Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Compressive Sensing Basics - Medical Imaging - MRI

2.528 Aufrufe

Veröffentlicht am

Compressed sensing basics
Medical imaging use of compressive sensing - MRI

Veröffentlicht in: Gesundheit & Medizin
  • Als Erste(r) kommentieren

  • Gehören Sie zu den Ersten, denen das gefällt!

Compressive Sensing Basics - Medical Imaging - MRI

  1. 1. S Compressive Sensing Stefani Thomas MD 2014
  2. 2. Compressive Sensing S Exponential growth of data S 48h of video uploaded/min on Youtube S 571 new websites/min S 100 Terabytes of dada uploaded on facebook/day S How to cope with that amount S Compression S Better sensing of less data
  3. 3. Compressive Sensing S0 Sensing Recovery Noise x ˆs Measured signal Unknown signal
  4. 4. . . . . . . s0 æ è ç ç ç ç ç ç ç ç ö ø ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ® N*N y . . . . . . u0 æ è ç ç ç ç ç ç ç ç ö ø ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ® M*N F . . . x é ë ê ê ê ê ù û ú ú ú ú ® L0 . . . . . . ˆu æ è ç ç ç ç ç ç ç ç ö ø ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ® N*N C . . . . . . ˆs æ è ç ç ç ç ç ç ç ç ö ø ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ Compressive Sensing
  5. 5. S Shanon’s sampling theorem S Full recovery under Nyquist sampling frequency? S Yes if fulfilling 3 criteria S Sparsity S Incoherence S Non linear reconstruction Compressive Sensing
  6. 6. Compressive Sensing S0 Sensing Recovery Noise x ˆs Sparse signal Incoherence Non-linear reconstruction
  7. 7. Sparsity S Desired signal has a sparse representation in some domain D S x of length N S x is K sparse S x has K non zeros components in D S Can be reconstructed using only M measurments (K<M<N) Wavelet transform
  8. 8. Incoherence S Random subsampling must show “noise-like” pattern in the transform domain S Undersampling introduces noise S Randomly undersampled Fourier space is incoherent
  9. 9. Non linear reconstruction S L0 norm highly non convex and NP hard S I
  10. 10. Non linear reconstruction S L2 norm minimize energy not sparsity S I +
  11. 11. Non linear reconstruction S L1 norm is convex ! S I +
  12. 12. S RIP 1-eK( ) £ Ax 2 2 x 2 2 £ 1+eK( ) Restricted Isometry Property
  13. 13. S If Φis a M x N Gaussian matrix S M > O ( Klog(N)) S If Ψ is a N x N sparsifying basis S  ΦΨ satisfies the RIP condition Restricted Isometry Property M.Rudelsonand, R.Vershynin, “On sparse reconstruction from Fourier and Gaussian measurements,” Commun. Pure Appl. Math., vol. 61, no. 8, pp. 1025–1045, 2008.
  14. 14. S Gerhard Richter (1024 colours - 1974) Restricted Isometry Property
  15. 15. Measurements required S How many measurements required S M ≥ K+1 S Only if S No noise S Real sparse signal S But S NP hard problem (exponential numbers of subsets)
  16. 16. Compressive Sensing - MRI Acquisition Space = k-space Reconstructed image
  17. 17. Compressive Sensing Recovery Noise x MRI
  18. 18. Compressive Sensing Recovery Noise x MRI Not Sparse !
  19. 19. Compressive Sensing x MRI Not Sparse ! Wavelet Domain it is !
  20. 20. Compressive Sensing Recovery Noise x MRI Sparse signal
  21. 21. Compressive Sensing Noise like pattern Noise x MRI Sparse signal
  22. 22. Compressive Sensing Recovery Noise x MRI Sparse signal Incoherence
  23. 23. . . . . . . s0 æ è ç ç ç ç ç ç ç ç ö ø ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ® N*N y . . . . . . u0 æ è ç ç ç ç ç ç ç ç ö ø ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ® M*N F . . . x é ë ê ê ê ê ù û ú ú ú ú ® L0 . . . . . . ˆs æ è ç ç ç ç ç ç ç ç ö ø ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ® N*N C . . . . . . ˆu æ è ç ç ç ç ç ç ç ç ö ø ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ Compressive Sensing - MRI
  24. 24. Compressive Sensing - MRI S Real life example S T2 SE matrix 512x512 : duration S T2 SE CS : duration
  25. 25. S DFT X=Wx Im Re Direct Fourier Transform
  26. 26. S DFT X=Wx Direct Fourier Transform
  27. 27. S Random Fourier matrix satisfies the RIP condition: S M randomly chosen columns of NxN DFT matrix S M = O ( K.log (N) ) Direct Fourier Transform M.Rudelsonand, R.Vershynin, “On sparse reconstruction from Fourier and Gaussian measurements,” Commun. Pure Appl. Math., vol. 61, no. 8, pp. 1025–1045, 2008.

×