = 0,[object Object]
Problem,[object Object],53,[object Object],If a ≠ 0 and the line 2bx + 3cy + 4d = 0 passes through the points of intersection of the parabolas y2 = 4ax and x2 = 4ay , then,[object Object],d2 + (2b + 3c)2 = 0 ,[object Object],d2 + (3b + 2c)2 = 0,[object Object],d2 + (2b − 3c)2 = 0,[object Object],d2 + (3b − 2c)2 = 0,[object Object]
Problem,[object Object],54,[object Object],The eccentricity of an ellipse, with its centre at the origin, is 1/2. If one of the directives is x =4, then the equation of the ellipse is,[object Object],3x2 + 4y2 = 1 ,[object Object],3x2 + 4y2 = 12,[object Object],4x2 + 3y2 = 12 ,[object Object],4x2 + 3y2 = 1,[object Object]
Problem,[object Object],55,[object Object],A line makes the same angle θ, with each of the x and z axis. If the angle β, which it makes with y-axis, is such that sin2 β = 3sin2 θ , then cos2 θ equals,[object Object],2/3,[object Object],1/5,[object Object],3/5,[object Object],2/5,[object Object]
Problem,[object Object],56,[object Object],Distance between two parallel planes 2x + y + 2z = 8 and 4x + 2y + 4z + 5 = 0 is,[object Object],3/2,[object Object],5/2,[object Object],7/2,[object Object],9/2,[object Object]
Problem,[object Object],57,[object Object],A line with direction cosines proportional to 2, 1, 2 meets each of the lines x = y + a = z and x + a = 2y = 2z. The co-ordinates of each of the point of intersection are given by,[object Object],(3a, 3a, 3a), (a, a, a) ,[object Object],(3a, 2a, 3a), (a, a, a),[object Object],(3a, 2a, 3a), (a, a, 2a) ,[object Object],(2a, 3a, 3a), (2a, a, a),[object Object]
Problem,[object Object],58,[object Object],If the straight lines x = 1 + s, y = –3 – λs, z = 1 + λs and x = t/2, y = 1 + t, z = 2 – t withparameters s and t respectively, are co-planar then λ equals,[object Object],–2 ,[object Object],–1,[object Object], – 1/2,[object Object], 0,[object Object]
Problem,[object Object],59,[object Object],The intersection of the spheres x2 + y2 + z2 + 7x − 2y − z = 13 and,[object Object],x2 + y2 + z2 − 3x + 3y + 4z = 8 is the same as the intersection of one of the sphere and the plane,[object Object],x – y – z = 1 ,[object Object],x – 2y – z = 1,[object Object],x – y – 2z = 1,[object Object],2x – y – z = 1,[object Object]
Problem,[object Object],60,[object Object],Let      ,     and    be three non-zero vectors such that no two of these are collinear. If the vector    + 2    is collinear with     and    + 3    is collinear with,[object Object],(λ being some non-zero scalar) then                        equals,[object Object],a.,[object Object],b.,[object Object],c.,[object Object],d. 0,[object Object]
Problem,[object Object],61,[object Object],A particle is acted upon by constant forces 4î +ĵ− 3kˆ and 3ˆi + ĵ −     which displace it from a point î + 2ĵ + 3    to the point5 î+ 4ĵ +   . The work done in standard units by the forces is given by,[object Object],40 ,[object Object],30,[object Object],25 ,[object Object],15,[object Object]
Problem,[object Object],62,[object Object],If                  are non-coplanar vectors and λ is a real number, then the vectors,[object Object],                                        and (2λ −1)   are non-coplanar for,[object Object],all values of λ ,[object Object],all except one value of λ,[object Object],all except two values of λ,[object Object],no value of λ,[object Object]
Problem,[object Object],63,[object Object],Let                    be such that                                                 . If the projection    along     is equal to that of w along u and v, w are perpendicular to each other then u − v + w equals,[object Object],2,[object Object],√7,[object Object],√14,[object Object],14,[object Object]
Problem,[object Object],64,[object Object],Let a, b and c be non-zero vectors such that                                                . If θ is the acute angle between the vectors     and    ,  then sin θ equals,[object Object],a. 1/3,[object Object],b. √2/3,[object Object],c. 2/3,[object Object],d. 2√2/3,[object Object]
Problem,[object Object],65,[object Object],Consider the following statements:,[object Object],(a) Mode can be computed from histogram,[object Object],(b) Median is not independent of change of scale,[object Object],(c) Variance is independent of change of origin and scale.,[object Object],Which of these is/are correct?,[object Object],only (a),[object Object],only (b),[object Object],only (a) and (b),[object Object],(a), (b) and (c),[object Object]
Problem,[object Object],66,[object Object],In a series of 2n observations, half of them equal a and remaining half equal -a. If the standard deviation of the observations is 2, then |a| equals,[object Object],a. 1/n,[object Object],b. √2,[object Object],c.  2,[object Object],d. √2/n,[object Object]
Problem,[object Object],67,[object Object],The probability that A speaks truth is 4/5, while this probability for B is 3/4,[object Object],. The probability that they contradict each other when asked to speak on a fact is,[object Object],a. 3/20,[object Object],b. 1/5,[object Object],c. 7/20,[object Object],d. 4/5,[object Object]
Problem,[object Object],68,[object Object],A random variable X has the probability distribution: For the events E = {X is a prime number} and F = {X < 4}, the probability P (E ∪ F) is,[object Object],0.87,[object Object],0.77,[object Object],0.35,[object Object],0.50,[object Object]
Problem,[object Object],69,[object Object],The mean and the variance of a binomial distribution are 4 and 2 respectively. Then the probability of 2 successes is,[object Object],37/256,[object Object],219/256,[object Object],128/256,[object Object],28/256,[object Object]
Problem,[object Object],70,[object Object],With two forces acting at a point, the maximum effect is obtained when their resultant is 4N. If they act at right angles, then their resultant is 3N. Then the forces are,[object Object],a. (2 + √2)N and (2 − √2)N,[object Object],b. (2 + √3)N and (2 − √3)N,[object Object],c.,[object Object],d.,[object Object]
Problem,[object Object],71,[object Object],In a right angle ΔABC, ∠A = 90° and sides a, b, c are respectively, 5 cm, 4 cm and 3 cm. If a force        has moments 0, 9 and 16 in N cm. units respectively about vertices A, B and C, then magnitude of is,[object Object],3 ,[object Object],4,[object Object],5 ,[object Object],9,[object Object]
Problem,[object Object],72,[object Object],Three forces P, Q and R  rrr    acting along IA, IB and IC, where I is the incentre of a ΔABC, are   in equilibrium. Then P : Q :R   rrr   is,[object Object],Cos     : cos        : cos,[object Object],Sin       : sin         : sin,[object Object], sec      : sec         : sec ,[object Object],cosec   : cosec      : cosec ,[object Object]
Problem,[object Object],73,[object Object],A particle moves towards east from a point A to a point B at the rate of 4 km/h and then  towards north from B to C at the rate of 5 km/h. If AB = 12 km and BC = 5 km, then its  average speed for its journey from A to C and resultant average velocity direct from A to C  are respectively,[object Object], 17/4 km/h and 13/4  km/h ,[object Object], 13/4 km/h and 17/4 km/h,[object Object], 17/9 km/h and 13/9  km/h ,[object Object], 1/9 km/h and 17/9 km/h,[object Object]
Problem,[object Object],74,[object Object],A velocity 1/4    m/s is resolved into two components along OA and OB making angles 30° and 45° respectively with the given velocity. Then the component along OB is,[object Object],1/8    m/s ,[object Object],¼   ( √3 -1) m/s,[object Object], ¼  m/s ,[object Object],1/8 ( √6-√2) m/s,[object Object]
Problem,[object Object],75,[object Object],If t1 and t2 are the times of flight of two particles having the same initial velocity u and range R on the horizontal, then 2 2 t21+ t22is equal to,[object Object],a. u2/g,[object Object],b. 4u2/g,[object Object],c. 2u2/g,[object Object],d.1,[object Object]
FOR SOLUTION VISIT  WWW.VASISTA.NET,[object Object]
1 von 78

Recomendados

Aieee maths-2003 von
Aieee maths-2003Aieee maths-2003
Aieee maths-2003Vasista Vinuthan
516 views78 Folien
C2 st lecture 4 handout von
C2 st lecture 4 handoutC2 st lecture 4 handout
C2 st lecture 4 handoutfatima d
1K views36 Folien
Quadratic Equations von
Quadratic EquationsQuadratic Equations
Quadratic EquationsWenslette Rosique
251 views9 Folien
Module 4 quadratic functions von
Module 4 quadratic functionsModule 4 quadratic functions
Module 4 quadratic functionsdionesioable
4.2K views27 Folien
Maths Revision Notes - IGCSE von
Maths Revision Notes - IGCSEMaths Revision Notes - IGCSE
Maths Revision Notes - IGCSERahul Jose
25.4K views67 Folien
Add maths module form 4 & 5 von
Add maths module form 4 & 5Add maths module form 4 & 5
Add maths module form 4 & 5smktsj2
35.4K views17 Folien

Más contenido relacionado

Was ist angesagt?

Applications of Quadratic Equations and Rational Algebraic Equations von
Applications of Quadratic Equations and Rational Algebraic EquationsApplications of Quadratic Equations and Rational Algebraic Equations
Applications of Quadratic Equations and Rational Algebraic EquationsCipriano De Leon
4.7K views14 Folien
Chapter 9 differentiation von
Chapter 9  differentiationChapter 9  differentiation
Chapter 9 differentiationatiqah ayie
86.5K views27 Folien
Algebra Presentation on Topic Modulus Function and Polynomials von
Algebra Presentation on Topic Modulus Function and PolynomialsAlgebra Presentation on Topic Modulus Function and Polynomials
Algebra Presentation on Topic Modulus Function and PolynomialsKanyaJyesta1
52 views11 Folien
Module 3 quadratic functions von
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functionsdionesioable
3.2K views36 Folien
Chapter 3 quadratc functions von
Chapter 3  quadratc functionsChapter 3  quadratc functions
Chapter 3 quadratc functionsatiqah ayie
42.5K views11 Folien
Topik 1 von
Topik 1Topik 1
Topik 1azizulamat1977
345 views42 Folien

Was ist angesagt?(20)

Applications of Quadratic Equations and Rational Algebraic Equations von Cipriano De Leon
Applications of Quadratic Equations and Rational Algebraic EquationsApplications of Quadratic Equations and Rational Algebraic Equations
Applications of Quadratic Equations and Rational Algebraic Equations
Cipriano De Leon4.7K views
Chapter 9 differentiation von atiqah ayie
Chapter 9  differentiationChapter 9  differentiation
Chapter 9 differentiation
atiqah ayie86.5K views
Algebra Presentation on Topic Modulus Function and Polynomials von KanyaJyesta1
Algebra Presentation on Topic Modulus Function and PolynomialsAlgebra Presentation on Topic Modulus Function and Polynomials
Algebra Presentation on Topic Modulus Function and Polynomials
KanyaJyesta152 views
Module 3 quadratic functions von dionesioable
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functions
dionesioable3.2K views
Chapter 3 quadratc functions von atiqah ayie
Chapter 3  quadratc functionsChapter 3  quadratc functions
Chapter 3 quadratc functions
atiqah ayie42.5K views
Notes and-formulae-mathematics von Ragulan Dev
Notes and-formulae-mathematicsNotes and-formulae-mathematics
Notes and-formulae-mathematics
Ragulan Dev62K views
IIT JAM MATH 2021 Question Paper | Sourav Sir's Classes von SOURAV DAS
IIT JAM MATH 2021 Question Paper | Sourav Sir's ClassesIIT JAM MATH 2021 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2021 Question Paper | Sourav Sir's Classes
SOURAV DAS105 views
Quadratic equations von debmegh
Quadratic equationsQuadratic equations
Quadratic equations
debmegh473 views
C2 st lecture 5 handout von fatima d
C2 st lecture 5 handoutC2 st lecture 5 handout
C2 st lecture 5 handout
fatima d2.9K views
Additional Mathematics Revision von Katie B
Additional Mathematics RevisionAdditional Mathematics Revision
Additional Mathematics Revision
Katie B50.9K views
Solving Word Problems Involving Quadratic Equations von kliegey524
Solving Word Problems Involving Quadratic EquationsSolving Word Problems Involving Quadratic Equations
Solving Word Problems Involving Quadratic Equations
kliegey52451.8K views
Inequality and absolute value von Rushabh Vora
Inequality and absolute valueInequality and absolute value
Inequality and absolute value
Rushabh Vora586 views
Simultaneous Equations Practical Construction von Daniel Ross
Simultaneous Equations Practical ConstructionSimultaneous Equations Practical Construction
Simultaneous Equations Practical Construction
Daniel Ross4.3K views
AS LEVEL Function (CIE) EXPLAINED WITH EXAMPLE AND DIAGRAMS von RACSOelimu
AS LEVEL Function (CIE) EXPLAINED WITH EXAMPLE AND DIAGRAMSAS LEVEL Function (CIE) EXPLAINED WITH EXAMPLE AND DIAGRAMS
AS LEVEL Function (CIE) EXPLAINED WITH EXAMPLE AND DIAGRAMS
RACSOelimu20.9K views
1.4 Quadratic Equations von smiller5
1.4 Quadratic Equations1.4 Quadratic Equations
1.4 Quadratic Equations
smiller5418 views

Similar a Aieee Maths 2004

IIT JEE Maths 2000 von
IIT JEE Maths   2000IIT JEE Maths   2000
IIT JEE Maths 2000Vasista Vinuthan
5.8K views38 Folien
Aieee mathematics - 2007 von
Aieee mathematics - 2007Aieee mathematics - 2007
Aieee mathematics - 2007Vasista Vinuthan
219 views43 Folien
Aieee mathematics - 2007 von
Aieee mathematics - 2007Aieee mathematics - 2007
Aieee mathematics - 2007Vasista Vinuthan
158 views43 Folien
Aieee Mathematics 2006 von
Aieee Mathematics   2006Aieee Mathematics   2006
Aieee Mathematics 2006Vasista Vinuthan
630 views43 Folien
Aieee aieee-maths-2009 von
Aieee aieee-maths-2009Aieee aieee-maths-2009
Aieee aieee-maths-2009Vasista Vinuthan
421 views33 Folien
IITJEE - Mathematics 2010-i von
IITJEE - Mathematics  2010-iIITJEE - Mathematics  2010-i
IITJEE - Mathematics 2010-iVasista Vinuthan
380 views36 Folien

Similar a Aieee Maths 2004(20)

Aieee 2003 maths solved paper by fiitjee von Mr_KevinShah
Aieee 2003 maths solved paper by fiitjeeAieee 2003 maths solved paper by fiitjee
Aieee 2003 maths solved paper by fiitjee
Mr_KevinShah2.4K views
NIMCET Previous Year Solved Paper 2022 von Infomaths
NIMCET Previous Year Solved  Paper 2022NIMCET Previous Year Solved  Paper 2022
NIMCET Previous Year Solved Paper 2022
Infomaths 10 views
C2 st lecture 2 handout von fatima d
C2 st lecture 2 handoutC2 st lecture 2 handout
C2 st lecture 2 handout
fatima d1K views

Más de Vasista Vinuthan

CAT -1999 Unsolved Paper von
CAT -1999 Unsolved PaperCAT -1999 Unsolved Paper
CAT -1999 Unsolved PaperVasista Vinuthan
2.5K views79 Folien
CAT -2010 Unsolved Paper von
CAT -2010 Unsolved PaperCAT -2010 Unsolved Paper
CAT -2010 Unsolved PaperVasista Vinuthan
1.8K views84 Folien
Electrical Engineering - 2009 Unsolved Paper von
Electrical Engineering - 2009 Unsolved PaperElectrical Engineering - 2009 Unsolved Paper
Electrical Engineering - 2009 Unsolved PaperVasista Vinuthan
1.1K views66 Folien
Electrical Engineering - 2008 Unsolved Paper von
Electrical Engineering - 2008 Unsolved PaperElectrical Engineering - 2008 Unsolved Paper
Electrical Engineering - 2008 Unsolved PaperVasista Vinuthan
1.3K views97 Folien
Electrical Engineering - 2007 Unsolved Paper von
Electrical Engineering - 2007 Unsolved PaperElectrical Engineering - 2007 Unsolved Paper
Electrical Engineering - 2007 Unsolved PaperVasista Vinuthan
977 views93 Folien
Electrical Engineering - 2006 Unsolved Paper von
Electrical Engineering - 2006 Unsolved PaperElectrical Engineering - 2006 Unsolved Paper
Electrical Engineering - 2006 Unsolved PaperVasista Vinuthan
1.4K views94 Folien

Más de Vasista Vinuthan(20)

Electrical Engineering - 2009 Unsolved Paper von Vasista Vinuthan
Electrical Engineering - 2009 Unsolved PaperElectrical Engineering - 2009 Unsolved Paper
Electrical Engineering - 2009 Unsolved Paper
Vasista Vinuthan1.1K views
Electrical Engineering - 2008 Unsolved Paper von Vasista Vinuthan
Electrical Engineering - 2008 Unsolved PaperElectrical Engineering - 2008 Unsolved Paper
Electrical Engineering - 2008 Unsolved Paper
Vasista Vinuthan1.3K views
Electrical Engineering - 2007 Unsolved Paper von Vasista Vinuthan
Electrical Engineering - 2007 Unsolved PaperElectrical Engineering - 2007 Unsolved Paper
Electrical Engineering - 2007 Unsolved Paper
Vasista Vinuthan977 views
Electrical Engineering - 2006 Unsolved Paper von Vasista Vinuthan
Electrical Engineering - 2006 Unsolved PaperElectrical Engineering - 2006 Unsolved Paper
Electrical Engineering - 2006 Unsolved Paper
Vasista Vinuthan1.4K views
Electrical Engineering - 2005 Unsolved Paper von Vasista Vinuthan
Electrical Engineering - 2005 Unsolved PaperElectrical Engineering - 2005 Unsolved Paper
Electrical Engineering - 2005 Unsolved Paper
Vasista Vinuthan1.1K views
Electrical Engineering - 2004 Unsolved Paper von Vasista Vinuthan
Electrical Engineering - 2004 Unsolved PaperElectrical Engineering - 2004 Unsolved Paper
Electrical Engineering - 2004 Unsolved Paper
Vasista Vinuthan3.3K views
Electrical Engineering - 2010 Unsolved Paper von Vasista Vinuthan
Electrical Engineering - 2010 Unsolved PaperElectrical Engineering - 2010 Unsolved Paper
Electrical Engineering - 2010 Unsolved Paper
Vasista Vinuthan763 views

Último

ICS3211_lecture 08_2023.pdf von
ICS3211_lecture 08_2023.pdfICS3211_lecture 08_2023.pdf
ICS3211_lecture 08_2023.pdfVanessa Camilleri
95 views30 Folien
The Open Access Community Framework (OACF) 2023 (1).pptx von
The Open Access Community Framework (OACF) 2023 (1).pptxThe Open Access Community Framework (OACF) 2023 (1).pptx
The Open Access Community Framework (OACF) 2023 (1).pptxJisc
77 views7 Folien
Psychology KS5 von
Psychology KS5Psychology KS5
Psychology KS5WestHatch
68 views5 Folien
OEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptx von
OEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptxOEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptx
OEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptxInge de Waard
165 views29 Folien
Material del tarjetero LEES Travesías.docx von
Material del tarjetero LEES Travesías.docxMaterial del tarjetero LEES Travesías.docx
Material del tarjetero LEES Travesías.docxNorberto Millán Muñoz
68 views9 Folien

Último(20)

The Open Access Community Framework (OACF) 2023 (1).pptx von Jisc
The Open Access Community Framework (OACF) 2023 (1).pptxThe Open Access Community Framework (OACF) 2023 (1).pptx
The Open Access Community Framework (OACF) 2023 (1).pptx
Jisc77 views
Psychology KS5 von WestHatch
Psychology KS5Psychology KS5
Psychology KS5
WestHatch68 views
OEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptx von Inge de Waard
OEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptxOEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptx
OEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptx
Inge de Waard165 views
Class 10 English lesson plans von TARIQ KHAN
Class 10 English  lesson plansClass 10 English  lesson plans
Class 10 English lesson plans
TARIQ KHAN239 views
Narration ppt.pptx von TARIQ KHAN
Narration  ppt.pptxNarration  ppt.pptx
Narration ppt.pptx
TARIQ KHAN110 views
Psychology KS4 von WestHatch
Psychology KS4Psychology KS4
Psychology KS4
WestHatch62 views
The basics - information, data, technology and systems.pdf von JonathanCovena1
The basics - information, data, technology and systems.pdfThe basics - information, data, technology and systems.pdf
The basics - information, data, technology and systems.pdf
JonathanCovena177 views
Drama KS5 Breakdown von WestHatch
Drama KS5 BreakdownDrama KS5 Breakdown
Drama KS5 Breakdown
WestHatch64 views
Solar System and Galaxies.pptx von DrHafizKosar
Solar System and Galaxies.pptxSolar System and Galaxies.pptx
Solar System and Galaxies.pptx
DrHafizKosar79 views
Education and Diversity.pptx von DrHafizKosar
Education and Diversity.pptxEducation and Diversity.pptx
Education and Diversity.pptx
DrHafizKosar107 views

Aieee Maths 2004

  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
  • 78.

Hinweis der Redaktion

  1. aaa