SlideShare ist ein Scribd-Unternehmen logo
1 von 30
Downloaden Sie, um offline zu lesen
Regret Ratio Minimization in
Multi-objective Submodular
Function Maximization
P(S)
a
Tasuku Soma (U. Tokyo)
with Yuichi Yoshida (NII & PFI)
1 / 15
Submodular Func. Maximization
f : 2E
→ R+ is submodular:
f(X + e) − f(X) ≥ f(Y + e) − f(Y) (X ⊆ Y, e ∈ E  Y)
“diminishing return”
max f(X)
s.t. X ∈ C
Applications
• Influence Maximization
• Data Summarization,
etc
2 / 15
Multiple Criteria
3 / 15
Multiple Criteria
3 / 15
Multiple Criteria
1. coverage
3 / 15
Multiple Criteria
1. coverage
2. diversity
3 / 15
Multi-objective Optimization?
× Exponentially Many Pareto Solutions!
4 / 15
Multi-objective Optimization?
× Exponentially Many Pareto Solutions!
“Good” Subsets of Pareto Solutions
• k-representative skyline queries [Lin et al. 07,
Tao et al. 09]
• top-k dominating queries [Yiu and Mamoulis 09]
• regret minimizing database [Nanongkai et al. 10]
4 / 15
Multi-objective Optimization?
× Exponentially Many Pareto Solutions!
“Good” Subsets of Pareto Solutions
• k-representative skyline queries [Lin et al. 07,
Tao et al. 09]
• top-k dominating queries [Yiu and Mamoulis 09]
• regret minimizing database [Nanongkai et al. 10]
Issue These assume data points are explicitly given...
4 / 15
Our Results
Extend regret ratio framework to submodular maximization
5 / 15
Our Results
Extend regret ratio framework to submodular maximization
Upper Bound
Given an α-approx algorithm for (weighted) single
objective problem,
• regret ratio 1 − α/d for any d
• regret ratio 1 − α + O(1/k) for any k and d = 2.
d = # objectives, k = # of feasible solutions
5 / 15
Our Results
Extend regret ratio framework to submodular maximization
Upper Bound
Given an α-approx algorithm for (weighted) single
objective problem,
• regret ratio 1 − α/d for any d
• regret ratio 1 − α + O(1/k) for any k and d = 2.
d = # objectives, k = # of feasible solutions
Lower Bound
• Even if α = 1 and d = 2, it is impossible to achieve
regret ratio o(1/k2
).
5 / 15
Regret Ratio
Single Objective
The regret ratio for S ⊆ C and f is
rr(S) = 1 −
maxX∈S f(X)
maxX∈C f(X)
.
6 / 15
Regret Ratio
Single Objective
The regret ratio for S ⊆ C and f is
rr(S) = 1 −
maxX∈S f(X)
maxX∈C f(X)
.
Multi Objective
The regret ratio for S ⊆ C and f1, . . ., fd is
rrf1,...,fd,C(S) = max
a∈Rd
+
rrfa,C(S),
where fa := a1f1 + · · · + adfd. (linear weighting)
6 / 15
Geometry of Regret Ratio
f1
f2
Pareto opt point
7 / 15
Geometry of Regret Ratio
f1
f2
Pareto opt point
P(S)
point in S
7 / 15
Geometry of Regret Ratio
f1
f2
Pareto opt point
P(S)
point in S
ε−1
P(S)
rr(S) ≤ 1 − ε ⇐⇒ f(X) ∈ ε−1
P(S) (X ∈ C).
7 / 15
Regret Ratio Minimization
Given: f1, . . ., fd: submodular, C ⊆ 2E
, k > 0
minimize rr(S)
subject to S ⊆ C, |S| ≤ k.
8 / 15
Algorithm 1: Coordinate
f1
f2
approx solution to
maxX∈C f1(X)
approx solution to
maxX∈C f2(X)
Scoord: α-approx. solutions to maxX∈C fi(X) (i = 1, . . ., d)
=⇒ rr(Scoord) ≤ 1 − α/d.
9 / 15
Algorithm 2: Polytope
f1
f2
a: normal vector
10 / 15
Algorithm 2: Polytope
f1
f2
approx solution to
maxX∈C fa(X)
10 / 15
Algorithm 2: Polytope
f1
f2
10 / 15
Algorithm 2: Polytope
f1
f2
10 / 15
Algorithm 2: Polytope
f1
f2
S: output of Coordinate and d = 2,
=⇒ rr(S) ≤ 1 − α − O(1/k).
10 / 15
Lower Bound
f1(X) = cos
π|X|
2n
, f2(X) = sin
π|X|
2n
> π
2k
f1
f2
distance = O(1/k2
)
11 / 15
Experiment
Algorithms
• Coordinate
• Polytope
• Random: Pick k random directions a1, . . ., ak and
output the family {X1, . . ., Xk } of solutions, where Xi
is an approx solution to max
X∈C
fai
(X).
Machine
• Intel Xeon E5-2690 (2.90 GHz) CPU, 256 GB RAM
• implemented in C#
12 / 15
Data Summarization
Dataset: MovieLens
E: set of movies, si,j: similarities of movies i and j
f1(X) =
i∈E j∈X
si,j, coverage
f2(X) = λ
i∈E j∈E
si,j − λ
i∈X j∈X
si,j diversity
C = 2E
(unconstrained), 1 ≤ k ≤ 20, λ > 0,
single-objective algorithm: double greedy (1/2-approx)
[Buchbinder et al. 12]
13 / 15
Result
0 5 10 15 20
k
10−3
10−2
10−1
100
101
Estimatedregretratio
Polytope
Random
Coordinate
Result
0 5 10 15 20
k
10−3
10−2
10−1
100
101
Estimatedregretratio
Polytope
Random
Coordinate
regret ratio
decreases dramatically
14 / 15
Our Results
Extend regret ratio framework to submodular maximization
Upper Bound
Given an α-approx algorithm for (weighted) single
objective problem,
• regret ratio 1 − α/d for any d
• regret ratio 1 − α + O(1/k) for any k and d = 2.
d = # objectives, k = # of feasible solutions
Lower Bound
• Even if α = 1 and d = 2, it is impossible to achieve
regret ratio o(1/k2
).
15 / 15

Weitere ähnliche Inhalte

Was ist angesagt?

Pseudo Random Number Generators
Pseudo Random Number GeneratorsPseudo Random Number Generators
Pseudo Random Number GeneratorsDarshini Parikh
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Pierre Jacob
 
PRML Reading Chapter 11 - Sampling Method
PRML Reading Chapter 11 - Sampling MethodPRML Reading Chapter 11 - Sampling Method
PRML Reading Chapter 11 - Sampling MethodHa Phuong
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Pierre Jacob
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite IntegralSilvius
 
A series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyA series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyFrank Nielsen
 
Small updates of matrix functions used for network centrality
Small updates of matrix functions used for network centralitySmall updates of matrix functions used for network centrality
Small updates of matrix functions used for network centralityFrancesco Tudisco
 
Optimal multi-configuration approximation of an N-fermion wave function
 Optimal multi-configuration approximation of an N-fermion wave function Optimal multi-configuration approximation of an N-fermion wave function
Optimal multi-configuration approximation of an N-fermion wave functionjiang-min zhang
 
Cheatsheet unsupervised-learning
Cheatsheet unsupervised-learningCheatsheet unsupervised-learning
Cheatsheet unsupervised-learningSteve Nouri
 
Bregman divergences from comparative convexity
Bregman divergences from comparative convexityBregman divergences from comparative convexity
Bregman divergences from comparative convexityFrank Nielsen
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...Francesco Tudisco
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusMatthew Leingang
 
3.1 derivative of a function
3.1 derivative of a function3.1 derivative of a function
3.1 derivative of a functionbtmathematics
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsMatthew Leingang
 

Was ist angesagt? (20)

Pseudo Random Number Generators
Pseudo Random Number GeneratorsPseudo Random Number Generators
Pseudo Random Number Generators
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...
 
PRML Reading Chapter 11 - Sampling Method
PRML Reading Chapter 11 - Sampling MethodPRML Reading Chapter 11 - Sampling Method
PRML Reading Chapter 11 - Sampling Method
 
Absorbing Random Walk Centrality
Absorbing Random Walk CentralityAbsorbing Random Walk Centrality
Absorbing Random Walk Centrality
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite Integral
 
A series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyA series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropy
 
Small updates of matrix functions used for network centrality
Small updates of matrix functions used for network centralitySmall updates of matrix functions used for network centrality
Small updates of matrix functions used for network centrality
 
1519 differentiation-integration-02
1519 differentiation-integration-021519 differentiation-integration-02
1519 differentiation-integration-02
 
Optimal multi-configuration approximation of an N-fermion wave function
 Optimal multi-configuration approximation of an N-fermion wave function Optimal multi-configuration approximation of an N-fermion wave function
Optimal multi-configuration approximation of an N-fermion wave function
 
Asymptotic Notation
Asymptotic NotationAsymptotic Notation
Asymptotic Notation
 
Cheatsheet unsupervised-learning
Cheatsheet unsupervised-learningCheatsheet unsupervised-learning
Cheatsheet unsupervised-learning
 
Bregman divergences from comparative convexity
Bregman divergences from comparative convexityBregman divergences from comparative convexity
Bregman divergences from comparative convexity
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
 
residue
residueresidue
residue
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
 
3.1 derivative of a function
3.1 derivative of a function3.1 derivative of a function
3.1 derivative of a function
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
 
Numerical Methods 1
Numerical Methods 1Numerical Methods 1
Numerical Methods 1
 

Andere mochten auch

Fast Deterministic Algorithms for Matrix Completion Problems
Fast Deterministic Algorithms for Matrix Completion ProblemsFast Deterministic Algorithms for Matrix Completion Problems
Fast Deterministic Algorithms for Matrix Completion ProblemsTasuku Soma
 
行列補完を用いた無線マルチキャスト符号構成アルゴリズム
行列補完を用いた無線マルチキャスト符号構成アルゴリズム行列補完を用いた無線マルチキャスト符号構成アルゴリズム
行列補完を用いた無線マルチキャスト符号構成アルゴリズムTasuku Soma
 
整数格子点上の劣モジュラ被覆に対する高速アルゴリズム
整数格子点上の劣モジュラ被覆に対する高速アルゴリズム整数格子点上の劣モジュラ被覆に対する高速アルゴリズム
整数格子点上の劣モジュラ被覆に対する高速アルゴリズムTasuku Soma
 
計算情報学研究室 (数理情報学第7研究室)
計算情報学研究室  (数理情報学第7研究室) 計算情報学研究室  (数理情報学第7研究室)
計算情報学研究室 (数理情報学第7研究室) Tasuku Soma
 
Submodularity slides
Submodularity slidesSubmodularity slides
Submodularity slidesdragonthu
 
Active Content-Based Crowdsourcing Task Selection
Active Content-Based Crowdsourcing Task SelectionActive Content-Based Crowdsourcing Task Selection
Active Content-Based Crowdsourcing Task SelectionCarsten Eickhoff
 
Pythonで実現する4コマ漫画の分析・評論
Pythonで実現する4コマ漫画の分析・評論Pythonで実現する4コマ漫画の分析・評論
Pythonで実現する4コマ漫画の分析・評論esu ji
 
Chainerを使ったらカノジョができたお話
Chainerを使ったらカノジョができたお話Chainerを使ったらカノジョができたお話
Chainerを使ったらカノジョができたお話Hiroki Yamamoto
 
A Method of Speech Waveform Synthesis based on WaveNet considering Speech Gen...
A Method of Speech Waveform Synthesis based on WaveNet considering Speech Gen...A Method of Speech Waveform Synthesis based on WaveNet considering Speech Gen...
A Method of Speech Waveform Synthesis based on WaveNet considering Speech Gen...Akira Tamamori
 
Bayesian Nonparametric Motor-skill Representations for Efficient Learning of ...
Bayesian Nonparametric Motor-skill Representations for Efficient Learning of ...Bayesian Nonparametric Motor-skill Representations for Efficient Learning of ...
Bayesian Nonparametric Motor-skill Representations for Efficient Learning of ...Nishanth Koganti
 
非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出
非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出
非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出hoxo_m
 
StanとRでベイズ統計モデリング読書会(Osaka.stan) 第6章
StanとRでベイズ統計モデリング読書会(Osaka.stan) 第6章StanとRでベイズ統計モデリング読書会(Osaka.stan) 第6章
StanとRでベイズ統計モデリング読書会(Osaka.stan) 第6章Shushi Namba
 
fastTextの実装を見てみた
fastTextの実装を見てみたfastTextの実装を見てみた
fastTextの実装を見てみたYoshihiko Shiraki
 
A brief introduction to recent segmentation methods
A brief introduction to recent segmentation methodsA brief introduction to recent segmentation methods
A brief introduction to recent segmentation methodsShunta Saito
 
Dropout Distillation
Dropout DistillationDropout Distillation
Dropout DistillationShotaro Sano
 
脆弱性スキャナVulsのAWS環境への融合
脆弱性スキャナVulsのAWS環境への融合脆弱性スキャナVulsのAWS環境への融合
脆弱性スキャナVulsのAWS環境への融合Takayuki Ushida
 
Config rulesを1年ほど使い続けて分かったこと
Config rulesを1年ほど使い続けて分かったことConfig rulesを1年ほど使い続けて分かったこと
Config rulesを1年ほど使い続けて分かったことqtomonari
 
20170211クレジットカード認識
20170211クレジットカード認識20170211クレジットカード認識
20170211クレジットカード認識Takuya Minagawa
 

Andere mochten auch (20)

Fast Deterministic Algorithms for Matrix Completion Problems
Fast Deterministic Algorithms for Matrix Completion ProblemsFast Deterministic Algorithms for Matrix Completion Problems
Fast Deterministic Algorithms for Matrix Completion Problems
 
Beamertemplete
BeamertempleteBeamertemplete
Beamertemplete
 
行列補完を用いた無線マルチキャスト符号構成アルゴリズム
行列補完を用いた無線マルチキャスト符号構成アルゴリズム行列補完を用いた無線マルチキャスト符号構成アルゴリズム
行列補完を用いた無線マルチキャスト符号構成アルゴリズム
 
整数格子点上の劣モジュラ被覆に対する高速アルゴリズム
整数格子点上の劣モジュラ被覆に対する高速アルゴリズム整数格子点上の劣モジュラ被覆に対する高速アルゴリズム
整数格子点上の劣モジュラ被覆に対する高速アルゴリズム
 
計算情報学研究室 (数理情報学第7研究室)
計算情報学研究室  (数理情報学第7研究室) 計算情報学研究室  (数理情報学第7研究室)
計算情報学研究室 (数理情報学第7研究室)
 
Jokyokai20111124
Jokyokai20111124Jokyokai20111124
Jokyokai20111124
 
Submodularity slides
Submodularity slidesSubmodularity slides
Submodularity slides
 
Active Content-Based Crowdsourcing Task Selection
Active Content-Based Crowdsourcing Task SelectionActive Content-Based Crowdsourcing Task Selection
Active Content-Based Crowdsourcing Task Selection
 
Pythonで実現する4コマ漫画の分析・評論
Pythonで実現する4コマ漫画の分析・評論Pythonで実現する4コマ漫画の分析・評論
Pythonで実現する4コマ漫画の分析・評論
 
Chainerを使ったらカノジョができたお話
Chainerを使ったらカノジョができたお話Chainerを使ったらカノジョができたお話
Chainerを使ったらカノジョができたお話
 
A Method of Speech Waveform Synthesis based on WaveNet considering Speech Gen...
A Method of Speech Waveform Synthesis based on WaveNet considering Speech Gen...A Method of Speech Waveform Synthesis based on WaveNet considering Speech Gen...
A Method of Speech Waveform Synthesis based on WaveNet considering Speech Gen...
 
Bayesian Nonparametric Motor-skill Representations for Efficient Learning of ...
Bayesian Nonparametric Motor-skill Representations for Efficient Learning of ...Bayesian Nonparametric Motor-skill Representations for Efficient Learning of ...
Bayesian Nonparametric Motor-skill Representations for Efficient Learning of ...
 
非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出
非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出
非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出
 
StanとRでベイズ統計モデリング読書会(Osaka.stan) 第6章
StanとRでベイズ統計モデリング読書会(Osaka.stan) 第6章StanとRでベイズ統計モデリング読書会(Osaka.stan) 第6章
StanとRでベイズ統計モデリング読書会(Osaka.stan) 第6章
 
fastTextの実装を見てみた
fastTextの実装を見てみたfastTextの実装を見てみた
fastTextの実装を見てみた
 
A brief introduction to recent segmentation methods
A brief introduction to recent segmentation methodsA brief introduction to recent segmentation methods
A brief introduction to recent segmentation methods
 
Dropout Distillation
Dropout DistillationDropout Distillation
Dropout Distillation
 
脆弱性スキャナVulsのAWS環境への融合
脆弱性スキャナVulsのAWS環境への融合脆弱性スキャナVulsのAWS環境への融合
脆弱性スキャナVulsのAWS環境への融合
 
Config rulesを1年ほど使い続けて分かったこと
Config rulesを1年ほど使い続けて分かったことConfig rulesを1年ほど使い続けて分かったこと
Config rulesを1年ほど使い続けて分かったこと
 
20170211クレジットカード認識
20170211クレジットカード認識20170211クレジットカード認識
20170211クレジットカード認識
 

Ähnlich wie Regret Minimization in Multi-objective Submodular Function Maximization

IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionCharles Deledalle
 
Stochastic Frank-Wolfe for Constrained Finite Sum Minimization @ Montreal Opt...
Stochastic Frank-Wolfe for Constrained Finite Sum Minimization @ Montreal Opt...Stochastic Frank-Wolfe for Constrained Finite Sum Minimization @ Montreal Opt...
Stochastic Frank-Wolfe for Constrained Finite Sum Minimization @ Montreal Opt...Geoffrey Négiar
 
Problem Understanding through Landscape Theory
Problem Understanding through Landscape TheoryProblem Understanding through Landscape Theory
Problem Understanding through Landscape Theoryjfrchicanog
 
Tensor Train data format for uncertainty quantification
Tensor Train data format for uncertainty quantificationTensor Train data format for uncertainty quantification
Tensor Train data format for uncertainty quantificationAlexander Litvinenko
 
lecture01_lecture01_lecture0001_ceva.pdf
lecture01_lecture01_lecture0001_ceva.pdflecture01_lecture01_lecture0001_ceva.pdf
lecture01_lecture01_lecture0001_ceva.pdfAnaNeacsu5
 
Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Alexander Litvinenko
 
k-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture modelsk-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture modelsFrank Nielsen
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesVjekoslavKovac1
 
Distributed solution of stochastic optimal control problem on GPUs
Distributed solution of stochastic optimal control problem on GPUsDistributed solution of stochastic optimal control problem on GPUs
Distributed solution of stochastic optimal control problem on GPUsPantelis Sopasakis
 
Simplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsSimplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsPK Lehre
 
Simplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsSimplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsPer Kristian Lehre
 
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by OraclesEfficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by OraclesVissarion Fisikopoulos
 
Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Alexander Litvinenko
 
Optimization introduction
Optimization introductionOptimization introduction
Optimization introductionhelalmohammad2
 
4366 chapter7
4366 chapter74366 chapter7
4366 chapter7Sai Kumar
 

Ähnlich wie Regret Minimization in Multi-objective Submodular Function Maximization (20)

IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - Introduction
 
Stochastic Frank-Wolfe for Constrained Finite Sum Minimization @ Montreal Opt...
Stochastic Frank-Wolfe for Constrained Finite Sum Minimization @ Montreal Opt...Stochastic Frank-Wolfe for Constrained Finite Sum Minimization @ Montreal Opt...
Stochastic Frank-Wolfe for Constrained Finite Sum Minimization @ Montreal Opt...
 
Problem Understanding through Landscape Theory
Problem Understanding through Landscape TheoryProblem Understanding through Landscape Theory
Problem Understanding through Landscape Theory
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
boyd 3.1
boyd 3.1boyd 3.1
boyd 3.1
 
Tensor Train data format for uncertainty quantification
Tensor Train data format for uncertainty quantificationTensor Train data format for uncertainty quantification
Tensor Train data format for uncertainty quantification
 
lecture01_lecture01_lecture0001_ceva.pdf
lecture01_lecture01_lecture0001_ceva.pdflecture01_lecture01_lecture0001_ceva.pdf
lecture01_lecture01_lecture0001_ceva.pdf
 
Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics
 
Evaluating definite integrals
Evaluating definite integralsEvaluating definite integrals
Evaluating definite integrals
 
k-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture modelsk-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture models
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averages
 
Distributed solution of stochastic optimal control problem on GPUs
Distributed solution of stochastic optimal control problem on GPUsDistributed solution of stochastic optimal control problem on GPUs
Distributed solution of stochastic optimal control problem on GPUs
 
Simplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsSimplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution Algorithms
 
Simplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsSimplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution Algorithms
 
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by OraclesEfficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles
 
Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...
 
Optimization introduction
Optimization introductionOptimization introduction
Optimization introduction
 
QMC: Operator Splitting Workshop, Perturbed (accelerated) Proximal-Gradient A...
QMC: Operator Splitting Workshop, Perturbed (accelerated) Proximal-Gradient A...QMC: Operator Splitting Workshop, Perturbed (accelerated) Proximal-Gradient A...
QMC: Operator Splitting Workshop, Perturbed (accelerated) Proximal-Gradient A...
 
4366 chapter7
4366 chapter74366 chapter7
4366 chapter7
 
AppsDiff3c.pdf
AppsDiff3c.pdfAppsDiff3c.pdf
AppsDiff3c.pdf
 

Kürzlich hochgeladen

Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfMounikaPolabathina
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxLoriGlavin3
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxBkGupta21
 

Kürzlich hochgeladen (20)

Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdf
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptx
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptx
 

Regret Minimization in Multi-objective Submodular Function Maximization

  • 1. Regret Ratio Minimization in Multi-objective Submodular Function Maximization P(S) a Tasuku Soma (U. Tokyo) with Yuichi Yoshida (NII & PFI) 1 / 15
  • 2. Submodular Func. Maximization f : 2E → R+ is submodular: f(X + e) − f(X) ≥ f(Y + e) − f(Y) (X ⊆ Y, e ∈ E Y) “diminishing return” max f(X) s.t. X ∈ C Applications • Influence Maximization • Data Summarization, etc 2 / 15
  • 7. Multi-objective Optimization? × Exponentially Many Pareto Solutions! 4 / 15
  • 8. Multi-objective Optimization? × Exponentially Many Pareto Solutions! “Good” Subsets of Pareto Solutions • k-representative skyline queries [Lin et al. 07, Tao et al. 09] • top-k dominating queries [Yiu and Mamoulis 09] • regret minimizing database [Nanongkai et al. 10] 4 / 15
  • 9. Multi-objective Optimization? × Exponentially Many Pareto Solutions! “Good” Subsets of Pareto Solutions • k-representative skyline queries [Lin et al. 07, Tao et al. 09] • top-k dominating queries [Yiu and Mamoulis 09] • regret minimizing database [Nanongkai et al. 10] Issue These assume data points are explicitly given... 4 / 15
  • 10. Our Results Extend regret ratio framework to submodular maximization 5 / 15
  • 11. Our Results Extend regret ratio framework to submodular maximization Upper Bound Given an α-approx algorithm for (weighted) single objective problem, • regret ratio 1 − α/d for any d • regret ratio 1 − α + O(1/k) for any k and d = 2. d = # objectives, k = # of feasible solutions 5 / 15
  • 12. Our Results Extend regret ratio framework to submodular maximization Upper Bound Given an α-approx algorithm for (weighted) single objective problem, • regret ratio 1 − α/d for any d • regret ratio 1 − α + O(1/k) for any k and d = 2. d = # objectives, k = # of feasible solutions Lower Bound • Even if α = 1 and d = 2, it is impossible to achieve regret ratio o(1/k2 ). 5 / 15
  • 13. Regret Ratio Single Objective The regret ratio for S ⊆ C and f is rr(S) = 1 − maxX∈S f(X) maxX∈C f(X) . 6 / 15
  • 14. Regret Ratio Single Objective The regret ratio for S ⊆ C and f is rr(S) = 1 − maxX∈S f(X) maxX∈C f(X) . Multi Objective The regret ratio for S ⊆ C and f1, . . ., fd is rrf1,...,fd,C(S) = max a∈Rd + rrfa,C(S), where fa := a1f1 + · · · + adfd. (linear weighting) 6 / 15
  • 15. Geometry of Regret Ratio f1 f2 Pareto opt point 7 / 15
  • 16. Geometry of Regret Ratio f1 f2 Pareto opt point P(S) point in S 7 / 15
  • 17. Geometry of Regret Ratio f1 f2 Pareto opt point P(S) point in S ε−1 P(S) rr(S) ≤ 1 − ε ⇐⇒ f(X) ∈ ε−1 P(S) (X ∈ C). 7 / 15
  • 18. Regret Ratio Minimization Given: f1, . . ., fd: submodular, C ⊆ 2E , k > 0 minimize rr(S) subject to S ⊆ C, |S| ≤ k. 8 / 15
  • 19. Algorithm 1: Coordinate f1 f2 approx solution to maxX∈C f1(X) approx solution to maxX∈C f2(X) Scoord: α-approx. solutions to maxX∈C fi(X) (i = 1, . . ., d) =⇒ rr(Scoord) ≤ 1 − α/d. 9 / 15
  • 20. Algorithm 2: Polytope f1 f2 a: normal vector 10 / 15
  • 21. Algorithm 2: Polytope f1 f2 approx solution to maxX∈C fa(X) 10 / 15
  • 24. Algorithm 2: Polytope f1 f2 S: output of Coordinate and d = 2, =⇒ rr(S) ≤ 1 − α − O(1/k). 10 / 15
  • 25. Lower Bound f1(X) = cos π|X| 2n , f2(X) = sin π|X| 2n > π 2k f1 f2 distance = O(1/k2 ) 11 / 15
  • 26. Experiment Algorithms • Coordinate • Polytope • Random: Pick k random directions a1, . . ., ak and output the family {X1, . . ., Xk } of solutions, where Xi is an approx solution to max X∈C fai (X). Machine • Intel Xeon E5-2690 (2.90 GHz) CPU, 256 GB RAM • implemented in C# 12 / 15
  • 27. Data Summarization Dataset: MovieLens E: set of movies, si,j: similarities of movies i and j f1(X) = i∈E j∈X si,j, coverage f2(X) = λ i∈E j∈E si,j − λ i∈X j∈X si,j diversity C = 2E (unconstrained), 1 ≤ k ≤ 20, λ > 0, single-objective algorithm: double greedy (1/2-approx) [Buchbinder et al. 12] 13 / 15
  • 28. Result 0 5 10 15 20 k 10−3 10−2 10−1 100 101 Estimatedregretratio Polytope Random Coordinate
  • 29. Result 0 5 10 15 20 k 10−3 10−2 10−1 100 101 Estimatedregretratio Polytope Random Coordinate regret ratio decreases dramatically 14 / 15
  • 30. Our Results Extend regret ratio framework to submodular maximization Upper Bound Given an α-approx algorithm for (weighted) single objective problem, • regret ratio 1 − α/d for any d • regret ratio 1 − α + O(1/k) for any k and d = 2. d = # objectives, k = # of feasible solutions Lower Bound • Even if α = 1 and d = 2, it is impossible to achieve regret ratio o(1/k2 ). 15 / 15