Start
Entdecken
Suche senden
Hochladen
Einloggen
Registrieren
Anzeige
Check these out next
Sched lgullll
Pablo Guzmán
Viva
Danilo Martins
Eula
MariaClara88
Slow
Benny Michel Ruruzuye
Sysinfo
Nadia Elise
Wpi log 2013.06.08_16.30.45
aracely-lahermosa
Purchased
94240577
R000000000005 uj
URBANSWAG
1
von
44
Top clipped slide
On the Value of User Preferences in Search-Based Software Engineering:
25. Nov 2012
•
0 gefällt mir
1 gefällt mir
×
Sei der Erste, dem dies gefällt
Mehr anzeigen
•
801 Aufrufe
Aufrufe
×
Aufrufe insgesamt
0
Auf Slideshare
0
Aus Einbettungen
0
Anzahl der Einbettungen
0
Jetzt herunterladen
Downloaden Sie, um offline zu lesen
Melden
Bildung
Tim Menzies, Abdel Salam Sayyad, Hany Ammar
CS, NcState
Folgen
Associate Professor um CS, NcState
Anzeige
Anzeige
Anzeige
Recomendados
A filosofia da caixa preta - Vilém Flusser
Debora Mangrich
1.8K Aufrufe
•
48 Folien
Antiinflamatoriosesteroideos
Mario Lopez
298 Aufrufe
•
6 Folien
Sched lgu
Hong Ngoc Huynh
142 Aufrufe
•
10 Folien
Sched lgu
trustitrusti
222 Aufrufe
•
10 Folien
C
Animesh Ghosh
231 Aufrufe
•
79 Folien
Sched lgu
chupacabra123h
380 Aufrufe
•
10 Folien
Más contenido relacionado
Presentaciones para ti
(17)
Sched lgullll
Pablo Guzmán
•
153 Aufrufe
Viva
Danilo Martins
•
105 Aufrufe
Eula
MariaClara88
•
119 Aufrufe
Slow
Benny Michel Ruruzuye
•
138 Aufrufe
Sysinfo
Nadia Elise
•
223 Aufrufe
Wpi log 2013.06.08_16.30.45
aracely-lahermosa
•
488 Aufrufe
Purchased
94240577
•
198 Aufrufe
R000000000005 uj
URBANSWAG
•
75 Aufrufe
Sched lgu
nutacthuthu
•
154 Aufrufe
Install
trungtrau
•
85 Aufrufe
Wpi log 2012.06.26_17.19.20
HugoPaco
•
156 Aufrufe
Proxy
surender2201
•
152 Aufrufe
Forti client00000
Alexandre-Toffalini
•
178 Aufrufe
Script
fjlainfo
•
71 Aufrufe
Cybersecurity200
Brent Harrell
•
89 Aufrufe
Otl
Juan Domínguez Ramírez
•
325 Aufrufe
Play claw
Nikolas Aguilera
•
411 Aufrufe
Similar a On the Value of User Preferences in Search-Based Software Engineering:
(20)
Fraglist
CaitlinR
•
89 Aufrufe
DEF CON 24 - Six Volts and Haystack - cheap tools for hacking heavy trucks
Felipe Prado
•
18 Aufrufe
Música
Danilo Martins
•
373 Aufrufe
Xirrus Corporate Brochure
Emanuel Barradas Curto
•
1.1K Aufrufe
Volumen c final
jhurtado2013
•
92 Aufrufe
Avseq01.dat
Ngoc Pham
•
198 Aufrufe
Vid 00020 20120316-0350.3 gp
Gina Paola Paez Gaviria
•
125 Aufrufe
Opun principles training enabling finalpptx
OPUNArch
•
378 Aufrufe
Install
murciadmg
•
2 Aufrufe
Driver whiz serial_key_download
DANIELFIVE
•
238 Aufrufe
Driver whiz serial_key_download
DANIELFIVE
•
145 Aufrufe
Tgcmlog
jjpf_1977
•
139 Aufrufe
Informe
Jaaz Martinez
•
105 Aufrufe
Wpi log 2013.06.08_16.30.45
aracely-lahermosa
•
420 Aufrufe
Closing the Wealth Gap
ScaleUp Partners LLC
•
683 Aufrufe
4.mpg.media info
muhd nor rahimin
•
64 Aufrufe
4.mpg.media info
muhd nor rahimin
•
61 Aufrufe
Gannt chart (to do list)
Confidential
•
468 Aufrufe
Songs
Massiel Espinoza
•
363 Aufrufe
Frame tech onsite_seo
John Stephenson
•
40 Aufrufe
Anzeige
Más de CS, NcState
(20)
Talks2015 novdec
CS, NcState
•
1.1K Aufrufe
Future se oct15
CS, NcState
•
1.4K Aufrufe
GALE: Geometric active learning for Search-Based Software Engineering
CS, NcState
•
1.7K Aufrufe
Big Data: the weakest link
CS, NcState
•
1K Aufrufe
Three Laws of Trusted Data Sharing:(Building a Better Business Case for Dat...
CS, NcState
•
957 Aufrufe
Lexisnexis june9
CS, NcState
•
4K Aufrufe
Welcome to ICSE NIER’15 (new ideas and emerging results).
CS, NcState
•
1.2K Aufrufe
Icse15 Tech-briefing Data Science
CS, NcState
•
1.5K Aufrufe
Kits to Find the Bits that Fits
CS, NcState
•
1.7K Aufrufe
Ai4se lab template
CS, NcState
•
408 Aufrufe
Automated Software Enging, Fall 2015, NCSU
CS, NcState
•
1.3K Aufrufe
Requirements Engineering
CS, NcState
•
2K Aufrufe
172529main ken and_tim_software_assurance_research_at_west_virginia
CS, NcState
•
1.8K Aufrufe
Automated Software Engineering
CS, NcState
•
1.2K Aufrufe
Next Generation “Treatment Learning” (finding the diamonds in the dust)
CS, NcState
•
723 Aufrufe
Tim Menzies, directions in Data Science
CS, NcState
•
1.1K Aufrufe
Goldrush
CS, NcState
•
624 Aufrufe
Dagstuhl14 intro-v1
CS, NcState
•
741 Aufrufe
Know thy tools
CS, NcState
•
653 Aufrufe
The Art and Science of Analyzing Software Data
CS, NcState
•
4.2K Aufrufe
Último
(20)
Prescription
AdityaShrivastava37874
•
0 Aufrufe
XAT 2022 Question Paper.pptx
RajneeshTripathi13
•
0 Aufrufe
central dogma1.ppt
Nafeesa47
•
0 Aufrufe
CAT 2022 SLOT-1 Question Paper.pptx
RajneeshTripathi13
•
0 Aufrufe
Alpha1.pdf
testleader1
•
0 Aufrufe
JIPMAT 2021 Question paper.pptx
RajneeshTripathi13
•
0 Aufrufe
moral coaching institute pdf..pdf
cbsepatrachar1
•
0 Aufrufe
Reaksi korosi akibat chloride.docx
asif501338
•
0 Aufrufe
tenses.ppt
ayadiyusmar
•
0 Aufrufe
8b-EnzymeKinetics-Spec.pdf
Daud Khan
•
0 Aufrufe
Final Group assignment Electrolytes Tests.pptx
KhadiraMohammed
•
0 Aufrufe
some fact about english language
VivekDabolkar
•
0 Aufrufe
Images for M1
ScottSilver26
•
0 Aufrufe
moral coaching institute pdf
cbsepatrachar1
•
0 Aufrufe
POPULATION STRUCTURE PPT.pptx
ShivshankarLoniya
•
0 Aufrufe
Lecture No 1.ppt
HanifullahJan1
•
0 Aufrufe
CMAT 2021 Question Paper.pptx
RajneeshTripathi13
•
0 Aufrufe
CH13.PPT
jafyu
•
0 Aufrufe
XAT 2023 Question Paper.pptx
RajneeshTripathi13
•
0 Aufrufe
G4 Reading Comprehension.pdf
The Institute of ELC
•
0 Aufrufe
Anzeige
On the Value of User Preferences in Search-Based Software Engineering:
On#the#Value#of#User#Preferences#in# Search4Based#So7ware#Engineering:## A#Case#Study#in#So7ware#Product#Lines##
# Tim#Menzies,## Abdel#Salam#Sayyad,# Hany#Ammar# # WVU,#USA# Nov’12## #
Sound#bites# • The#new#age#of#the#app#
# • Stop#Nnkering#with#small#stuff# # • Enough#with#the#usual#suspects:## – NSGA4II,#SPEA2,#etc# # • If#preferences#maSer# – Then#the##best#opNmizer#understands#preferences#the#best# 2#
Roadmap# ①
Feature(based,SE, ② Algorithms, ③ IBEA, ④ Tree,muta<on, ⑤ Conclusion, #
Roadmap# ①
Feature(based,SE, ② Algorithms, ③ IBEA, ④ Tree,muta<on, ⑤ Conclusion, #
WELCOME,TO,, THE,NEW,WORLDE,, ,
5#
The#Nmes,#they#are#a#changing#
Olde,worlde:,, New,worlde:,, product(based,SE, app(based,SE,, e.g.#Microso7#office# • E.g.#Apple#app#store# 6#
The#Nmes,#they#are#a#changing#
Olde,worlde:,, New,worlde:,, product(based,SE, app(based,SE,, • Vendors#tried#to#retain#their# • Smart#phones#and#tablet4 user#base#via#some# based#so7ware# complete#ecologies# # # • Users#choosing#many# numbers#of#small#apps#from# • One#so7ware#soluNon#for# different#vendors,## all#user#needs###(e.g.# – each#performing#a#specific# Microso7#Office).## small#task.# # # • Large,#complex,#so7ware# • Vendors#must#quickly#and# plaorms,## conNnually#reconfigure#apps## – To#retain#and#extend#their# – very#slow#to#change.## customer#base.# 7#
Feature–oriented#domain#analysis# • Feature#maps#=#a#
lightweight#method#for# defining#a#space#of##opNons# • Product4line#configuraNons# • Defacto#standard#for# modeling#variability## 8#
Original#FODA#paper#:#2700+#citaNons#
Half#since# 2007# 9#
hSp://www.splot4research.org/#
200+#models,##plus#an#instance#generator# 10#
LINUX#kernel#=#6000+#features# 86%#declare#constraints#of#some#sort,## Most#features#refer#to#244#other#features.## #
11#
Need#for#beSer#automaNon# • Such#complexity#needs#automated#support#
– especially##feature#models##combined#with# • #user#preferences#and#prioriNes,#e.g.#cost#and#reliability.## Search#for#valid#products:## 9#state#of#the#art#theorem# provers##[Pohl,#ASE’11]# # Bad## scalability# And#these#were# “simple”#models# 12#
Diving##deeper# • Much#prior#work#explored##
Nny#objecNve#spaces## – Two#or#three#objecNves# – Or,#higher#(but#only#for#small#models)# # # # • So7ware#engineering#=#navigaNng#compeNng#concerns# 1. That#saNsfies#most#domain#constraints#(0#≤###violaNons#≤#100%)# The# usual# 2. That#offers#most#features# suspects# 3. Build#“stuff”#In#least#Nme# 4. That#we#have#used#most#before# 13# 5. Using#features#with#least#known#defects#
Roadmap# ①
Feature(based,SE, ② Algorithms, ③ IBEA, ④ Tree,muta<on, ⑤ Conclusion, #
MOEA=#MulN4objecNve###
evoluNonary#algorithms####################### • Repeat#Nll#happy#or#exhausted# – SelecNon#(cull#the#herd)# – Cross4over#(the#rude#bit)# – MutaNon#(stochasNc#jiggle)# 15#
Some#MOEA#ApplicaNon# Domain
Application Types Control gas pipeline, pole balancing, missile evasion, pursuit Design semiconductor layout, aircraft design, keyboard configuration, communication networks Scheduling manufacturing, facility scheduling, resource allocation Robotics trajectory planning Machine Learning designing neural networks, improving classification algorithms, classifier systems Signal Processing filter design Game Playing poker, checkers, prisoner’s dilemma Combinatorial set covering, travelling salesman, routing, bin packing, Optimization graph colouring and partitioning
MOEA#for#Search4based#SE# TransformaNon
#Cooper,#Ryan,#Schielke,#Subramanian,#FaNregun,#Williams# Requirements## #Bagnall,#Mansouri,#Zhang# Effort#predicNon# #Aguilar4Ruiz,#Burgess,#Dolado,#Lefley,#Shepperd## Management # #Alba,#Antoniol,#Chicano,#Di#Pentam#Greer,#Ruhe# Heap#allocaNon #Cohen,#Kooi,#Srisa4an## Regression#test #Li,#Yoo,#Elbaum,#Rothermel,#WalcoS,#Soffa,#Kampxamer## SOA## # # #Canfora,#Di#Penta,#Esposito,#Villani## Refactoring # #Antoniol,#Briand,#Cinneide,#O’Keeffe,#Merlo,#Seng,#TraS# Test#GeneraNon #Alba,#Binkley,#BoSaci,#Briand,#Chicano,#Clark,#Cohen,#Gutjahr,## ## # # #Harrold,#Holcombe,#Jones,#Korel,#Pargass,#Reformat,#Roper,#McMinn,# ## # # #Michael,#Sthamer,#Tracy,#Tonella,Xanthakis,#Xiao,#Wegener,#Wilkins# Maintenance # #Antoniol,#Lutz,#Di#Penta,#Madhavi,#Mancoridis,#Mitchell,#Swi7# Model#checking #Alba,#Chicano,#Godefroid# Probing # # #Cohen,#Elbaum## UIOs# # # #Derderian,#Guo,#Hierons# So#study#FODA4# Comprehension #Gold,#Li,#Mahdavi# to#learn#how#to# Protocols# # #Alba,#Clark,#Jacob,#Troya# improve#these# Component#sel #Baker,#SkalioNs,#Steinhofel,#Yoo# tasks.# Agent#Oriented #Haas,#Peysakhov,#Sinclair,#Shami,#Mancoridis# 17#
Much#increased#interest## in#Search4based#SE#
18#
The#Pareto#FronNer# • Mutants#=#<D,O>#=#<decisions,#objecNves>#
– E.g.#car# • Decisions:#color#of#car,#number#of#cylinders,#number#of#wheels# • ObjecNves:#miles#per#hour,#cost##(objecNves#may#complete)# – E.g.#learning#formula# • Decisions:#what#variables#and#constants#to#use# • ObjecNves:#model#simplicity#vs#effecNveness#(objecNves#may# complete)# • Pareto#fronNer:#select#the#non4dominated#mutants# – X#dominates#Y## • if#for#all#objecNves,##X#is#never#any#worse##than#Y# • If#for#one#objecNve,#X#beSer#than#Y# 19#
Once#you#know#fronNer#
•#Select#from#here# Issues:# •#Ignore#here# 1) Spread# 2) Hypervolume# 3) ComputaNonal#cost:##“g”##generaNons,#M#mutants,#O(gM2)# 20#
The#usual#suspects:#
##=#NSGA4II### #=#SPEA2# In#this#case,#NSGA4II# gets#more#spread# Combines#N#objecNves## to#one##with#some## weighNng#scheme# 21#
Some#details#on#the#usual#suspects# NSGA(II,,
SPEA2,, • Is#a#geneNc#algorithm# • Is#a#geneNc#algorithm# # # • Changes#the#definiNon#of# • Non4dominated#sort# “dominaNon”# – HeurisNc#way#to#fast#group# – SPEA#(version#1)#scored#mutants#by# mutants#into#bands# how#many#others#they#dominated# # – Got#confused#by#overlaps#in#the# dominaNon#sets# • Crowd#pruning##via#approximate# # hypercube#around#each#mutant:# • SPEA#(version#2):# O(Onlogn)# – Adds#a#“local#density#factor”#to#the# dominaNon#weight# 3# – Mutants#in#dense#areas#valued## 2# more# ## 1# • SPEA2#beSer#than#SPEA1# 2# 22#
Any#number#of#opNmizaNons##
to#tradiNonal#GAs# • The#history#of#MOEAs#in#the#last# • DifferenNal#evoluNon#(Storn#1996)# 15#years#is# – Mutate#by#interpolaNons#between# – OpNmize#via#hybrid#GA#+#other# exisNng#mutants# search#method# # – For#x#in#mutants## ####y#=#any1#+#extrapolate(any3#–#any2)# • Local#search:## ####if#y#dominates#x#then#x#=#y# – before#select,#do#a#liSle#simulated# # annealing#on#X%#of#the#populaNon# # • Cellular#automata,# • ScaSer#search#(Glover’s#next# • #Ant#colony#opNmizaNon,#### generaNon#tabu#search)# – Includes#a#liSle#local#search# • Bayesian#staNsNcs#to#bias#the# # mutaNon,## • ParNcle#swam#opNmizaNon# • Etc## – May#do#as#well#as#scaSer#search##(Yin# • etc# and#Glover#2007)# 23#
Roadmap# ①
Feature(based,SE, ② Algorithms, ③ IBEA, ④ Tree,muta<on, ⑤ Conclusion, #
Three#groups#of#Algorithms# DominaNon#
DominaNon# Is#a#binary# PSO# Is#a#conNnuous# concept# concept# DE# ScaSer## IBEA# Spea2# search# Aggressive# exploraNon# Indicator4based## of#preference## SA# evoluNonary# space# Nsga4II# algorithms# mocell# Z3# SMT#solvers# 25#
IBEA# • Bo#smarts#anywhere#except#in#the#exploraNon#of#preferences# • I(x1,x2):#
– Least#adjust#objecNve#scores#such#that#x1#dominates#x2# • Repeat#Nll#just#a#few#le7# – Score#each#instance#x1##buy#summing#its#“I”#to#everyone#else# # K=# # 0.05# # # # # – Sort#all#instances#by#F# – Delete#worst# • Then,#standard#GA#(cross4over,#mutaNon)#on#the#survivors# ## 26#
Case#studies# Data#from#hSp://www.splot4research.org/# Algorithms#from#jMetal:#hSp://jmetal.sourceforge.net/##
Cross4tree# constraints# 27#
4#studies:#
Bi,#tri,#quad,#five4#objecNves# So7ware#engineering#=#navigaNng#compeNng#concerns# 1. That#saNsfies#most#domain#constraints#(0#≤###violaNons#≤# 100%)# 2. That#offers#most#features# 3. Build#“stuff”#In#least#Nme# 4. That#we#have#used#most#before# 5. Using#features#with#least## known#defects# # # Binary#objecNves#=#1,2# Tri4objecNve#########=#1,2,3# Quad4objecNve####=#1,2,3,4# Five4objecNve######=#1,2,3,4,5# 28#
# HV#############=#hypervolume#of#dominated#region# Spread######=#coverage#of#fronNer# %#correct#=#%constraints#saNsfied#
29#
# HV#############=#hypervolume#of#dominated#region# Spread######=#coverage#of#fronNer# %#correct#=#%constraints#saNsfied# Comment,1:,all#about#the#same#for#the#24objecNve#problem#
30#
# HV#############=#hypervolume#of#dominated#region# Spread######=#coverage#of#fronNer# %#correct#=#%constraints#saNsfied# Comment,2:,E4shop#is#a#nasty#problem:#needs#50M#evals#
31#
# HV#############=#hypervolume#of#dominated#region# Spread######=#coverage#of#fronNer# %#correct#=#%constraints#saNsfied# Comment,3:,IBEA#has#no#spread#operators,#but#gets#best#spread#32#
# HV#############=#hypervolume#of#dominated#region# Spread######=#coverage#of#fronNer# %#correct#=#%constraints#saNsfied# Comment,4:,IBEA#has#no#HV#operators,#but#usually#gets#best#HV#33#
# HV#############=#hypervolume#of#dominated#region# Spread######=#coverage#of#fronNer# %#correct#=#%constraints#saNsfied# Comment,5:,All#the#non4IBEA#algorithms#are#very#similar#
34#
# HV#############=#hypervolume#of#dominated#region# Spread######=#coverage#of#fronNer# %#correct#=#%constraints#saNsfied# Comment,6:,IBEA#does#much,#much##beSer#on#constraints#
35#
Why#is#this#interesNng?# Other,MOEAs,
IBEA, • The#usual#suspects#are#widely,# • Rather#stupid#on#those# uncriNcally#used#in#many#MOEA# applicaNons# internal#tricks# – E.g.#especially#NSGA4II#and#SPEA2# – Just#does#a#ye#olde#crossover# • Focused#on#internal#algorithmic# mutate#GA# tricks# – Plus:#aggressive#exploraNon# – Techniques#for# of#the#preference#space# • #improving#spread## • Improving#HV# • And#the#net#effect#of#all# • Avoid#overlaps#in#cross4over#of# dominated#space# those#differences# • etc# – BeSer#spreads# • And#the#net#effect#of#all#those# – BeSer#HV# differences?# – Not#much# – Fewer#constraint#violaNons# Conclusion:# preference#is#power# 36#
Roadmap# ①
Feature(based,SE, ② Algorithms, ③ IBEA, ④ Tree,muta<on, ⑤ Conclusion, #
What#about#non4MOEA#soluNons?# DominaNon#
DominaNon# Is#a#binary# PSO# Is#a#conNnuous# concept# concept# DE# ScaSer## IBEA# Spea2# search# Aggressive# exploraNon# Indicator4based## of#preference## SA# evoluNonary# space# Nsga4II# algorithms# mocell# Z3# SMT#solvers# 38#
Ethan’s#complaint# • So7ware#engineer##
designs#are#o7en## nested#hierarchical## constraints# • Ethan#Jackson,#Microso7,## advocate#for#the#Z3#SMT#solver:# – Why#mutate#at#random,#then#check#for# constraint?# – BeSer#to#drive#the#mutaNons#by#the# constraints?# 39#
Dump#MOEAs?##
Move#to#more#logical#forms?# Pro:, Con:, move,to,,say,,SMT,solvers, stay,with,MOEA, • Next#generaNon#of# • ImplementaNon#complexity# algorithm# less# – The#next#big#thing# • More#tools# • BeSer#to#drive#the# • Easier#modificaNon#and# mutaNons#by#the# experimentaNon# constraints?# • Models#can#be#expressed# anyway#you#like# 40#
Tree#mutaNon# •
Work#in#progress# • Simple#adaptaNon#of#current#MOEAs#for#systems# of#hierarchical#constraints# # if#rand(0,1)<#mutaNon_probability:### #########Don't#mutate#if#you're#violaNng#one#of#the#rules:# # #1)#if#deselecNng#root#feature# # #2)#if#selecNng#feature#whose## ##########################parent#is#not#selected# # #3)#if#deselecNng#feature#that# #########################another#selected#feature#requires# # #4)#if#group#cardinality#violaNon# #else:# # #flip#this#bit# # # ##### # # #if#selecNng#(turning#on)#a#feature#then# # # # #turn#on#children### IBEA# # # #else#if#deselecNng#(turning#off)# stabilizes#70# #######################################feature#then:# Nmes#faster# # # ######### #########turn#off#all#children# 41#
Tree#mutaNon#preserves## domain#constraints#
So#what## case#for# SMT?# 42#
Roadmap# ①
Feature(based,SE, ② Algorithms, ③ IBEA, ④ Tree,muta<on, ⑤ Conclusion, #
Sound#bites# • The#new#age#of#the#app#
– In,this,new,worlde:,,use,FODA, (feature(oriented,domain,analysis), • Stop#Nnkering#with#small#stuff## – Many,MOEAs,have,strikingly,, similar,performance, • Enough#with#the#usual#suspects:## – NSGA4II,#SPEA2,#etc# – Too,much,uncri<cal,applica<on,of,these,algorithms, • If#preferences#maSer# – Then#the##best#opNmizer#understands##preferences#the#best# – IBEA:,aggressive,preference,explora<on, – Tree,muta<on:,respect,your,domain, 44#
Anzeige