SlideShare a Scribd company logo
1 of 29
Download to read offline
MTH 263  
Probability and Random Variables
                       Lecture 1
                     Dr. Sobia Baig
         Electrical Engineering Department
  COMSATS Institute of Information Technology, Lahore
Contents
• Probability and Random Variables‐brief
  Probability and Random Variables brief 
  introduction/motivation
• Mathematical Models as tools in Analysis and
  Mathematical Models as tools in Analysis and 
  Design
  –D t
    Deterministic Models
           i i ti M d l
  – Probability Models
• Examples


          Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   2
A Typical Communication System
 A Typical Communication System




• Probabilistic methods in making decisions 
                        /               g
  about the transmitted/received message 



          Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   3
Digital Communication with 
     Probability of Error
         b bl     f




  Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   4
Probability/ Uncertainty Element in 
                Systems
• Wireless communication networks provide voice 
      e ess co    u cat o et o s p o de o ce
  and data communications to mobile users in 
  severe interference environments.
• The vast majority of media signals, voice, audio, 
  images, and video are processed digitally.
• The systems the designers build are 
  unprecedented in scale and the chaotic 
  environments in which they must operate are 
  environments in which they must operate are
  untrodden terrritory. 
• So there is “Uncertainty”
  So there is  Uncertainty
           Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   5
Probability Models
            Probability Models
• Probability models are one of the tools that
  Probability models are one of the tools that 
  enable the designer to make sense out of the 
  chaos and to successfully build systems that 
  chaos and to successfully build systems that
  are efficient, reliable, and cost effective




          Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   6
MATHEMATICAL MODELS AS TOOLS IN ANALYSIS 
             AND DESIGN
             AND DESIGN
• Experiments: Costly way of testing a design or solve a 
  problem. 
• Model: Approximate representation of a physical situation. 
• Useful Model: Able to explain all relevant aspects of a given
  Useful Model: Able to explain all relevant aspects of a given 
  phenomenon. 
• Mathematical Models: If observational phenomenon has 
  measurable properties then a mathematical model 
  measurable properties then a mathematical model
  consisting of a set of assumptions about the system is 
  employed
• Conditions under which an experiment is performed and a
  Conditions under which an experiment is performed and a 
  model is assumed are very critical. Change the assumptions 
  then a “good” model can be a great failure.


             Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   7
Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   8
Computer Simulations & Deterministic 
             Models 
                 d l
• Computer Simulation Models: They mimic or 
       p                             y
  simulate the dynamics of a system 
• Deterministic Models: Lab and textbook cases, 
  conditions determine outcome 
  conditions determine outcome
• 1. Circuit Theory 
• 2 Ohm’s Law
  2. Ohm s Law 
• 3. Kirchoffs’ Laws 
• 4 Transforms: FFT; Laplace Transforms
  4. Transforms: FFT; Laplace Transforms 
• 5. Convolution :Input/output behavior of systems 
  with well‐defined coefficients 

          Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   9
Probability Models
                     Probability Models
 • Probabilistic (Stochastic Random) Models:
   Probabilistic (Stochastic, Random) Models: 
   involve phenomena that exhibit unpredictable 
   variation and randomness. 
   variation and randomness

Ex: Urn with three balls; (0,1,2 
           h h     b ll (
marked) 
‐‐ Outcome: A number from the set 
{ , , }
{0,1,2} 
‐‐ Sample Space: All possible 
outcomes of an experiment: S = 
{0,1,2} 


                   Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   10
Statistical Regularity
          Statistical Regularity
• Relative Frequency:
  Relative Frequency: 




          Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   11
Statistical Regularity
Statistical Regularity




Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   12
Statistical Regularity
Statistical Regularity




Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   13
Properties of Relative Frequency 
  Properties of Relative Frequency
• Suppose a random experiment has K possible
  Suppose a random experiment has K possible 
  outcomes: S = {1,2,…,K}. Then in “n” trials we 
  have 
  have




Ex: Consider the 3‐ball urn experiment 
A: even = {0,2} then, 


                 Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   14
• Disjoint (mutually exclusive) events: If A or B
  Disjoint (mutually exclusive) events: If A or B 
  can occur but not both, then

• Relative frequency of two disjoint events is 
  the sum of their individual relative frequency. 
   h         f h i i di id l l i f
•



           Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   15
Axioms of Probability
              Axioms of Probability
• Kolmogorov’s axioms to form a Theory of Probability: 
   Assumptions: 
1. Random experiment has been defined and the sample 
   space S has been identified. 
2. A class of subsets of S has been specified. 
3. Each event A has been assigned a number P(A) such that, 
   – 1 0 ≤ P(A) ≤ 1
     1. 0 ≤ P(A) ≤ 1 
   – 2. P(S) = 1 
   – 3. If A and B are mutually exclusive events then 
       • P(A or B) = P(A) + P(B)
         P(A or B) = P(A) + P(B) 


• Kolmogorov’s axioms are sufficient to build a consistent 
  Theory of Probability. 
  Theory of Probability
               Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   16
Example
• Example: Packet Voice Communication
  Example: Packet Voice Communication 
  system Efficiency 
• Due to silences voice communication is very
  Due to silences voice communication is very 
  inefficient on dedicated lines. It is observed 
  that only “1/3” of the time actual speech goes 
  through. How to increase this rate by using 
  prob. approaches??? 
• Solution: Error vs rate trade off in digital 
  information (BCS) transmission/storage 

          Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   17
Packet Voice Communication system 
           Efficiency (2)
             ff       ( )




      Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   18
Packet Voice Communication system 
             Efficiency (3)
               ff       ( )
• A is the outcome of a random experiment, determining which 
                                    p       ,         g
  packets contain active speech
• M<48 packets are transmitted every 10 ms
• If A≤ M, then all packets are active
• If A> M, then A‐M active packets are discarded randomly 




             Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   19
Packet Voice Communication system 
            Efficiency (4)
              ff       ( )
• E[A]=48*1/3
  E[A]=48 1/3
• E[A]=16




         Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   20
Example




Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   21
Example: Signal Enhancement Using 
               Filters 
                 l
• Given a signal x(t) corrupted with noise and
  Given a signal x(t) corrupted with noise and 
  has a Signal‐to‐Noise Ratio value SNR. If you 
  filter this noisy signal with a properly designed 
  filter this noisy signal with a properly designed
  adaptive filter to suppress noise, we obtain an 
  enhanced signal, (smoothed by the filter.) 
  enhanced signal (smoothed by the filter )




           Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   22
Example: Signal Enhancement Using 
              Filters 
                l




      Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   23
Resource Sharing
              Resource Sharing
• Example: Multi User Systems with Queues:
  Example: Multi User Systems with Queues: 
  Resource sharing 




         Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   24
Multi User Systems with Queues: 
        Resource sharing 
                  h




     Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   25
System Reliability: Cascade vs. Parallel 
               Systems 
• Issues: Need of a clock vs the system delay or
  Issues: Need of a clock vs. the system delay or 
  throughput rate. 




          Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   26
Problem




Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   27
Reading Assignment
          Reading Assignment
• Text Book Chapter 1 pages 17 ‐34
  Text Book, Chapter 1, pages 17  34




          Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   28
Summary
• Mathematical Models
   – Relate system parameters and variables
   – Allow system designers to predict system performance by using 
     equations
   – Experimentation may be too costly
     Experimentation may be too costly
   – Experimentation may not be feasible
• Computer simulation models predict system performance
• Deterministic models give output of an experiment with an exact
  Deterministic models give output of an experiment with an exact 
  outcome
• Probability models determine probabilities of the possible 
  outcomes
• Probabilities and averages for a random experiment can be found 
  experimentally by computing relative frequencies and sample 
  averages in a large number of trials of experiment


              Probability and Random Variables, Lecture 1, by Dr. Sobia Baig   29

More Related Content

What's hot

Meta-evaluation of machine translation evaluation methods
Meta-evaluation of machine translation evaluation methodsMeta-evaluation of machine translation evaluation methods
Meta-evaluation of machine translation evaluation methodsLifeng (Aaron) Han
 
NLP Project Presentation
NLP Project PresentationNLP Project Presentation
NLP Project PresentationAryak Sengupta
 
Classifying Non-Referential It for Question Answer Pairs
Classifying Non-Referential It for Question Answer PairsClassifying Non-Referential It for Question Answer Pairs
Classifying Non-Referential It for Question Answer PairsJinho Choi
 
Mlintro 120730222641-phpapp01-210624192524
Mlintro 120730222641-phpapp01-210624192524Mlintro 120730222641-phpapp01-210624192524
Mlintro 120730222641-phpapp01-210624192524Scott Domes
 
Presentation of Domain Specific Question Answering System Using N-gram Approach.
Presentation of Domain Specific Question Answering System Using N-gram Approach.Presentation of Domain Specific Question Answering System Using N-gram Approach.
Presentation of Domain Specific Question Answering System Using N-gram Approach.Tasnim Ara Islam
 
VOC real world enterprise needs
VOC real world enterprise needsVOC real world enterprise needs
VOC real world enterprise needsIvan Berlocher
 
CUHK intern PPT. Machine Translation Evaluation: Methods and Tools
CUHK intern PPT. Machine Translation Evaluation: Methods and Tools CUHK intern PPT. Machine Translation Evaluation: Methods and Tools
CUHK intern PPT. Machine Translation Evaluation: Methods and Tools Lifeng (Aaron) Han
 
Detection of SOA Antipatterns
Detection of SOA AntipatternsDetection of SOA Antipatterns
Detection of SOA AntipatternsFrancis Palma
 
Natural Language Processing Advancements By Deep Learning - A Survey
Natural Language Processing Advancements By Deep Learning - A SurveyNatural Language Processing Advancements By Deep Learning - A Survey
Natural Language Processing Advancements By Deep Learning - A SurveyAkshayaNagarajan10
 
Nlp presentation
Nlp presentationNlp presentation
Nlp presentationSurya Sg
 
Nlp research presentation
Nlp research presentationNlp research presentation
Nlp research presentationSurya Sg
 
NLP Bootcamp 2018 : Representation Learning of text for NLP
NLP Bootcamp 2018 : Representation Learning of text for NLPNLP Bootcamp 2018 : Representation Learning of text for NLP
NLP Bootcamp 2018 : Representation Learning of text for NLPAnuj Gupta
 
Machine Learning Applications in NLP.ppt
Machine Learning Applications in NLP.pptMachine Learning Applications in NLP.ppt
Machine Learning Applications in NLP.pptbutest
 
IIT-TUDA at SemEval-2016 Task 5: Beyond Sentiment Lexicon: Combining Domain ...
IIT-TUDA at SemEval-2016 Task 5: Beyond Sentiment Lexicon: Combining Domain ...IIT-TUDA at SemEval-2016 Task 5: Beyond Sentiment Lexicon: Combining Domain ...
IIT-TUDA at SemEval-2016 Task 5: Beyond Sentiment Lexicon: Combining Domain ...Alexander Panchenko
 
Apply chinese radicals into neural machine translation: deeper than character...
Apply chinese radicals into neural machine translation: deeper than character...Apply chinese radicals into neural machine translation: deeper than character...
Apply chinese radicals into neural machine translation: deeper than character...Lifeng (Aaron) Han
 
Anthiil Inside workshop on NLP
Anthiil Inside workshop on NLPAnthiil Inside workshop on NLP
Anthiil Inside workshop on NLPSatyam Saxena
 
Chapter 02 collaborative recommendation
Chapter 02   collaborative recommendationChapter 02   collaborative recommendation
Chapter 02 collaborative recommendationAravindharamanan S
 

What's hot (20)

Meta-evaluation of machine translation evaluation methods
Meta-evaluation of machine translation evaluation methodsMeta-evaluation of machine translation evaluation methods
Meta-evaluation of machine translation evaluation methods
 
NLP Project Presentation
NLP Project PresentationNLP Project Presentation
NLP Project Presentation
 
Classifying Non-Referential It for Question Answer Pairs
Classifying Non-Referential It for Question Answer PairsClassifying Non-Referential It for Question Answer Pairs
Classifying Non-Referential It for Question Answer Pairs
 
Mlintro 120730222641-phpapp01-210624192524
Mlintro 120730222641-phpapp01-210624192524Mlintro 120730222641-phpapp01-210624192524
Mlintro 120730222641-phpapp01-210624192524
 
Presentation of Domain Specific Question Answering System Using N-gram Approach.
Presentation of Domain Specific Question Answering System Using N-gram Approach.Presentation of Domain Specific Question Answering System Using N-gram Approach.
Presentation of Domain Specific Question Answering System Using N-gram Approach.
 
VOC real world enterprise needs
VOC real world enterprise needsVOC real world enterprise needs
VOC real world enterprise needs
 
CUHK intern PPT. Machine Translation Evaluation: Methods and Tools
CUHK intern PPT. Machine Translation Evaluation: Methods and Tools CUHK intern PPT. Machine Translation Evaluation: Methods and Tools
CUHK intern PPT. Machine Translation Evaluation: Methods and Tools
 
SentiCircles for Contextual and Conceptual Semantic Sentiment Analysis of Twi...
SentiCircles for Contextual and Conceptual Semantic Sentiment Analysis of Twi...SentiCircles for Contextual and Conceptual Semantic Sentiment Analysis of Twi...
SentiCircles for Contextual and Conceptual Semantic Sentiment Analysis of Twi...
 
Detection of SOA Antipatterns
Detection of SOA AntipatternsDetection of SOA Antipatterns
Detection of SOA Antipatterns
 
Natural Language Processing Advancements By Deep Learning - A Survey
Natural Language Processing Advancements By Deep Learning - A SurveyNatural Language Processing Advancements By Deep Learning - A Survey
Natural Language Processing Advancements By Deep Learning - A Survey
 
Nlp presentation
Nlp presentationNlp presentation
Nlp presentation
 
Nlp research presentation
Nlp research presentationNlp research presentation
Nlp research presentation
 
NLP Bootcamp
NLP BootcampNLP Bootcamp
NLP Bootcamp
 
NLP Bootcamp 2018 : Representation Learning of text for NLP
NLP Bootcamp 2018 : Representation Learning of text for NLPNLP Bootcamp 2018 : Representation Learning of text for NLP
NLP Bootcamp 2018 : Representation Learning of text for NLP
 
Machine Learning Applications in NLP.ppt
Machine Learning Applications in NLP.pptMachine Learning Applications in NLP.ppt
Machine Learning Applications in NLP.ppt
 
IIT-TUDA at SemEval-2016 Task 5: Beyond Sentiment Lexicon: Combining Domain ...
IIT-TUDA at SemEval-2016 Task 5: Beyond Sentiment Lexicon: Combining Domain ...IIT-TUDA at SemEval-2016 Task 5: Beyond Sentiment Lexicon: Combining Domain ...
IIT-TUDA at SemEval-2016 Task 5: Beyond Sentiment Lexicon: Combining Domain ...
 
Adapting Sentiment Lexicons using Contextual Semantics for Sentiment Analysis...
Adapting Sentiment Lexicons using Contextual Semantics for Sentiment Analysis...Adapting Sentiment Lexicons using Contextual Semantics for Sentiment Analysis...
Adapting Sentiment Lexicons using Contextual Semantics for Sentiment Analysis...
 
Apply chinese radicals into neural machine translation: deeper than character...
Apply chinese radicals into neural machine translation: deeper than character...Apply chinese radicals into neural machine translation: deeper than character...
Apply chinese radicals into neural machine translation: deeper than character...
 
Anthiil Inside workshop on NLP
Anthiil Inside workshop on NLPAnthiil Inside workshop on NLP
Anthiil Inside workshop on NLP
 
Chapter 02 collaborative recommendation
Chapter 02   collaborative recommendationChapter 02   collaborative recommendation
Chapter 02 collaborative recommendation
 

Viewers also liked

Viewers also liked (6)

Quantitative Techniques random variables
Quantitative Techniques random variablesQuantitative Techniques random variables
Quantitative Techniques random variables
 
4주차
4주차4주차
4주차
 
5주차
5주차5주차
5주차
 
Introduction to random variables
Introduction to random variablesIntroduction to random variables
Introduction to random variables
 
Random variables
Random variablesRandom variables
Random variables
 
Mathematical Expectation And Variance
Mathematical Expectation And VarianceMathematical Expectation And Variance
Mathematical Expectation And Variance
 

Similar to Mth263 lecture 1

Module 1 sp
Module 1 spModule 1 sp
Module 1 spVijaya79
 
Mth263 lecture 4
Mth263 lecture 4Mth263 lecture 4
Mth263 lecture 4tariq88
 
Mth263 lecture 2
Mth263 lecture 2Mth263 lecture 2
Mth263 lecture 2tariq88
 
Mth263 lecture 2
Mth263 lecture 2Mth263 lecture 2
Mth263 lecture 2tariq88
 
Statistical Significance Testing in Information Retrieval: An Empirical Analy...
Statistical Significance Testing in Information Retrieval: An Empirical Analy...Statistical Significance Testing in Information Retrieval: An Empirical Analy...
Statistical Significance Testing in Information Retrieval: An Empirical Analy...Julián Urbano
 
Mth263 lecture 6
Mth263 lecture 6Mth263 lecture 6
Mth263 lecture 6tariq88
 
Mth263 lecture 6
Mth263 lecture 6Mth263 lecture 6
Mth263 lecture 6tariq88
 
Design and Application of Experiments and User Studies
Design and Application of Experiments and User StudiesDesign and Application of Experiments and User Studies
Design and Application of Experiments and User StudiesVictor Adriel Oliveira
 
Strong Heredity Models in High Dimensional Data
Strong Heredity Models in High Dimensional DataStrong Heredity Models in High Dimensional Data
Strong Heredity Models in High Dimensional Datasahirbhatnagar
 
(I Can't Get No) Saturation: A Simulation and Guidelines for Minimum Sample S...
(I Can't Get No) Saturation: A Simulation and Guidelines for Minimum Sample S...(I Can't Get No) Saturation: A Simulation and Guidelines for Minimum Sample S...
(I Can't Get No) Saturation: A Simulation and Guidelines for Minimum Sample S...Gemma Derrick
 
DMTM Lecture 10 Classification ensembles
DMTM Lecture 10 Classification ensemblesDMTM Lecture 10 Classification ensembles
DMTM Lecture 10 Classification ensemblesPier Luca Lanzi
 
Neha agarwal iv 18.11.16
Neha agarwal iv 18.11.16Neha agarwal iv 18.11.16
Neha agarwal iv 18.11.16neha_ag
 
NETW601_Lecture01_2016, transmission and switching course
NETW601_Lecture01_2016, transmission and switching  courseNETW601_Lecture01_2016, transmission and switching  course
NETW601_Lecture01_2016, transmission and switching courseAbduljawad Taher
 
ECE462 CommunicationIILecture1.pdf
ECE462 CommunicationIILecture1.pdfECE462 CommunicationIILecture1.pdf
ECE462 CommunicationIILecture1.pdfSayedHassan84
 
QoMEX2014 - Analysing the Quality of Experience of Multisensory Media from Me...
QoMEX2014 - Analysing the Quality of Experience of Multisensory Media from Me...QoMEX2014 - Analysing the Quality of Experience of Multisensory Media from Me...
QoMEX2014 - Analysing the Quality of Experience of Multisensory Media from Me...Jacob Donley
 
Machine reading for cancer biology
Machine reading for cancer biologyMachine reading for cancer biology
Machine reading for cancer biologyLaura Berry
 

Similar to Mth263 lecture 1 (20)

Module 1 sp
Module 1 spModule 1 sp
Module 1 sp
 
Mth263 lecture 4
Mth263 lecture 4Mth263 lecture 4
Mth263 lecture 4
 
Mth263 lecture 2
Mth263 lecture 2Mth263 lecture 2
Mth263 lecture 2
 
Mth263 lecture 2
Mth263 lecture 2Mth263 lecture 2
Mth263 lecture 2
 
Statistical Significance Testing in Information Retrieval: An Empirical Analy...
Statistical Significance Testing in Information Retrieval: An Empirical Analy...Statistical Significance Testing in Information Retrieval: An Empirical Analy...
Statistical Significance Testing in Information Retrieval: An Empirical Analy...
 
Mth263 lecture 6
Mth263 lecture 6Mth263 lecture 6
Mth263 lecture 6
 
Mth263 lecture 6
Mth263 lecture 6Mth263 lecture 6
Mth263 lecture 6
 
Design and Application of Experiments and User Studies
Design and Application of Experiments and User StudiesDesign and Application of Experiments and User Studies
Design and Application of Experiments and User Studies
 
Strong Heredity Models in High Dimensional Data
Strong Heredity Models in High Dimensional DataStrong Heredity Models in High Dimensional Data
Strong Heredity Models in High Dimensional Data
 
(I Can't Get No) Saturation: A Simulation and Guidelines for Minimum Sample S...
(I Can't Get No) Saturation: A Simulation and Guidelines for Minimum Sample S...(I Can't Get No) Saturation: A Simulation and Guidelines for Minimum Sample S...
(I Can't Get No) Saturation: A Simulation and Guidelines for Minimum Sample S...
 
DMTM Lecture 10 Classification ensembles
DMTM Lecture 10 Classification ensemblesDMTM Lecture 10 Classification ensembles
DMTM Lecture 10 Classification ensembles
 
Spatially explicit individual based modeling
Spatially explicit individual based modelingSpatially explicit individual based modeling
Spatially explicit individual based modeling
 
Neha agarwal iv 18.11.16
Neha agarwal iv 18.11.16Neha agarwal iv 18.11.16
Neha agarwal iv 18.11.16
 
Machine Learning, Stock Market and Chaos
Machine Learning, Stock Market and Chaos Machine Learning, Stock Market and Chaos
Machine Learning, Stock Market and Chaos
 
NETW601_Lecture01_2016, transmission and switching course
NETW601_Lecture01_2016, transmission and switching  courseNETW601_Lecture01_2016, transmission and switching  course
NETW601_Lecture01_2016, transmission and switching course
 
STAN_MS_PPT.pptx
STAN_MS_PPT.pptxSTAN_MS_PPT.pptx
STAN_MS_PPT.pptx
 
ECE462 CommunicationIILecture1.pdf
ECE462 CommunicationIILecture1.pdfECE462 CommunicationIILecture1.pdf
ECE462 CommunicationIILecture1.pdf
 
Exposé Ontology
Exposé OntologyExposé Ontology
Exposé Ontology
 
QoMEX2014 - Analysing the Quality of Experience of Multisensory Media from Me...
QoMEX2014 - Analysing the Quality of Experience of Multisensory Media from Me...QoMEX2014 - Analysing the Quality of Experience of Multisensory Media from Me...
QoMEX2014 - Analysing the Quality of Experience of Multisensory Media from Me...
 
Machine reading for cancer biology
Machine reading for cancer biologyMachine reading for cancer biology
Machine reading for cancer biology
 

Mth263 lecture 1

  • 1. MTH 263   Probability and Random Variables Lecture 1 Dr. Sobia Baig Electrical Engineering Department COMSATS Institute of Information Technology, Lahore
  • 2. Contents • Probability and Random Variables‐brief Probability and Random Variables brief  introduction/motivation • Mathematical Models as tools in Analysis and Mathematical Models as tools in Analysis and  Design –D t Deterministic Models i i ti M d l – Probability Models • Examples Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 2
  • 3. A Typical Communication System A Typical Communication System • Probabilistic methods in making decisions  / g about the transmitted/received message  Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 3
  • 4. Digital Communication with  Probability of Error b bl f Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 4
  • 5. Probability/ Uncertainty Element in  Systems • Wireless communication networks provide voice  e ess co u cat o et o s p o de o ce and data communications to mobile users in  severe interference environments. • The vast majority of media signals, voice, audio,  images, and video are processed digitally. • The systems the designers build are  unprecedented in scale and the chaotic  environments in which they must operate are  environments in which they must operate are untrodden terrritory.  • So there is “Uncertainty” So there is  Uncertainty Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 5
  • 6. Probability Models Probability Models • Probability models are one of the tools that Probability models are one of the tools that  enable the designer to make sense out of the  chaos and to successfully build systems that  chaos and to successfully build systems that are efficient, reliable, and cost effective Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 6
  • 7. MATHEMATICAL MODELS AS TOOLS IN ANALYSIS  AND DESIGN AND DESIGN • Experiments: Costly way of testing a design or solve a  problem.  • Model: Approximate representation of a physical situation.  • Useful Model: Able to explain all relevant aspects of a given Useful Model: Able to explain all relevant aspects of a given  phenomenon.  • Mathematical Models: If observational phenomenon has  measurable properties then a mathematical model  measurable properties then a mathematical model consisting of a set of assumptions about the system is  employed • Conditions under which an experiment is performed and a Conditions under which an experiment is performed and a  model is assumed are very critical. Change the assumptions  then a “good” model can be a great failure. Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 7
  • 9. Computer Simulations & Deterministic  Models  d l • Computer Simulation Models: They mimic or  p y simulate the dynamics of a system  • Deterministic Models: Lab and textbook cases,  conditions determine outcome  conditions determine outcome • 1. Circuit Theory  • 2 Ohm’s Law 2. Ohm s Law  • 3. Kirchoffs’ Laws  • 4 Transforms: FFT; Laplace Transforms 4. Transforms: FFT; Laplace Transforms  • 5. Convolution :Input/output behavior of systems  with well‐defined coefficients  Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 9
  • 10. Probability Models Probability Models • Probabilistic (Stochastic Random) Models: Probabilistic (Stochastic, Random) Models:  involve phenomena that exhibit unpredictable  variation and randomness.  variation and randomness Ex: Urn with three balls; (0,1,2  h h b ll ( marked)  ‐‐ Outcome: A number from the set  { , , } {0,1,2}  ‐‐ Sample Space: All possible  outcomes of an experiment: S =  {0,1,2}  Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 10
  • 11. Statistical Regularity Statistical Regularity • Relative Frequency: Relative Frequency:  Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 11
  • 14. Properties of Relative Frequency  Properties of Relative Frequency • Suppose a random experiment has K possible Suppose a random experiment has K possible  outcomes: S = {1,2,…,K}. Then in “n” trials we  have  have Ex: Consider the 3‐ball urn experiment  A: even = {0,2} then,  Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 14
  • 15. • Disjoint (mutually exclusive) events: If A or B Disjoint (mutually exclusive) events: If A or B  can occur but not both, then • Relative frequency of two disjoint events is  the sum of their individual relative frequency.  h f h i i di id l l i f • Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 15
  • 16. Axioms of Probability Axioms of Probability • Kolmogorov’s axioms to form a Theory of Probability:  Assumptions:  1. Random experiment has been defined and the sample  space S has been identified.  2. A class of subsets of S has been specified.  3. Each event A has been assigned a number P(A) such that,  – 1 0 ≤ P(A) ≤ 1 1. 0 ≤ P(A) ≤ 1  – 2. P(S) = 1  – 3. If A and B are mutually exclusive events then  • P(A or B) = P(A) + P(B) P(A or B) = P(A) + P(B)  • Kolmogorov’s axioms are sufficient to build a consistent  Theory of Probability.  Theory of Probability Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 16
  • 17. Example • Example: Packet Voice Communication Example: Packet Voice Communication  system Efficiency  • Due to silences voice communication is very Due to silences voice communication is very  inefficient on dedicated lines. It is observed  that only “1/3” of the time actual speech goes  through. How to increase this rate by using  prob. approaches???  • Solution: Error vs rate trade off in digital  information (BCS) transmission/storage  Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 17
  • 18. Packet Voice Communication system  Efficiency (2) ff ( ) Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 18
  • 19. Packet Voice Communication system  Efficiency (3) ff ( ) • A is the outcome of a random experiment, determining which  p , g packets contain active speech • M<48 packets are transmitted every 10 ms • If A≤ M, then all packets are active • If A> M, then A‐M active packets are discarded randomly  Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 19
  • 20. Packet Voice Communication system  Efficiency (4) ff ( ) • E[A]=48*1/3 E[A]=48 1/3 • E[A]=16 Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 20
  • 22. Example: Signal Enhancement Using  Filters  l • Given a signal x(t) corrupted with noise and Given a signal x(t) corrupted with noise and  has a Signal‐to‐Noise Ratio value SNR. If you  filter this noisy signal with a properly designed  filter this noisy signal with a properly designed adaptive filter to suppress noise, we obtain an  enhanced signal, (smoothed by the filter.)  enhanced signal (smoothed by the filter ) Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 22
  • 23. Example: Signal Enhancement Using  Filters  l Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 23
  • 24. Resource Sharing Resource Sharing • Example: Multi User Systems with Queues: Example: Multi User Systems with Queues:  Resource sharing  Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 24
  • 25. Multi User Systems with Queues:  Resource sharing  h Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 25
  • 26. System Reliability: Cascade vs. Parallel  Systems  • Issues: Need of a clock vs the system delay or Issues: Need of a clock vs. the system delay or  throughput rate.  Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 26
  • 28. Reading Assignment Reading Assignment • Text Book Chapter 1 pages 17 ‐34 Text Book, Chapter 1, pages 17  34 Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 28
  • 29. Summary • Mathematical Models – Relate system parameters and variables – Allow system designers to predict system performance by using  equations – Experimentation may be too costly Experimentation may be too costly – Experimentation may not be feasible • Computer simulation models predict system performance • Deterministic models give output of an experiment with an exact Deterministic models give output of an experiment with an exact  outcome • Probability models determine probabilities of the possible  outcomes • Probabilities and averages for a random experiment can be found  experimentally by computing relative frequencies and sample  averages in a large number of trials of experiment Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 29