1.7 angles and perpendicular lines

Huron School District
Huron School DistrictMathematics , Computer, and Robotics Educator at Huron School District um Huron School District
Angles,[object Object],[object Object]
§1.6Angle Measure
§1.6The Angle Addition Postulate
§1.6Adjacent Angles and Linear Pairs of Angles
§1.6Complementary and Supplementary Angles
§1.6Congruent Angles
§1.6  Perpendicular Lines,[object Object]
Z,[object Object],Y,[object Object],XY  and  XZ  are ____________.,[object Object],X,[object Object],Angles,[object Object],Opposite rays,[object Object],___________ are two rays that are part of a the same line and have only theirendpoints in common.,[object Object],opposite rays,[object Object],straight angle,[object Object],The figure formed by opposite rays is also referred to as a ____________.,[object Object]
S,[object Object],vertex,[object Object],T,[object Object],Angles,[object Object],There is another case where two rays can have a common endpoint.,[object Object],angle,[object Object],This figure is called an _____.,[object Object],Some parts of angles have special names.,[object Object],The common endpoint is called the ______,,[object Object],vertex,[object Object],and the two rays that make up the sides ofthe angle are called the sides of the angle.,[object Object],side,[object Object],R,[object Object],side,[object Object]
S,[object Object],vertex,[object Object],SRT,[object Object],TRS,[object Object],R,[object Object],1,[object Object],T,[object Object],Angles,[object Object],There are several ways to name this angle.,[object Object],1)  Use the vertex and a point from each side. ,[object Object],or,[object Object],The vertex letter is always in the middle.,[object Object],side,[object Object],2)  Use the vertex only.,[object Object],1,[object Object],If there is only one angle at a vertex, then theangle can be named with that vertex.,[object Object],R,[object Object],side,[object Object],3)  Use a number.,[object Object]
D,[object Object],2,[object Object],F,[object Object],DEF,[object Object],2,[object Object],E,[object Object],FED,[object Object],E,[object Object],Angles,[object Object],Symbols:,[object Object]
C,[object Object],A,[object Object],1,[object Object],B,[object Object],ABC,[object Object],1,[object Object],B,[object Object],CBA,[object Object],BA     and,[object Object],BC,[object Object],Angles,[object Object],1)  Name the angle in four ways.,[object Object],2)  Identify the vertex and sides of this angle.,[object Object],vertex:,[object Object],Point B,[object Object],sides:,[object Object]
2)  What are other names for          ?,[object Object],3)  Is there an angle that can be named            ? ,[object Object],1,[object Object],2,[object Object],1,[object Object],XWY     or,[object Object],YWX,[object Object],W,[object Object],XWZ,[object Object],Angles,[object Object],1)  Name all angles having W as their vertex.,[object Object],X,[object Object],W,[object Object],1,[object Object],2,[object Object],Y,[object Object],Z,[object Object],No!,[object Object]
exterior,[object Object],W,[object Object],Y,[object Object],Z,[object Object],interior,[object Object],A,[object Object],B,[object Object],Angles,[object Object],An angle separates a plane into three parts:,[object Object],interior,[object Object],1) the ______,[object Object],exterior,[object Object],2) the ______,[object Object],angle itself ,[object Object],3) the _________,[object Object],In the figure shown, point B and all other points in the blue region are in the interiorof the angle.,[object Object],Point A and all other points in the greenregion are in the exterior of the angle.,[object Object],Points Y,  W,  and  Z  are on the angle.,[object Object]
P,[object Object],G,[object Object],Angles,[object Object],Is point B in the interior of the angle,                         exterior of the angle,                                 or on the angle?,[object Object],Exterior,[object Object],B,[object Object],Is point G in the interior of the angle,                         exterior of the angle,                                 or on the angle?,[object Object],On the angle,[object Object],Is point P in the interior of the angle,                         exterior of the angle,                                 or on the angle?,[object Object],Interior,[object Object]
Vocabulary,[object Object],§1.6  Angle Measure,[object Object],What You'll Learn,[object Object],You will learn to measure, draw, and classify angles.,[object Object],1) Degrees,[object Object],2) Protractor,[object Object],3)Right Angle,[object Object],4) Acute Angle,[object Object],5) Obtuse Angle,[object Object]
P,[object Object],75°,[object Object],Q,[object Object],R,[object Object],m      PQR = 75,[object Object],§1.6 Angle Measure,[object Object],degrees,[object Object],In geometry, angles are measured in units called _______.,[object Object],The symbol for degree is  °.,[object Object],In the figure to the right, the angle is 75 degrees.,[object Object],In notation, there is no degree symbol with 75,[object Object],because the measure of an angle is a real ,[object Object],number with no unit of measure.,[object Object]
A,[object Object],n°,[object Object],C,[object Object],m      ABC = n,[object Object],and 0 < n < 180,[object Object],B,[object Object],§1.6 Angle Measure,[object Object],0,[object Object],180,[object Object]
Use a protractor to measure      SRQ.,[object Object],1)  Place the center point of the protractor     on vertex  R.       Align the straightedge with side  RS.,[object Object],2)  Use the scale that begins with 0     at  RS.     Read where the other side      of the angle,  RQ,  crosses      this scale.,[object Object],Q,[object Object],R,[object Object],S,[object Object],§1.6 Angle Measure,[object Object],protractor,[object Object],You can use a _________ to measure angles and sketch angles of givenmeasure.,[object Object]
m      SRQ = ,[object Object],m      SRJ = ,[object Object],m      SRG = ,[object Object],m      QRG = ,[object Object],m      GRJ = ,[object Object],m      SRH  ,[object Object],H,[object Object],J,[object Object],G,[object Object],Q,[object Object],S,[object Object],R,[object Object],§1.6  Angle Measure,[object Object],70,[object Object],Find the measurement of:,[object Object],   180 – 150,[object Object],= 30,[object Object],180,[object Object],45,[object Object],   150 – 45,[object Object],= 105,[object Object],150,[object Object]
1)  Draw  AB,[object Object],3)  Locate and draw point C at the     mark labeled 135.  Draw  AC.,[object Object],C,[object Object],A,[object Object],B,[object Object],§1.6  Angle Measure,[object Object],Use a protractor to draw an angle having a measure of 135.,[object Object],2)  Place the center point of the     protractor on A.  Align the mark     labeled  0  with the ray.,[object Object]
A,[object Object],A,[object Object],A,[object Object],   obtuse angle 90 < m      A < 180,[object Object],acute angle 0 < m      A < 90,[object Object],right angle m      A = 90,[object Object],§1.6  Angle Measure,[object Object],Once the measure of an angle is known, the angle can be classified as oneof three types of angles.  These types are defined in relation to a right angle.,[object Object]
40°,[object Object],110°,[object Object],90°,[object Object],50°,[object Object],75°,[object Object],130°,[object Object],§1.6  Angle Measure,[object Object],Classify each angle as acute, obtuse, or right.,[object Object],Acute,[object Object],Obtuse,[object Object],Right,[object Object],Obtuse,[object Object],Acute,[object Object],Acute,[object Object]
The measure of       H is 67.Solve for  y.,[object Object],The measure of       B is 138.Solve for  x.,[object Object],H ,[object Object],9y + 4,[object Object],5x - 7,[object Object],B ,[object Object],B = 5x – 7   and        B = 138,[object Object],H = 9y + 4   and        H = 67,[object Object],§1.6  Angle Measure,[object Object],Given:    (What do you know?),[object Object],Given:    (What do you know?),[object Object],9y + 4 = 67,[object Object],5x – 7 = 138,[object Object],Check!,[object Object],Check!,[object Object],9y = 63,[object Object],5x = 145,[object Object],9(7) + 4 = ?,[object Object],5(29) -7 = ?,[object Object],y = 7,[object Object],x = 29,[object Object],63 + 4 = ?,[object Object],145 -7 = ?,[object Object],67 = 67,[object Object],138 = 138,[object Object]
Is  m     a  larger than  m     b ?,[object Object],? ? ?,[object Object],60°,[object Object],60°,[object Object]
End of Lesson,[object Object]
Vocabulary,[object Object],§1.6  The Angle Addition Postulate,[object Object],What You'll Learn,[object Object],You will learn to find the measure of an angle and the bisectorof an angle. ,[object Object],NOTHING NEW!,[object Object]
R,[object Object],X,[object Object],2)  Draw and label     a point X in the     interior of the      angle.  Then      draw  SX.,[object Object],S,[object Object],T,[object Object],§1.6  The Angle Addition Postulate,[object Object],1)  Draw an acute,     an obtuse, or     a right angle.     Label the     angle  RST.,[object Object],45°,[object Object],75°,[object Object],30°,[object Object],3)  For each angle, find  mRSX,   mXST,  and  RST.,[object Object]
R,[object Object],X,[object Object],S,[object Object],T,[object Object],§1.6  The Angle Addition Postulate,[object Object],1)  How does the sum of  mRSX  and  mXST  compare to  mRST ?,[object Object],Their sum is equal to the measure of  RST .,[object Object],mXST = 30,[object Object],+  mRSX = 45,[object Object],=  mRST = 75,[object Object],2)  Make a conjecture about the      relationship between the two      smaller angles and the larger angle.,[object Object],45°,[object Object],The sum of the measures of the twosmaller angles is equal to the measureof the larger angle.,[object Object],75°,[object Object],30°,[object Object]
P,[object Object],1,[object Object],Q,[object Object],A,[object Object],2,[object Object],R,[object Object],§1.6  The Angle Addition Postulate,[object Object],m1  +  m2  =  mPQR.,[object Object],There are two equations that can be derived using Postulate 3 – 3.,[object Object],m1  =  mPQR  –m2 ,[object Object],These equations are true no matter where A is locatedin the interior of PQR. ,[object Object],m2 =  mPQR  –m1 ,[object Object]
X,[object Object],1,[object Object],Y,[object Object],W,[object Object],2,[object Object],Z,[object Object],§1.6  The Angle Addition Postulate,[object Object],Find m2  if  mXYZ = 86  and  m1 = 22.,[object Object],Postulate 3 – 3.,[object Object],m2 +  m1 =  mXYZ,[object Object],m2 =  mXYZ  –m1 ,[object Object],m2 =  86  –  22,[object Object],m2 =  64,[object Object]
C,[object Object],D,[object Object],(5x – 6)°,[object Object],2x°,[object Object],B,[object Object],A,[object Object],§1.6  The Angle Addition Postulate,[object Object],Find  mABC  and  mCBD  if  mABD  =  120.,[object Object],mABC  +  mCBD  =  mABD,[object Object],Angle Addition Postulate,[object Object],Substitution,[object Object],2x  +  (5x – 6)  =  120,[object Object],7x – 6 = 120,[object Object],Combine like terms,[object Object],7x = 126,[object Object],Add 6 to both sides,[object Object],x = 18,[object Object],Divide each side by 7,[object Object],36 + 84 = 120,[object Object],mCBD = 5x – 6 ,[object Object],mABC = 2x,[object Object],mCBD = 5(18) – 6 ,[object Object],mABC = 2(18),[object Object],mCBD = 90 – 6 ,[object Object],mABC = 36,[object Object],mCBD = 84 ,[object Object]
§1.6  The Angle Addition Postulate,[object Object],Just as every segment has a midpoint that bisects the segment, every angle,[object Object],has a ___ that bisects the angle.,[object Object],ray,[object Object],angle bisector,[object Object],This ray is called an ____________ .,[object Object]
is the bisector of PQR.,[object Object],P,[object Object],1,[object Object],Q,[object Object],A,[object Object],2,[object Object],R,[object Object],§1.6  The Angle Addition Postulate,[object Object],m1  =  m2,[object Object]
Since          bisects CAN,   1  =  2.,[object Object],N,[object Object],T,[object Object],2,[object Object],1,[object Object],A,[object Object],C,[object Object],§1.6  The Angle Addition Postulate,[object Object],If           bisects CAN  and  mCAN  = 130,   find 1  and  2.,[object Object],1 + 2  =  CAN,[object Object],Angle Addition Postulate,[object Object],Replace CAN with 130,[object Object],1 + 2  =  130,[object Object],1 + 1  =  130,[object Object],Replace 2 with 1,[object Object],2(1) =  130,[object Object],Combine like terms,[object Object],(1) =  65,[object Object],Divide each side by 2,[object Object],Since 1  =  2,    2 = 65,[object Object]
End of Lesson,[object Object]
A,[object Object],B,[object Object],D,[object Object],C,[object Object],Adjacent Angles and Linear Pairs of Angles,[object Object],What You'll Learn,[object Object],You will learn to identify and use adjacent angles and linear pairs of angles.,[object Object],When you “split” an angle, you create two angles. ,[object Object],The two angles are called,[object Object],  _____________,[object Object],adjacent angles,[object Object],2,[object Object],1,[object Object],adjacent = next to, joining.,[object Object],1  and  2  are examples of adjacent angles.  They share a common ray.,[object Object],Name the ray that  1  and  2   have in common.    ____,[object Object]
J,[object Object],2,[object Object],common side,[object Object],R,[object Object],M,[object Object],1,[object Object],1  and  2  are adjacent,[object Object],with the same vertex  R  and,[object Object],N,[object Object],Adjacent Angles and Linear Pairs of Angles,[object Object],Adjacent angles are angles that:,[object Object],A)  share a common side,[object Object],B)  have the same vertex,  and,[object Object],C)  have no interior points in common,[object Object]
B,[object Object],2,[object Object],1,[object Object],1,[object Object],2,[object Object],G,[object Object],N,[object Object],L,[object Object],1,[object Object],J,[object Object],2,[object Object],Adjacent Angles and Linear Pairs of Angles,[object Object],Determine whether  1  and  2  are adjacent angles.,[object Object],No.  They have a common vertex  B, but,[object Object],        _____________,[object Object],no common side,[object Object],Yes.  They have the same vertex  G  and a           common side with no interior points in           common.,[object Object],No.  They do not have a common vertex or         ____________,[object Object],a common side,[object Object],The side of 1 is  ____,[object Object],The side of 2 is  ____,[object Object]
1,[object Object],2,[object Object],1,[object Object],2,[object Object],Z,[object Object],D,[object Object],X,[object Object],Adjacent Angles and Linear Pairs of Angles,[object Object],Determine whether  1  and  2  are adjacent angles.,[object Object],No.  ,[object Object],Yes.  ,[object Object],In this example, the noncommon sides of the adjacent angles form a,[object Object],___________.,[object Object],straight line,[object Object],linear pair,[object Object],These angles are called a _________,[object Object]
D,[object Object],A,[object Object],B,[object Object],2,[object Object],1,[object Object],C,[object Object],Note:,[object Object],Adjacent Angles and Linear Pairs of Angles,[object Object],Two angles form a linear pair if and only if  (iff):,[object Object],A)  they are adjacent and,[object Object],B)  their noncommon sides are opposite rays,[object Object],1  and  2  are a linear pair.,[object Object]
In the figure,          and          are opposite rays.,[object Object],H,[object Object],T,[object Object],E,[object Object],3,[object Object],A,[object Object],4,[object Object],2,[object Object],1,[object Object],C,[object Object],ACE and 1 have a common side        ,,[object Object],the same vertex C, and opposite rays,[object Object],         and,[object Object],M,[object Object],Adjacent Angles and Linear Pairs of Angles,[object Object],1)  Name the angle that forms a ,[object Object],     linear pair with 1.,[object Object],ACE,[object Object],2)  Do 3  and  TCM  form a linear pair?  Justify your answer.,[object Object],No.  Their noncommon sides are not opposite rays.,[object Object]
End of Lesson,[object Object]
§1.6  Complementary and Supplementary Angles,[object Object],What You'll Learn,[object Object],You will learn to identify and use Complementary and ,[object Object],Supplementary angles,[object Object]
E,[object Object],D,[object Object],A,[object Object],60°,[object Object],30°,[object Object],F,[object Object],B,[object Object],C,[object Object],§1.6  Complementary and Supplementary Angles,[object Object],Two angles are complementary if and only if (iff) the sum of their degree measure is 90. ,[object Object],mABC + mDEF = 30 + 60 = 90,[object Object]
E,[object Object],D,[object Object],A,[object Object],60°,[object Object],30°,[object Object],F,[object Object],B,[object Object],C,[object Object],§1.6  Complementary and Supplementary Angles,[object Object],If two angles are complementary, each angle is a complement of the other.,[object Object],ABC is the complement of DEF  and  DEF is the complement of ABC.,[object Object],Complementary angles DO NOT need to have a common side or even the ,[object Object],same vertex.,[object Object]
I,[object Object],75°,[object Object],15°,[object Object],H,[object Object],P,[object Object],Q,[object Object],40°,[object Object],50°,[object Object],H,[object Object],S,[object Object],U,[object Object],V,[object Object],60°,[object Object],T,[object Object],30°,[object Object],Z,[object Object],W,[object Object],§1.6  Complementary and Supplementary Angles,[object Object],Some examples of complementary angles are shown below.,[object Object],mH + mI = 90,[object Object],mPHQ + mQHS = 90,[object Object],mTZU + mVZW = 90,[object Object]
D,[object Object],C,[object Object],130°,[object Object],50°,[object Object],E,[object Object],B,[object Object],F,[object Object],A,[object Object],§1.6  Complementary and Supplementary Angles,[object Object],If the sum of the measure of two angles is 180, they form a special pair of ,[object Object],angles called supplementary angles.,[object Object],Two angles are supplementary if and only if (iff) the sum of their degree measure is 180. ,[object Object],mABC + mDEF = 50 + 130 = 180,[object Object]
I,[object Object],75°,[object Object],105°,[object Object],H,[object Object],Q,[object Object],130°,[object Object],50°,[object Object],H,[object Object],S,[object Object],P,[object Object],U,[object Object],V,[object Object],60°,[object Object],120°,[object Object],60°,[object Object],Z,[object Object],W,[object Object],T,[object Object],§1.6  Complementary and Supplementary Angles,[object Object],Some examples of supplementary angles are shown below.,[object Object],mH + mI = 180,[object Object],mPHQ + mQHS = 180,[object Object],mTZU + mUZV = 180,[object Object],and,[object Object],mTZU + mVZW = 180,[object Object]
End of Lesson,[object Object]
§1.6  Congruent Angles,[object Object],What You'll Learn,[object Object],You will learn to identify and use congruent and,[object Object],vertical angles.,[object Object],Recall that congruent segments have the same ________.,[object Object],measure,[object Object],Congruent angles,[object Object],_______________ also have the same measure.,[object Object]
50°,[object Object],50°,[object Object],B,[object Object],V,[object Object],§1.6  Congruent Angles,[object Object],Two angles are congruent iff, they have the same,[object Object],______________.,[object Object],degree measure,[object Object],B  V  iff,[object Object],mB = mV,[object Object]
1,[object Object],2,[object Object],X,[object Object],Z,[object Object],§1.6  Congruent Angles,[object Object],arcs,[object Object],To show that  1 is congruent to  2,  we use ____.,[object Object],To show that there is a second set of congruent angles,  X and Z, we use double arcs.,[object Object],This “arc” notation states that:,[object Object],X  Z,[object Object],mX = mZ,[object Object]
§1.6  Congruent Angles,[object Object],four,[object Object],When two lines intersect, ____ angles are formed.,[object Object],There are two pair of nonadjacent angles.,[object Object],vertical angles,[object Object],These pairs are called _____________.,[object Object],1,[object Object],4,[object Object],2,[object Object],3,[object Object]
§1.6  Congruent Angles,[object Object],Two angles are vertical  iff  they are two nonadjacent,[object Object],angles formed by a pair of intersecting lines.,[object Object],Vertical angles:,[object Object],1  and  3,[object Object],1,[object Object],4,[object Object],2,[object Object],2  and  4,[object Object],3,[object Object]
1,[object Object],4,[object Object],2,[object Object],3,[object Object],§1.6  Congruent Angles,[object Object],1)  On a sheet of paper, construct two intersecting lines,[object Object],     that are not perpendicular.,[object Object],2)  With a protractor, measure each angle formed.,[object Object],3)  Make a conjecture about vertical angles.,[object Object],Consider:,[object Object],A.     1 is supplementary to 4.,[object Object],m1 + m4  = 180,[object Object],Hands-On,[object Object],B.     3 is supplementary to 4.,[object Object],m3 + m4  = 180,[object Object],Therefore, it can be shown that,[object Object],1 3,[object Object],Likewise, it can be shown that,[object Object],24,[object Object]
1,[object Object],4,[object Object],2,[object Object],3,[object Object],§1.6  Congruent Angles,[object Object],1)  If  m1 = 4x + 3  and  the m3 = 2x + 11,  then find the m3,[object Object],x = 4;  3 = 19°,[object Object],2)  If  m2 = x + 9  and  the m3 = 2x + 3,  then find the m4,[object Object],x = 56;  4 = 65°,[object Object],3)  If  m2 = 6x - 1  and  the m4 = 4x + 17,  then find the m3,[object Object],x = 9;  3 = 127°,[object Object],4)  If  m1 = 9x - 7  and  the m3 = 6x + 23,  then find the m4,[object Object],x = 10;  4 = 97°,[object Object]
§1.6  Congruent Angles,[object Object],Vertical angles are congruent.,[object Object],n,[object Object],m,[object Object],2,[object Object],1    3,[object Object],3,[object Object],1,[object Object],2    4,[object Object],4,[object Object]
130°,[object Object],x°,[object Object],§1.6  Congruent Angles,[object Object],Find the value of  x  in the figure:,[object Object],The angles are vertical angles.,[object Object],So, the value of x is 130°.,[object Object]
§1.6  Congruent Angles,[object Object],Find the value of  x  in the figure:,[object Object],The angles are vertical angles.,[object Object],(x – 10) = 125.,[object Object],(x – 10)°,[object Object],x – 10 = 125.,[object Object],125°,[object Object],x  = 135.,[object Object]
§1.6 Congruent Angles,[object Object],Suppose two angles are congruent.,[object Object],What do you think is true about their complements?,[object Object],1  2,[object Object],2 + y = 90,[object Object],1 + x = 90,[object Object],y is the complement ,[object Object],of 2,[object Object],x is the complement ,[object Object],of 1,[object Object],y = 90 - 2,[object Object],x = 90 - 1,[object Object],Because 1  2,   a “substitution” is made.,[object Object],y = 90 - 1,[object Object],x = 90 - 1,[object Object],x = y,[object Object],x  y,[object Object],If two angles are congruent, their complements are congruent.,[object Object]
60°,[object Object],60°,[object Object],B,[object Object],A,[object Object],1,[object Object],2,[object Object],3,[object Object],4,[object Object],§1.6  Congruent Angles,[object Object],If two angles are congruent, then their complements are,[object Object],_________.,[object Object],congruent,[object Object],The measure of angles complementary to A and B,[object Object],is 30.,[object Object],A  B,[object Object],If two angles are congruent, then their supplements are,[object Object],_________.,[object Object],congruent,[object Object],The measure of angles supplementary to 1 and 4,[object Object],is 110.,[object Object],110°,[object Object],110°,[object Object],70°,[object Object],70°,[object Object],4  1,[object Object]
3,[object Object],1,[object Object],2,[object Object],§1.6  Congruent Angles,[object Object],If two angles are complementary to the same angle,,[object Object],then they are _________.,[object Object],congruent,[object Object],3 is complementary to 4,[object Object],5 is complementary to 4,[object Object],4,[object Object],3,[object Object],5,[object Object],5  3,[object Object],If two angles are supplementary to the same angle,,[object Object],then they are _________.,[object Object],congruent,[object Object],1 is supplementary to 2,[object Object],3 is supplementary to 2,[object Object],1  3,[object Object]
52°,[object Object],52°,[object Object],A,[object Object],B,[object Object],§1.6  Congruent Angles,[object Object],Suppose A  B  and  mA = 52.,[object Object],Find the measure of an angle that is supplementary to B.,[object Object],1,[object Object],B + 1 = 180,[object Object],1 = 180 – B,[object Object],1 = 180 – 52,[object Object],1 = 128°,[object Object]
§1.6  Congruent Angles,[object Object],If 1 is complementary to  3,,[object Object],   2 is complementary to  3,,[object Object],   and m3 = 25,,[object Object],   What are  m1  and  m2 ?,[object Object],m1 + m3 = 90                   Definition of complementary angles.,[object Object],m1 = 90 - m3                   Subtract m3 from both sides.,[object Object],m1 = 90 - 25Substitute 25 in for  m3.,[object Object],m1 = 65Simplify the right side.,[object Object],You solve for  m2,[object Object],m2 + m3 = 90                   Definition of complementary angles.,[object Object],m2 = 90 - m3                   Subtract m3 from both sides.,[object Object],m2 = 90 - 25Substitute 25 in for  m3.,[object Object],m2 = 65Simplify the right side.,[object Object]
G,[object Object],D,[object Object],1,[object Object],2,[object Object],A,[object Object],C,[object Object],4,[object Object],B,[object Object],3,[object Object],E,[object Object],H,[object Object],§1.6  Congruent Angles,[object Object],1)  If  m1 = 2x + 3  and  the m3 = 3x - 14,  then find the m3,[object Object],x = 17;  3 = 37°,[object Object],2)  If  mABD = 4x + 5  and  the mDBC = 2x + 1,  then find the mEBC,[object Object],x = 29;  EBC = 121°,[object Object],3)  If  m1 = 4x - 13  and  the m3 = 2x + 19,  then find the m4,[object Object],x = 16;  4 = 39°,[object Object],4)  If  mEBG = 7x + 11  and  the mEBH = 2x + 7,  then find the m1,[object Object],x = 18;  1 = 43°,[object Object]
Suppose you draw two angles that are congruent and supplementary.,[object Object],What is true about the angles?,[object Object]
1,[object Object],2,[object Object],C,[object Object],A,[object Object],B,[object Object],§1.6  Congruent Angles,[object Object],If two angles are congruent and supplementary then each is a __________.,[object Object],right angle,[object Object],1 is supplementary to 2,[object Object],1  and  2  =  90,[object Object],All right angles are _________.,[object Object],congruent,[object Object],A  B  C,[object Object]
B,[object Object],A,[object Object],2,[object Object],E,[object Object],3,[object Object],1,[object Object],4,[object Object],C,[object Object],D,[object Object],§1.6  Congruent Angles,[object Object],If 1  is supplementary to 4,  3 is supplementary to 4,  and,[object Object],m 1 = 64,  what are  m 3  and  m 4?,[object Object],They are vertical angles.,[object Object],1  3,[object Object],m 1 = m3,[object Object],m 3 = 64,[object Object],3 is supplementary to 4,[object Object],Given,[object Object],Definition of supplementary.,[object Object],m3 + m4  =  180,[object Object],64 + m4  =  180,[object Object],m4  =  180 – 64,[object Object],m4  =  116,[object Object]
End of Lesson,[object Object]
§1.6  Perpendicular Lines,[object Object],What You'll Learn,[object Object],You will learn to identify, use properties of, and construct,[object Object],perpendicular lines and segments.,[object Object]
In the figure below, lines                         are perpendicular.,[object Object],A,[object Object],1,[object Object],2,[object Object],C,[object Object],D,[object Object],4,[object Object],3,[object Object],B,[object Object],§1.6  Perpendicular Lines,[object Object],perpendicular lines,[object Object],Lines that intersect at an angle of 90 degrees are _________________.,[object Object]
m,[object Object],n,[object Object],§1.6  Perpendicular Lines,[object Object],Perpendicular lines are lines that intersect to form a,[object Object],right angle.,[object Object]
1 von 73

Recomendados

11 2 arcs and central angles lesson von
11 2 arcs and central angles lesson11 2 arcs and central angles lesson
11 2 arcs and central angles lessongwilson8786
11.1K views10 Folien
Trigonometric Ratios von
Trigonometric RatiosTrigonometric Ratios
Trigonometric Ratiosliliana1993
25.4K views16 Folien
sum of interior and exterior angles in polygons von
   sum of interior and exterior angles in polygons   sum of interior and exterior angles in polygons
sum of interior and exterior angles in polygonsAneesha Jesmin
9.2K views15 Folien
Parallel Lines with Transversals von
Parallel Lines with TransversalsParallel Lines with Transversals
Parallel Lines with Transversalsguest9c5e6b
10K views17 Folien
trapezoid and its properties von
trapezoid and its propertiestrapezoid and its properties
trapezoid and its propertiesAidrelyn Namuco
6.3K views19 Folien
COT-2-ANGLE-OF-ELEVATION-DEPRESSION.pptx von
COT-2-ANGLE-OF-ELEVATION-DEPRESSION.pptxCOT-2-ANGLE-OF-ELEVATION-DEPRESSION.pptx
COT-2-ANGLE-OF-ELEVATION-DEPRESSION.pptxArgel Dalwampo
184 views28 Folien

Más contenido relacionado

Was ist angesagt?

Angles formed by parallel lines cut by transversal von
Angles formed by parallel lines cut by transversalAngles formed by parallel lines cut by transversal
Angles formed by parallel lines cut by transversalMay Bundang
18.5K views16 Folien
Angle Relationships Power Point von
Angle Relationships Power PointAngle Relationships Power Point
Angle Relationships Power Pointmalissatrotter
18.8K views20 Folien
THEOREMS ON TRIANGLE INEQUALITIES IN ONE TRIANGLE (COT2) - free.pptx von
THEOREMS ON TRIANGLE INEQUALITIES IN ONE TRIANGLE (COT2) - free.pptxTHEOREMS ON TRIANGLE INEQUALITIES IN ONE TRIANGLE (COT2) - free.pptx
THEOREMS ON TRIANGLE INEQUALITIES IN ONE TRIANGLE (COT2) - free.pptxsalvegimenez1
72 views55 Folien
MATH-8 WEEKS 8 Q3 .pptx von
MATH-8 WEEKS 8 Q3 .pptxMATH-8 WEEKS 8 Q3 .pptx
MATH-8 WEEKS 8 Q3 .pptxlarryazarias
577 views14 Folien
Parallel lines cut by a transversals von
Parallel lines cut by a transversalsParallel lines cut by a transversals
Parallel lines cut by a transversalsjulienorman80065
755 views20 Folien
Similar figures and_proportions von
Similar figures and_proportionsSimilar figures and_proportions
Similar figures and_proportionskaren wagoner
2.3K views20 Folien

Was ist angesagt?(20)

Angles formed by parallel lines cut by transversal von May Bundang
Angles formed by parallel lines cut by transversalAngles formed by parallel lines cut by transversal
Angles formed by parallel lines cut by transversal
May Bundang18.5K views
Angle Relationships Power Point von malissatrotter
Angle Relationships Power PointAngle Relationships Power Point
Angle Relationships Power Point
malissatrotter18.8K views
THEOREMS ON TRIANGLE INEQUALITIES IN ONE TRIANGLE (COT2) - free.pptx von salvegimenez1
THEOREMS ON TRIANGLE INEQUALITIES IN ONE TRIANGLE (COT2) - free.pptxTHEOREMS ON TRIANGLE INEQUALITIES IN ONE TRIANGLE (COT2) - free.pptx
THEOREMS ON TRIANGLE INEQUALITIES IN ONE TRIANGLE (COT2) - free.pptx
salvegimenez172 views
MATH-8 WEEKS 8 Q3 .pptx von larryazarias
MATH-8 WEEKS 8 Q3 .pptxMATH-8 WEEKS 8 Q3 .pptx
MATH-8 WEEKS 8 Q3 .pptx
larryazarias577 views
Similar figures and_proportions von karen wagoner
Similar figures and_proportionsSimilar figures and_proportions
Similar figures and_proportions
karen wagoner2.3K views
Sample space, events, outcomes, and experiments von Christian Costa
Sample space, events, outcomes, and experimentsSample space, events, outcomes, and experiments
Sample space, events, outcomes, and experiments
Christian Costa2.3K views
Parallelism and perpendicularity von salvie alvaro
Parallelism and perpendicularityParallelism and perpendicularity
Parallelism and perpendicularity
salvie alvaro17.4K views
7.5 proportions in triangles von Rana Kkkk
7.5 proportions in triangles7.5 proportions in triangles
7.5 proportions in triangles
Rana Kkkk934 views
7-2 Exterior Angle Theorem von mgngallagher
7-2 Exterior Angle Theorem7-2 Exterior Angle Theorem
7-2 Exterior Angle Theorem
mgngallagher6.4K views
Angles-of-Elevation-and-Depression.pptx von SanoSuki
Angles-of-Elevation-and-Depression.pptxAngles-of-Elevation-and-Depression.pptx
Angles-of-Elevation-and-Depression.pptx
SanoSuki183 views
Trigonometry - The Six Trigonometric Ratios von REYBETH RACELIS
Trigonometry - The Six Trigonometric RatiosTrigonometry - The Six Trigonometric Ratios
Trigonometry - The Six Trigonometric Ratios
REYBETH RACELIS2.8K views
1.2.3 Pairs of Angles von smiller5
1.2.3 Pairs of Angles1.2.3 Pairs of Angles
1.2.3 Pairs of Angles
smiller5725 views
Secants and Tangents of Circles PowerPoint.ppt von AlvinDairo2
Secants and Tangents of Circles PowerPoint.pptSecants and Tangents of Circles PowerPoint.ppt
Secants and Tangents of Circles PowerPoint.ppt
AlvinDairo276 views
angle of elevation and depression von Wenny Wang Wu
 angle of elevation and depression angle of elevation and depression
angle of elevation and depression
Wenny Wang Wu17.6K views

Destacado

Pointslinesplanesrays, segments and parallel, perpendicular and skew von
Pointslinesplanesrays, segments and parallel, perpendicular and skewPointslinesplanesrays, segments and parallel, perpendicular and skew
Pointslinesplanesrays, segments and parallel, perpendicular and skewHuron School District
4.3K views53 Folien
triangles-geometry von
triangles-geometrytriangles-geometry
triangles-geometryelizer14
767 views25 Folien
Matilda von
MatildaMatilda
Matildaberonyk
2.7K views9 Folien
The enormous crocodile von
The enormous crocodileThe enormous crocodile
The enormous crocodileSusana Fernandez
24K views23 Folien
Charlie and the chocolate factory von
Charlie and the chocolate factoryCharlie and the chocolate factory
Charlie and the chocolate factoryemr
29.1K views26 Folien
Charlie and the Chocolate Factory Year 5 KSSR For Weak Students von
Charlie and the Chocolate Factory Year 5 KSSR For Weak StudentsCharlie and the Chocolate Factory Year 5 KSSR For Weak Students
Charlie and the Chocolate Factory Year 5 KSSR For Weak Studentsnz999
5.4K views47 Folien

Destacado(20)

Pointslinesplanesrays, segments and parallel, perpendicular and skew von Huron School District
Pointslinesplanesrays, segments and parallel, perpendicular and skewPointslinesplanesrays, segments and parallel, perpendicular and skew
Pointslinesplanesrays, segments and parallel, perpendicular and skew
triangles-geometry von elizer14
triangles-geometrytriangles-geometry
triangles-geometry
elizer14767 views
Matilda von beronyk
MatildaMatilda
Matilda
beronyk2.7K views
Charlie and the chocolate factory von emr
Charlie and the chocolate factoryCharlie and the chocolate factory
Charlie and the chocolate factory
emr29.1K views
Charlie and the Chocolate Factory Year 5 KSSR For Weak Students von nz999
Charlie and the Chocolate Factory Year 5 KSSR For Weak StudentsCharlie and the Chocolate Factory Year 5 KSSR For Weak Students
Charlie and the Chocolate Factory Year 5 KSSR For Weak Students
nz9995.4K views
How angles add up! von NCVPS
How angles add up!How angles add up!
How angles add up!
NCVPS391 views
Philips Geometry Guide To Success.Ppt von guest551837
Philips Geometry Guide To Success.PptPhilips Geometry Guide To Success.Ppt
Philips Geometry Guide To Success.Ppt
guest551837694 views
STAT: Probability (continuation)(2) von Tuenti SiIx
STAT: Probability (continuation)(2)STAT: Probability (continuation)(2)
STAT: Probability (continuation)(2)
Tuenti SiIx2.7K views
Angle and shot guide (2) von EmmaSlaterr
Angle and shot guide (2)Angle and shot guide (2)
Angle and shot guide (2)
EmmaSlaterr1.5K views
Properties of triangles von Dreams4school
Properties of trianglesProperties of triangles
Properties of triangles
Dreams4school5.4K views

Similar a 1.7 angles and perpendicular lines

Geo final exam review von
Geo final exam reviewGeo final exam review
Geo final exam reviewlmrogers03
773 views13 Folien
19.1 Angles formed by intersecting lines.ppt von
19.1 Angles formed by intersecting lines.ppt19.1 Angles formed by intersecting lines.ppt
19.1 Angles formed by intersecting lines.pptMomciloMisljenovic
18 views57 Folien
Chapter 9 plane figures von
Chapter 9 plane figuresChapter 9 plane figures
Chapter 9 plane figuresPRINTDESK by Dan
472 views2 Folien
1003 segment and angle addition postulate and more von
1003 segment and angle addition postulate and more1003 segment and angle addition postulate and more
1003 segment and angle addition postulate and morejbianco9910
327 views41 Folien
Angles.ppt von
Angles.pptAngles.ppt
Angles.pptloidaquirimo
3 views24 Folien
11-4 lines and angles von
11-4 lines and angles11-4 lines and angles
11-4 lines and anglesah16595n
1.2K views17 Folien

Similar a 1.7 angles and perpendicular lines(20)

Geo final exam review von lmrogers03
Geo final exam reviewGeo final exam review
Geo final exam review
lmrogers03773 views
1003 segment and angle addition postulate and more von jbianco9910
1003 segment and angle addition postulate and more1003 segment and angle addition postulate and more
1003 segment and angle addition postulate and more
jbianco9910327 views
11-4 lines and angles von ah16595n
11-4 lines and angles11-4 lines and angles
11-4 lines and angles
ah16595n1.2K views
Obj. 8 Classifying Angles and Pairs of Angles von smiller5
Obj. 8 Classifying Angles and Pairs of AnglesObj. 8 Classifying Angles and Pairs of Angles
Obj. 8 Classifying Angles and Pairs of Angles
smiller53.5K views
Angle Measure (Geometry 3_2) von rfant
Angle Measure (Geometry 3_2)Angle Measure (Geometry 3_2)
Angle Measure (Geometry 3_2)
rfant12.5K views
Mathematics Form 1-Chapter 8 lines and angles KBSM of form 3 chp 1 ... von KelvinSmart2
Mathematics Form 1-Chapter 8 lines and angles KBSM of form 3 chp 1           ...Mathematics Form 1-Chapter 8 lines and angles KBSM of form 3 chp 1           ...
Mathematics Form 1-Chapter 8 lines and angles KBSM of form 3 chp 1 ...
KelvinSmart210.4K views
Angles and their measures von Qalbay Abbas
Angles and their measuresAngles and their measures
Angles and their measures
Qalbay Abbas12.7K views
1.4 angles __their_measures von kca1528
1.4 angles __their_measures1.4 angles __their_measures
1.4 angles __their_measures
kca1528354 views
Circle geometry von jyotivaid
Circle geometryCircle geometry
Circle geometry
jyotivaid17.4K views
Y5 t2u5bd1 3 von Worserbay
Y5 t2u5bd1 3Y5 t2u5bd1 3
Y5 t2u5bd1 3
Worserbay392 views
Obj. 45 Circles and Polygons von smiller5
Obj. 45 Circles and PolygonsObj. 45 Circles and Polygons
Obj. 45 Circles and Polygons
smiller52.2K views

Más de Huron School District

Slope intercept von
Slope interceptSlope intercept
Slope interceptHuron School District
1.9K views28 Folien
2.2 definitions and biconditionals von
2.2 definitions and biconditionals2.2 definitions and biconditionals
2.2 definitions and biconditionalsHuron School District
2.3K views16 Folien
2.1 conditional statements von
2.1 conditional statements2.1 conditional statements
2.1 conditional statementsHuron School District
1.5K views16 Folien
2.3 deductive reasoning von
2.3 deductive reasoning2.3 deductive reasoning
2.3 deductive reasoningHuron School District
1.7K views21 Folien
Solving equations von
Solving equationsSolving equations
Solving equationsHuron School District
2.7K views26 Folien
Solving multi step equations von
Solving multi step equationsSolving multi step equations
Solving multi step equationsHuron School District
16.3K views2 Folien

Más de Huron School District(20)

1.7 angles and perpendicular lines