SlideShare ist ein Scribd-Unternehmen logo

Der Wert von Daten in Zeiten von "Big Data"

Thilo Stadelmann
Thilo Stadelmann
Thilo StadelmannAssociate Professor ("Dozent") bei ZHAW School of Engineering um ZHAW School of Engineering

Im Vortrag wird aufgezeigt, dass der Wert von Daten im "Big Data" Zeitalter nicht an den 3 Vs (Volumen, Geschwindigkeit, Vielseitigkeit) liegt, sondern an den damit möglichen besseren Entscheidungen, basierend auf dem veränderten Denken, dass Daten für alle Entscheidungen verfügbar und auswertbar sind. Daraufhin wird auf die veränderten Anforderungen bzgl. Mitarbeitern (Data Scientists) und Produkten (Data Products) eingegangen, um als Unternehmen von diesem Wert zu profitieren. Schliesslich werden aktuelle Trends aus der Forschung vorgestellt in den Bereichen Datenhaltung (NoSQL löst RDMBS nicht ab, sondern ergänzt das Portfolio) sowie Datenauswertung (Deep Learning ermöglicht nahezu übermenschliche Leistung in komplexen Problemdomänen).

Der Wert von Daten in Zeiten von "Big Data"

1 von 20
Downloaden Sie, um offline zu lesen
Zürcher Fachhochschule
Der Wert von Daten in Zeiten von Big Data
Microsoft Vision Days, 21.01.2016
Thilo Stadelmann
Zürcher Fachhochschule
2
Wert  Anforderungen  Trends
1Der Wert von Daten
Zürcher Fachhochschule
3
«Data is the new oil»
(Clive Humby, ANA Senior marketer’s summit, 2006)
Wenn Daten der neue Rohstoff sind…
• Für wen haben sie dann Wert?
• Worin besteht dieser Wert?
Zürcher Fachhochschule
4
(D. Laney, “3D Data Management: Controlling Data Volume, Velocity and Variety“. Gartner, 2001.)
Der quantifizierbare Wert von Big Data
 Big Oil
 Big Tobacco
 Big Pharma
 …
 Big Data?
Big
Data
Volume
Variety
…
Velocity
Zürcher Fachhochschule
5
Big Data – eine grosse Veränderung
Es geht nicht um 3/4/… V’s.
Es geht um eine generelle Änderung der Denkweise
• Daten sind verfügbar (kostengünstig, für jedes Faktum des Lebens)
• Wir können daraus Lernen (automatisiert, prozessintegriert)
(Michael Natusch @ SDS|2014)
 Bessere Entscheidungen haben einen messbaren Wert
Zürcher Fachhochschule
6
Der Wert von Daten
…am Beispiel Twitter Inc.
Gesellschaftlich
«Results shown here are impressive,
showing that Twitter data can be
used to detect and possibly
track Influenza like epidemics
in real time.»
(Herland et al., "A review of data mining using big data in health
informatics”, Journal of Big Data, 2014, 1:2)
Börsennotiert
Gesamtbewertung von knapp 21.3 Mrd. $
Anzeige

Recomendados

Wie die Swiss Alliance for Data-Intensive Services datenbasierte Mehrwerte sc...
Wie die Swiss Alliance for Data-Intensive Services datenbasierte Mehrwerte sc...Wie die Swiss Alliance for Data-Intensive Services datenbasierte Mehrwerte sc...
Wie die Swiss Alliance for Data-Intensive Services datenbasierte Mehrwerte sc...Thilo Stadelmann
 
Mgrani trier-faktenextraktion
Mgrani trier-faktenextraktionMgrani trier-faktenextraktion
Mgrani trier-faktenextraktionMichaelGranitzer
 
Data Science - (K)eine Teenagerliebe
Data Science - (K)eine TeenagerliebeData Science - (K)eine Teenagerliebe
Data Science - (K)eine TeenagerliebeThilo Stadelmann
 
Was denken denkende Maschinen?
Was denken denkende Maschinen?Was denken denkende Maschinen?
Was denken denkende Maschinen?Thilo Stadelmann
 
Deep Learning @ ZHAW Datalab (with Mark Cieliebak & Yves Pauchard)
Deep Learning @ ZHAW Datalab (with Mark Cieliebak & Yves Pauchard)Deep Learning @ ZHAW Datalab (with Mark Cieliebak & Yves Pauchard)
Deep Learning @ ZHAW Datalab (with Mark Cieliebak & Yves Pauchard)Thilo Stadelmann
 

Más contenido relacionado

Destacado

MASTER Executive MBA. ESTEMA Escuela de Negocios.
MASTER Executive MBA. ESTEMA Escuela de Negocios.MASTER Executive MBA. ESTEMA Escuela de Negocios.
MASTER Executive MBA. ESTEMA Escuela de Negocios.ESTEMA
 
Escoitar.org por Chiu Longina
Escoitar.org por Chiu LonginaEscoitar.org por Chiu Longina
Escoitar.org por Chiu LonginaChiu Longina
 
Kfl suggestions akhil
Kfl suggestions akhilKfl suggestions akhil
Kfl suggestions akhilAkhil Nair
 
Latin Link Brochure - Scientific
Latin Link Brochure - ScientificLatin Link Brochure - Scientific
Latin Link Brochure - ScientificLuke Sewell
 
Apple tv development Meetup - Montevideo Uruguay
Apple tv development Meetup - Montevideo  UruguayApple tv development Meetup - Montevideo  Uruguay
Apple tv development Meetup - Montevideo UruguayGlobant
 
Bilingüismo en la ESO - Comunidad de Madrid
Bilingüismo en la ESO - Comunidad de MadridBilingüismo en la ESO - Comunidad de Madrid
Bilingüismo en la ESO - Comunidad de MadridRaquel TM
 
Historia de lo que nos pasa
Historia de lo que nos pasaHistoria de lo que nos pasa
Historia de lo que nos pasaAna UR
 
Sintesis informativa julio 03 2013
Sintesis informativa julio 03 2013Sintesis informativa julio 03 2013
Sintesis informativa julio 03 2013megaradioexpress
 
Manual Router Yota Vigor fly200
Manual Router Yota Vigor fly200 Manual Router Yota Vigor fly200
Manual Router Yota Vigor fly200 Arnold Salgado
 
Mechanic 20. Sayı
Mechanic 20. SayıMechanic 20. Sayı
Mechanic 20. SayıDeko Medya
 
El valor de la solidaridad.
El valor de la solidaridad.El valor de la solidaridad.
El valor de la solidaridad.mil61
 

Destacado (17)

Prepara Tu Entrevista De Trabajo Y Los 10 Errores De Imagen Profesional En La...
Prepara Tu Entrevista De Trabajo Y Los 10 Errores De Imagen Profesional En La...Prepara Tu Entrevista De Trabajo Y Los 10 Errores De Imagen Profesional En La...
Prepara Tu Entrevista De Trabajo Y Los 10 Errores De Imagen Profesional En La...
 
MASTER Executive MBA. ESTEMA Escuela de Negocios.
MASTER Executive MBA. ESTEMA Escuela de Negocios.MASTER Executive MBA. ESTEMA Escuela de Negocios.
MASTER Executive MBA. ESTEMA Escuela de Negocios.
 
Transformadores
TransformadoresTransformadores
Transformadores
 
Escoitar.org por Chiu Longina
Escoitar.org por Chiu LonginaEscoitar.org por Chiu Longina
Escoitar.org por Chiu Longina
 
Kfl suggestions akhil
Kfl suggestions akhilKfl suggestions akhil
Kfl suggestions akhil
 
Latin Link Brochure - Scientific
Latin Link Brochure - ScientificLatin Link Brochure - Scientific
Latin Link Brochure - Scientific
 
Coleccion Cadenas NFP
Coleccion Cadenas NFPColeccion Cadenas NFP
Coleccion Cadenas NFP
 
Apple tv development Meetup - Montevideo Uruguay
Apple tv development Meetup - Montevideo  UruguayApple tv development Meetup - Montevideo  Uruguay
Apple tv development Meetup - Montevideo Uruguay
 
Bilingüismo en la ESO - Comunidad de Madrid
Bilingüismo en la ESO - Comunidad de MadridBilingüismo en la ESO - Comunidad de Madrid
Bilingüismo en la ESO - Comunidad de Madrid
 
Historia de lo que nos pasa
Historia de lo que nos pasaHistoria de lo que nos pasa
Historia de lo que nos pasa
 
Sintesis informativa julio 03 2013
Sintesis informativa julio 03 2013Sintesis informativa julio 03 2013
Sintesis informativa julio 03 2013
 
Edebé
EdebéEdebé
Edebé
 
Manual Router Yota Vigor fly200
Manual Router Yota Vigor fly200 Manual Router Yota Vigor fly200
Manual Router Yota Vigor fly200
 
Arpimed Catalog
Arpimed CatalogArpimed Catalog
Arpimed Catalog
 
Mechanic 20. Sayı
Mechanic 20. SayıMechanic 20. Sayı
Mechanic 20. Sayı
 
El valor de la solidaridad.
El valor de la solidaridad.El valor de la solidaridad.
El valor de la solidaridad.
 
Reyes-Pedagogía kantiana (30 diapositivas)
Reyes-Pedagogía kantiana (30 diapositivas)Reyes-Pedagogía kantiana (30 diapositivas)
Reyes-Pedagogía kantiana (30 diapositivas)
 

Ähnlich wie Der Wert von Daten in Zeiten von "Big Data"

Big Data im Personalmanagement (HRM)
Big Data im Personalmanagement (HRM)Big Data im Personalmanagement (HRM)
Big Data im Personalmanagement (HRM)Stephan Kaiser
 
Sabine Bühn, Bernd Aschauer (Aschauer IT & Business)
Sabine Bühn, Bernd Aschauer (Aschauer IT & Business)Sabine Bühn, Bernd Aschauer (Aschauer IT & Business)
Sabine Bühn, Bernd Aschauer (Aschauer IT & Business)Praxistage
 
DE - Module 3 - Improving your business model using external data
DE - Module 3 - Improving your business model using external dataDE - Module 3 - Improving your business model using external data
DE - Module 3 - Improving your business model using external datacaniceconsulting
 
Data Science & Big Data, made in Switzerland
Data Science & Big Data, made in SwitzerlandData Science & Big Data, made in Switzerland
Data Science & Big Data, made in SwitzerlandThilo Stadelmann
 
Wenn Maschinen Menschen bewerten: To-dos für Teilhabe
Wenn Maschinen Menschen bewerten: To-dos für TeilhabeWenn Maschinen Menschen bewerten: To-dos für Teilhabe
Wenn Maschinen Menschen bewerten: To-dos für TeilhabeKonrad Lischka
 
Big Data_und auf was es wirklich ankommt. 1A Relations
Big Data_und auf was es wirklich ankommt. 1A RelationsBig Data_und auf was es wirklich ankommt. 1A Relations
Big Data_und auf was es wirklich ankommt. 1A RelationsGeorg Blum
 
Big Data zwischen Technik und Organisationskultur
Big Data zwischen Technik und OrganisationskulturBig Data zwischen Technik und Organisationskultur
Big Data zwischen Technik und Organisationskulturmgm-slides
 
DE - Module 6 - The future of Smart Data
DE - Module 6 - The future of Smart DataDE - Module 6 - The future of Smart Data
DE - Module 6 - The future of Smart Datacaniceconsulting
 
Data Product Discovery: Die Produktseite der digitalen Transformation
Data Product Discovery: Die Produktseite der digitalen TransformationData Product Discovery: Die Produktseite der digitalen Transformation
Data Product Discovery: Die Produktseite der digitalen Transformationinovex GmbH
 
Agile Datenanalsyse - der schnelle Weg zum Mehrwert
Agile Datenanalsyse - der schnelle Weg zum MehrwertAgile Datenanalsyse - der schnelle Weg zum Mehrwert
Agile Datenanalsyse - der schnelle Weg zum MehrwertAlexander Hendorf
 
Open Data und Hochschulen
Open Data und HochschulenOpen Data und Hochschulen
Open Data und HochschulenDetlef Stern
 
Suche ein effizientes Mittel zur Datenintegration
Suche ein effizientes Mittel zur DatenintegrationSuche ein effizientes Mittel zur Datenintegration
Suche ein effizientes Mittel zur DatenintegrationThomas Kurz
 
Top 10 der Business Intelligence-Trends für das Jahr 2014
Top 10 der Business Intelligence-Trends für das Jahr 2014Top 10 der Business Intelligence-Trends für das Jahr 2014
Top 10 der Business Intelligence-Trends für das Jahr 2014Tableau Software
 
Künstliche Intelligenz in der Medizin: Wo stehen wir – wo geht es hin?
Künstliche Intelligenz in der Medizin: Wo stehen wir – wo geht es hin? Künstliche Intelligenz in der Medizin: Wo stehen wir – wo geht es hin?
Künstliche Intelligenz in der Medizin: Wo stehen wir – wo geht es hin? Vito Mediavilla
 
Verstehen Sie Ihre Kunden Meetup Köln 08.10.2018
Verstehen Sie Ihre Kunden Meetup Köln 08.10.2018Verstehen Sie Ihre Kunden Meetup Köln 08.10.2018
Verstehen Sie Ihre Kunden Meetup Köln 08.10.2018Digital Analytics Institute
 
Dr. Clemens Wagner-Bruschek, ERP (d-fine Austria)
Dr. Clemens Wagner-Bruschek, ERP (d-fine Austria)Dr. Clemens Wagner-Bruschek, ERP (d-fine Austria)
Dr. Clemens Wagner-Bruschek, ERP (d-fine Austria)Praxistage
 
Analytics mit SAS - konkret und praxisnah
Analytics mit SAS - konkret und praxisnahAnalytics mit SAS - konkret und praxisnah
Analytics mit SAS - konkret und praxisnahAstrid Schmitt
 
5. Marketing Symposium Mensch - Maschine - Roboter Hochschule Darmstadt, Nov....
5. Marketing Symposium Mensch - Maschine - Roboter Hochschule Darmstadt, Nov....5. Marketing Symposium Mensch - Maschine - Roboter Hochschule Darmstadt, Nov....
5. Marketing Symposium Mensch - Maschine - Roboter Hochschule Darmstadt, Nov....Restorm
 

Ähnlich wie Der Wert von Daten in Zeiten von "Big Data" (20)

Big Data im Personalmanagement (HRM)
Big Data im Personalmanagement (HRM)Big Data im Personalmanagement (HRM)
Big Data im Personalmanagement (HRM)
 
Sabine Bühn, Bernd Aschauer (Aschauer IT & Business)
Sabine Bühn, Bernd Aschauer (Aschauer IT & Business)Sabine Bühn, Bernd Aschauer (Aschauer IT & Business)
Sabine Bühn, Bernd Aschauer (Aschauer IT & Business)
 
DE - Module 3 - Improving your business model using external data
DE - Module 3 - Improving your business model using external dataDE - Module 3 - Improving your business model using external data
DE - Module 3 - Improving your business model using external data
 
Data Science & Big Data, made in Switzerland
Data Science & Big Data, made in SwitzerlandData Science & Big Data, made in Switzerland
Data Science & Big Data, made in Switzerland
 
Wenn Maschinen Menschen bewerten: To-dos für Teilhabe
Wenn Maschinen Menschen bewerten: To-dos für TeilhabeWenn Maschinen Menschen bewerten: To-dos für Teilhabe
Wenn Maschinen Menschen bewerten: To-dos für Teilhabe
 
Big Data_und auf was es wirklich ankommt. 1A Relations
Big Data_und auf was es wirklich ankommt. 1A RelationsBig Data_und auf was es wirklich ankommt. 1A Relations
Big Data_und auf was es wirklich ankommt. 1A Relations
 
Big Data zwischen Technik und Organisationskultur
Big Data zwischen Technik und OrganisationskulturBig Data zwischen Technik und Organisationskultur
Big Data zwischen Technik und Organisationskultur
 
DE - Module 6 - The future of Smart Data
DE - Module 6 - The future of Smart DataDE - Module 6 - The future of Smart Data
DE - Module 6 - The future of Smart Data
 
Big Data - einfach erklärt!
Big Data - einfach erklärt!Big Data - einfach erklärt!
Big Data - einfach erklärt!
 
Data Product Discovery: Die Produktseite der digitalen Transformation
Data Product Discovery: Die Produktseite der digitalen TransformationData Product Discovery: Die Produktseite der digitalen Transformation
Data Product Discovery: Die Produktseite der digitalen Transformation
 
Agile Datenanalsyse - der schnelle Weg zum Mehrwert
Agile Datenanalsyse - der schnelle Weg zum MehrwertAgile Datenanalsyse - der schnelle Weg zum Mehrwert
Agile Datenanalsyse - der schnelle Weg zum Mehrwert
 
Open Data und Hochschulen
Open Data und HochschulenOpen Data und Hochschulen
Open Data und Hochschulen
 
Suche ein effizientes Mittel zur Datenintegration
Suche ein effizientes Mittel zur DatenintegrationSuche ein effizientes Mittel zur Datenintegration
Suche ein effizientes Mittel zur Datenintegration
 
Top 10 der Business Intelligence-Trends für das Jahr 2014
Top 10 der Business Intelligence-Trends für das Jahr 2014Top 10 der Business Intelligence-Trends für das Jahr 2014
Top 10 der Business Intelligence-Trends für das Jahr 2014
 
Künstliche Intelligenz in der Medizin: Wo stehen wir – wo geht es hin?
Künstliche Intelligenz in der Medizin: Wo stehen wir – wo geht es hin? Künstliche Intelligenz in der Medizin: Wo stehen wir – wo geht es hin?
Künstliche Intelligenz in der Medizin: Wo stehen wir – wo geht es hin?
 
Verstehen Sie Ihre Kunden Meetup Köln 08.10.2018
Verstehen Sie Ihre Kunden Meetup Köln 08.10.2018Verstehen Sie Ihre Kunden Meetup Köln 08.10.2018
Verstehen Sie Ihre Kunden Meetup Köln 08.10.2018
 
Dr. Clemens Wagner-Bruschek, ERP (d-fine Austria)
Dr. Clemens Wagner-Bruschek, ERP (d-fine Austria)Dr. Clemens Wagner-Bruschek, ERP (d-fine Austria)
Dr. Clemens Wagner-Bruschek, ERP (d-fine Austria)
 
Analytics mit SAS - konkret und praxisnah
Analytics mit SAS - konkret und praxisnahAnalytics mit SAS - konkret und praxisnah
Analytics mit SAS - konkret und praxisnah
 
5. Marketing Symposium Mensch - Maschine - Roboter Hochschule Darmstadt, Nov....
5. Marketing Symposium Mensch - Maschine - Roboter Hochschule Darmstadt, Nov....5. Marketing Symposium Mensch - Maschine - Roboter Hochschule Darmstadt, Nov....
5. Marketing Symposium Mensch - Maschine - Roboter Hochschule Darmstadt, Nov....
 
Big Data und Business Intelligence
Big Data und Business IntelligenceBig Data und Business Intelligence
Big Data und Business Intelligence
 

Der Wert von Daten in Zeiten von "Big Data"

  • 1. Zürcher Fachhochschule Der Wert von Daten in Zeiten von Big Data Microsoft Vision Days, 21.01.2016 Thilo Stadelmann
  • 2. Zürcher Fachhochschule 2 Wert  Anforderungen  Trends 1Der Wert von Daten
  • 3. Zürcher Fachhochschule 3 «Data is the new oil» (Clive Humby, ANA Senior marketer’s summit, 2006) Wenn Daten der neue Rohstoff sind… • Für wen haben sie dann Wert? • Worin besteht dieser Wert?
  • 4. Zürcher Fachhochschule 4 (D. Laney, “3D Data Management: Controlling Data Volume, Velocity and Variety“. Gartner, 2001.) Der quantifizierbare Wert von Big Data  Big Oil  Big Tobacco  Big Pharma  …  Big Data? Big Data Volume Variety … Velocity
  • 5. Zürcher Fachhochschule 5 Big Data – eine grosse Veränderung Es geht nicht um 3/4/… V’s. Es geht um eine generelle Änderung der Denkweise • Daten sind verfügbar (kostengünstig, für jedes Faktum des Lebens) • Wir können daraus Lernen (automatisiert, prozessintegriert) (Michael Natusch @ SDS|2014)  Bessere Entscheidungen haben einen messbaren Wert
  • 6. Zürcher Fachhochschule 6 Der Wert von Daten …am Beispiel Twitter Inc. Gesellschaftlich «Results shown here are impressive, showing that Twitter data can be used to detect and possibly track Influenza like epidemics in real time.» (Herland et al., "A review of data mining using big data in health informatics”, Journal of Big Data, 2014, 1:2) Börsennotiert Gesamtbewertung von knapp 21.3 Mrd. $
  • 7. Zürcher Fachhochschule 7 Wert  Anforderungen  Trends 2Veränderte Anforderungen
  • 8. Zürcher Fachhochschule 8 Big Data = grosse Veränderung Wenn sich der Denkansatz verändert hat… • Wer setzt dieses Denken um? • Wie zieht man geschäftlichen Mehrwert daraus?
  • 9. Zürcher Fachhochschule 9 Ein neuer Typ Mitarbeiter Interdisziplinär & praxisbezogen (Stadelmann et al. (2013). “Applied Data Science in Europe”. ECSS 2013, Amsterdam.)
  • 10. Zürcher Fachhochschule 10 Nur ein Trend? Kontinuierlich steigend Google Trends für «data scientist», April 2013 Google Trends für «data scientist», November 2015
  • 11. Zürcher Fachhochschule 11 Erfahrungen aus der Aus- und Weiterbildung ZHAW Diploma of Advanced Studies in Data Science • Besteht seit Herbst 2014 • Anmeldestand Herbst 2015: Wenige freie Plätze im Herbst 2017 CAS Data Science Applications Machine Learning, Big Data Visualization, Design & Development of Data Products, Data Protection & Security CAS Information Engineering Scripting in Python, Information Retrieval & Text Analytics, Databases & SQL, Data Warehousing, Big Data CAS Datenanalyse Data Description & Visualization, Statistical Foundations of Analytics, Multiple Regression, Time Series & Forecasting, Clustering & Classification
  • 12. Zürcher Fachhochschule 12 Mehrwert durch «Data Products» Loukides, “The Evolution of Data Products“, 2011 Offene Data Products • Basieren auf Daten, liefern Daten • Beispiel: Produktempfehlung anhand “Likes”  erzeugt Datensätze in einer DB  Charakterisiert durch Datentransformation (data in  data out) Geschlossene Data Products • Daten werden nur intern verwendet; Ausgabe ist Lebensqualität • Beispiel: Navigation durch Karten und Verkehrsinfos  entspanntes Reisen (durch Liste von Wegpunkten) • Erweiterung: Ergänzung um Fahrverhaltensanalyse  optimierter Kraftstoffverbrauch Typische Zutaten • “Datenausstoss“ (Daten, die nebenbei entstehen) • “Versteckte Daten“ (schwer zu gebrauchende Daten; keiner Weiss, was damit anfangen) • Kombination verschiedener Datenquellen (auch “open data“) «But merely using data isn’t really what we mean by “data science”. A data application acquires its value from the data itself…» M. Loukides, «What is Data Science?», 2010
  • 13. Zürcher Fachhochschule 13 Best practices für data product design Bsp. Empfehlungssystem: Etwas beliebtes vs. etwas neues finden • Die “Filterblase” hält uns ansonsten im Loch landläufiger Meinung und gepflegter Vorurteile • Gute Treffer sind nicht genug – interessante (d.h. nicht offensichtliche) Treffer sind es  "Likes" sind das falsche Optimierungsziel  Vorhersagen sind kein enggültiges Ziel; Entscheidungen sind es Benutzer-zentriertes Design • Menschen können schlecht mit Rohdaten umgehen  gib Ihnen Optionen zum Entscheiden • Menschen interagieren nicht mit Daten  gib Ihnen Anwendungen und • Menschen kümmern sich nicht um Daten  gib Ihnen Mehrwert  Data Products sind kein Job für Nerds, (Value Proposition) Design spielt von Anfang an mit
  • 14. Zürcher Fachhochschule 14 Wert  Anforderungen  Trends 3Trends aus der Forschung
  • 15. Zürcher Fachhochschule 15 Technologische Trends Datenhaltung • Mix aus klassischen relationalen DBMS… • …und Big Data Technologien wie Hadoop Stack Datenauswertung • Erste übermenschliche Leistung in Mustererkenungsaufgaben seit 2012 • Auslöser: Deep Learning Verfahren
  • 16. Zürcher Fachhochschule 16 Hintergrund I: Der ImageNet Wettbewerb 1000 “Klassen” 1 Mio. Beispielbilder …  Computer lernen zu sehen 2012: A. Krizhevsky wendet als erster Deep Learning Verfahren an. Fortsetzung 2015: 4.95% Microsoft (Feb 6)  lässt menschliche Leistung (5.1%) hinter sich 4.8% Google (Feb 11) 4.58% Baidu (May 11) …
  • 17. Zürcher Fachhochschule 17 Hintergrund II: Kernidee “feature learning” (0.2, 0.4, …) Frachtschiff Tiger Klassicher Ansatz (0.4, 0.3, …) Manuell konfigurierte Merkmalsextraktion (z.B. LBP, HOG, …) Frachtschiff Tiger Neuer Deep Learning Ansatz via CNNs (Convolutional Neural Networks) Verarbeitet automatisch Rohdaten zu visuellen Merkmalen Tradiitionalle Lernverfahren (z.B. SVM, Neuronales Netz, …)
  • 18. Zürcher Fachhochschule 18 Beispiel: Data-driven Condition Monitoring Ein KTI-Projekt des ZHAW Datalab mit mechmine llc Situation: Wartung grosser (Rotations-)Maschinen ist teuer, Defekte sind noch teurer Ziel: Wartung dann einplanen, wenn Defekt vorausgesagt wird, nicht einfach regelmässig Herausforderung: Ansatz finden, der sich automatisch an neue Maschinen anpasst Lösung: Anomalieerkennung aus dem Machine Learning anwenden, um den Normalzustand jeder Maschine sowie Abweichungen davon rein aus Sensordaten herauslesen zu können; Kombination klassischer Ansätze laut Industriestandard sowie u.a. Deep Learning Autoencoders Früherkennung von Defekten z.B. RNN Autoencoder Merkmalsextraktion Vibrationssensor
  • 19. Zürcher Fachhochschule 19 Wohin führt die Reise? Eine Prognose. Maschinen • …machen, worin sie gut sind: «Number Crunching», nicht müde werden, Muster erkennen Menschen • …machen, worin sie unersetzbar sind: Entscheidungen treffen  Datenanalyse in Zeiten von Big Data hat folgenden Wert: Ein Navigationsgerät – es zeigt Routen auf, wir dürfen selber fahren
  • 20. Zürcher Fachhochschule 20 Zusammenfassung • Es braucht nicht viele Daten, um im Big Data Zeitalter zu profitieren • Es braucht gute Leute, gut ausgebildet als Data Scientists • Mehrwert kommt aus Data Products, die Daten verwenden, aber Lebensqualität liefern • Analytics- und Storage Technologien entwickeln sich rasant weiter • Es werden immer Kombinationen von Ansätzen eingesetzt Mehr zu mir: • Leiter ZHAW Datalab • thilo.stadelmann@zhaw.ch • 058 934 72 08 • www.zhaw.ch/~stdm Mehr Data Science? • Weiterbildung www.zhaw.ch/datalab • Konferenz: www.zhaw.ch/datalab/sds2016 • Projekte: datalab@zhaw.ch • Verband data+service: In Gründung, offen für Mitglieder.  Fragen Sie gerne an.