Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

Tai lieu luyen thi mon toan de thi dh mon toan khoi d - nam 2008

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Wird geladen in …3
×

Hier ansehen

1 von 5 Anzeige

Tai lieu luyen thi mon toan de thi dh mon toan khoi d - nam 2008

Herunterladen, um offline zu lesen

Được đánh giá là một trong những Trung tâm Luyện thi Uy tín tại Tp. HCM
http://www.qsc45.com
http://www.qsc45.vn

Được đánh giá là một trong những Trung tâm Luyện thi Uy tín tại Tp. HCM
http://www.qsc45.com
http://www.qsc45.vn

Anzeige
Anzeige

Weitere Verwandte Inhalte

Diashows für Sie (20)

Ähnlich wie Tai lieu luyen thi mon toan de thi dh mon toan khoi d - nam 2008 (20)

Anzeige

Weitere von Trungtâmluyệnthi Qsc (20)

Aktuellste (20)

Anzeige

Tai lieu luyen thi mon toan de thi dh mon toan khoi d - nam 2008

  1. 1. BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2008 Môn thi: TOÁN, khối D Thời gian làm bài 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH Câu I (2 điểm) Cho hàm số 3 2 y x 3x 4 (1).= − + 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1). 2. Chứng minh rằng mọi đường thẳng đi qua điểm I(1;2) với hệ số góc k (k 3> − ) đều cắt đồ thị của hàm số (1) tại ba điểm phân biệt I, A, B đồng thời I là trung điểm của đoạn thẳng AB. Câu II (2 điểm) 1. Giải phương trình 2sinx (1 cos2x) sin2x 1 2cosx.+ + = + 2. Giải hệ phương trình 2 2 xy x y x 2y x 2y y x 1 2x 2y ⎧ + + = −⎪ ⎨ − − = −⎪⎩ (x, y ).∈ Câu III (2 điểm) Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(3;3;0),B(3;0;3),C(0;3;3),D(3;3;3). 1. Viết phương trình mặt cầu đi qua bốn điểm A, B, C, D. 2. Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC. Câu IV (2 điểm) 1. Tính tích phân 2 3 1 lnx I dx. x = ∫ 2. Cho x, y là hai số thực không âm thay đổi. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức 2 2 (x y)(1 xy) P . (1 x) (1 y) − − = + + PHẦN RIÊNG Thí sinh chỉ được làm 1 trong 2 câu: V.a hoặc V.b Câu V.a. Theo chương trình KHÔNG phân ban (2 điểm) 1. Tìm số nguyên dương n thỏa mãn hệ thức 1 3 2n 1 2n 2n 2nC C ... C 2048− + + + = ( k nC là số tổ hợp chập k của n phần tử). 2. Trong mặt phẳng với hệ tọa độ Oxy, cho parabol (P) : 2 y 16x= và điểm A(1;4). Hai điểm phân biệt B, C (B và C khác A) di động trên (P) sao cho góc o BAC 90 .= Chứng minh rằng đường thẳng BC luôn đi qua một điểm cố định. Câu V.b. Theo chương trình phân ban (2 điểm) 1. Giải bất phương trình 2 1 2 x 3x 2 log 0. x − + ≥ 2. Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông, AB = BC = a, cạnh bên AA' a 2.= Gọi M là trung điểm của cạnh BC. Tính theo a thể tích của khối lăng trụ ABC.A'B'C' và khoảng cách giữa hai đường thẳng AM, B'C. ...........................Hết........................... Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh:........................................................ Số báo danh:............................................. ĐỀ CHÍNH THỨC
  2. 2. BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐÁP ÁN - THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2008 Môn: TOÁN, khối D (Đáp án - Thang điểm gồm 04 trang) Nội dungCâu Điểm I 2,00 1 Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1,00 điểm) • Tập xác định : D = . • Sự biến thiên : ,2 y' 3x 6x= − x 0 y' 0 x 2 =⎡ = ⇔ ⎢ =⎣ . 0,25 • yCĐ = ( ) ( )CTy 0 4, y y 2 0.= = = 0,25 • Bảng biến thiên : 0,25 • Đồ thị : Trang 1/4 0,25 2 Chứng minh rằng mọi đường thẳng … (1,00 điểm) Gọi là đồ thị hàm số (1). Ta thấy thuộc Đường thẳng d đi qua với hệ số góc k (k > – 3) có phương trình : y = kx – k + 2. (C) I(1;2) (C). I(1;2) Hoành độ giao điểm của và d là nghiệm của phương trình(C) 3 2 x 3x 4 k(x 1) 2− + = − + ⇔ 2 (x 1) x 2x (k 2) 0⎡ ⎤− − − + =⎣ ⎦ ⇔ 2 x 1 x 2x (k 2) 0 (*) =⎡ ⎢ − − + =⎣ . 0,50 Do nên phương trình (*) có biệt thức Δ = và không là nghiệm của (*). Suy ra d luôn cắt tại ba điểm phân biệt I( với là nghiệm của (*). k > − x −∞ 0 2 +∞ y’ + 0 − 0 y 4 0−∞ + +∞ 4 −1 O y 2 x (ứng với giao điểm I) 3 + > x ;y ), I ' 3 k 0 x 1= (C) I I A A B BA(x ;y ),B(x ;y ) A Bx ,x Vì và I, A, B cùng thuộc d nên I là trung điểm của đoạn thẳng AB (đpcm). A Bx x 2 2x+ = = 0,50 II 2,00 1 Giải phương trình lượng giác (1,00 điểm) Phương trình đã cho tương đương với 2 4sinx cos x sin2x = 1 + 2cosx+ ⇔ (2cosx 1)(sin2x 1) 0.+ − = 0,50 1 2 cosx x k2 . 2 3 π • = − ⇔ = ± + π sin2x 1 x k . 4 π • = ⇔ = + π Nghiệm của phương trình đã cho là 2 x k2 , 3 π = ± + π x k 4 π = + ).∈π (k 0,50
  3. 3. 2 Giải hệ phương trình (1,00 điểm) Điều kiện : x ≥ 1, y ≥ 0. Hệ phương trình đã cho tương đương với (x y)(x 2y 1) 0 (1) x 2y y x 1 2x 2y (2) + − − =⎧⎪ ⎨ − − = −⎪⎩ Từ điều kiện ta có x + y > 0 nên (1) ⇔ x = 2y + 1 (3). Trang 2/4 0,50 Thay (3) vào (2) ta được (y 1) 2y 2(y 1)+ = + ⇔ y = 2 (do ) ⇒ x = 5.y 1 0+ > Nghiệm của hệ là (x;y) (5;2).= 0,50 III 2,00 1 Viết phương trình mặt cầu đi qua các điểm A, B, C, D (1,00 điểm) Phương trình mặt cầu cần tìm có dạng trong đó2 2 2 x y z 2ax 2by 2cz d 0 (*),+ + + + + + = 2 2 2 a b c d 0 (**).+ + − > Thay tọa độ của các điểm A, B, C, D vào (*) ta được hệ phương trình 6a 6b d 18 6a 6c d 18 6b 6c d 18 6a 6b 6c d 27. + + = −⎧ ⎪ + + = −⎪ ⎨ + + = −⎪ ⎪ + + + = −⎩ 0,50 Giải hệ trên và đối chiếu với điều kiện (**) ta được phương trình mặt cầu là 2 2 2 x y z 3x 3y 3z = 0.+ + − − − 0,50 2 Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC (1,00 điểm) Mặt cầu đi qua A, B, C, D có tâm 3 3 3 I ; ; 2 2 2 ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ . Gọi phương trình mặt phẳng đi qua ba điểm A, B, C là mx ny pz q 0+ + + = 2 2 2 (m n p 0).+ + > Thay tọa độ các điểm A, B, C vào phương trình trên ta được 3m 3n q 0 3m 3p q 0 6m 6n 6p q 0. 3n 3p q 0. + + =⎧ ⎪ + + = ⇒ = = = − ≠⎨ ⎪ + + =⎩ Do đó phương trình mặt phẳng (ABC) là x y z 6 0.+ + − = 0,50 Tâm đường tròn ngoại tiếp tam giác ABC chính là hình chiếu vuông góc của điểm I trên mặt phẳng (ABC). H Phương trình đường thẳng IH : 3 3 x y z 2 2 . 1 1 1 − − − = = 3 2 Tọa độ điểm H là nghiệm của hệ phương trình x y z 6 0 3 3 x y z 2 2 + + − =⎧ ⎪ ⎨ − = − = −⎪⎩ 3 . 2 Giải hệ trên ta được H(2;2;2). 0,50 IV 2,00 1 Tính tích phân (1,00 điểm) Đặt vàu ln x= 3 dx dv x = dx du x ⇒ = và 2 1 v . 2x = − 0,25 Khi đó 2 2 2 3 1 1 ln x dx I 2x 2x = − + ∫ 2 2 1 ln 2 1 8 4x = − − 0,50 3 2ln 2 . 16 − = 0,25
  4. 4. 2 Tìm giá trị lớn nhất và nhỏ nhất của biểu thức (1,00 điểm) Ta có [ ] 22 2 (x y)(1 xy) (x y)(1 xy) 1 1 1 P P (1 x) (1 y) 4 4 4(x y) (1 xy) − − + + = ≤ ≤ ⇔ − ≤ + + + + + Trang 3/4 .≤ 0,50 • Khi thìx 0,y 1= = 1 P . 4 = − • Khi thìx 1,y 0= = 1 P . 4 = Giá trị nhỏ nhất của P bằng 1 , 4 − giá trị lớn nhất của P bằng 1 . 4 0,50 V.a 2,00 1 Tìm n biết rằng…(1,00) Ta có 2n 0 1 2n 1 2n 2n 2n 2n 2n0 (1 1) C C ... C C .− = − = − + − + 2n 2n 0 1 2n 1 2n 2n 2n 2n 2n2 (1 1) C C ... C C .− = + = + + + + 0,50 ⇒ 1 3 2n 1 2n 2n 2n 2nC C ... C 2 .− − + + + = 1 6.Từ giả thiết suy ra 2n 1 2 2048 n− = ⇔ = 0,50 2 Tìm tọa độ đỉnh C ...(1,00 điểm) Do B,C thuộc (P), B khác C, B và C khác A nên 2 b B( ;b), 16 2 c C( ;c) 16 với b, c là hai số thực phân biệt, b 4≠ và c 4.≠ 2 2 b c AB 1;b 4 , AC 1;c 4 . 16 16 ⎛ ⎞ ⎛ = − − = − −⎜ ⎟ ⎜ ⎝ ⎠ ⎝ ⎞ ⎟ ⎠ Góc nêno BAC 90= AB.AC 0= ⇔ 2 2 b c 1 1 (b 4)(c 4) 16 16 ⎛ ⎞⎛ ⎞ − − + − −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ 0= ⇔ (1).272 4(b c) bc 0+ + + = 0,50 Phương trình đường thẳng BC là: 2 2 2 c x y c16 b c b c 16 16 − − = − − 16x (b c)y bc 0⇔ − + + = (2). Từ (1), (2) suy ra đường thẳng BC luôn đi qua điểm cố định I(17; 4).− 0,50 V.b 2,00 1 Giải bất phương trình logarit (1,00 điểm) Bpt đã cho tương đương với 2 x 3x 2 0 1 x − + < ≤ . 0,50 2 0 x 1x 3x 2 0 x 2.x < <⎡− + • > ⇔ ⎢ >⎣ 2 x 0x 4x 2 0 x 2 2 x 2 2 <⎡− + • ≤ ⇔ ⎢ − ≤ ≤ +⎣ . Tập nghiệm của bất phương trình là : ) (2 2 ;1 2;2 2 .⎡ ⎤− ∪ +⎣ ⎦ 0,50
  5. 5. 2 Tính thể tích khối lăng trụ và khoảng cách giữa hai đường thẳng (1,00 điểm) Từ giả thiết suy ra tam giác ABC vuông cân tại B. Thể tích khối lăng trụ là 2 3 ABC.A'B'C' ABC 1 2 V AA'.S a 2. .a 2 2 = = = Trang 4/4 a (đvtt). 0,50 A' B' B M E C A C' Gọi E là trung điểm của BB Khi đó mặt phẳng (AME) song song với nên khoảng cách giữa hai đường thẳng AM, bằng khoảng cách giữa và mặt phẳng (AME). '. B'C B'C B'C Nhận thấy khoảng cách từ B đến mặt phẳng (AME) bằng khoảng cách từ C đến mặt phẳng (AME). Gọi h là khoảng cách từ B đến mặt phẳng (AME). Do tứ diện BAME có BA, BM, BE đôi một vuông góc nên 0,50 2 2 2 2 1 1 1 1 h BA BM BE = + + 2 2 2 2 1 1 4 2 h a a a = + + = 2 7 a a 7 h . 7 ⇒ =⇒ a 7 . 7 Khoảng cách giữa hai đường thẳng và AM bằngB'C NÕu thÝ sinh lµm bµi kh«ng theo c¸ch nªu trong ®¸p ¸n mµ vÉn ®óng th× ®−îc ®ñ ®iÓm tõng phÇn nh− ®¸p ¸n quy ®Þnh. ----------------Hết----------------

×