SlideShare verwendet Cookies, um die Funktionalität und Leistungsfähigkeit der Webseite zu verbessern und Ihnen relevante Werbung bereitzustellen. Wenn Sie diese Webseite weiter besuchen, erklären Sie sich mit der Verwendung von Cookies auf dieser Seite einverstanden. Lesen Sie bitte unsere Nutzervereinbarung und die Datenschutzrichtlinie.
SlideShare verwendet Cookies, um die Funktionalität und Leistungsfähigkeit der Webseite zu verbessern und Ihnen relevante Werbung bereitzustellen. Wenn Sie diese Webseite weiter besuchen, erklären Sie sich mit der Verwendung von Cookies auf dieser Seite einverstanden. Lesen Sie bitte unsere unsere Datenschutzrichtlinie und die Nutzervereinbarung.
Veröffentlicht am
Extracting insights out of continuously generated data requires a stream processor with powerful data analytics features such as Apache Flink. A stream data pipeline with Flink typically includes a storage component to ingest and serve the data. Pravega is a stream store that ingests and stores stream data permanently, making the data available for tail, catch-up, and historical reads. One important challenge for such stream data pipelines is coping with the variations in the workload. Daily cycles and seasonal spikes might require the provisioning of the application to adapt accordingly. Pravega has a feature called stream scaling, which enables the capacity offered for the ingestion of events of a stream to grow and shrink over time according to workload. Such a feature is useful when the application downstream has the ability of accommodating such changes and also scale its provisioning accordingly. In this presentation, we introduce stream scaling in Pravega and how Flink jobs leverage this feature to rescale stateful jobs according to variations in the workload.
Sie haben diese Folie bereits ins Clipboard „“ geclippt.
Loggen Sie sich ein, um Kommentare anzuzeigen.