SlideShare ist ein Scribd-Unternehmen logo
1 von 5
Downloaden Sie, um offline zu lesen
Thi thử Đại học www.toanpt.net
TRƯỜNG THPT PHƯỚC BÌNH ĐỀ THI THỬ ĐẠI HỌC LẦN 3 NĂM HỌC 2010-2011
TX. PHƯỚC LONG – BÌNH PHƯỚC Môn thi: TOÁN
Thời gian làm bài 180 phút (không kể thời gian giao đề)
( Đề thi gồm có 1 trang)
PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm )
Câu I: ( 2 điểm ) Cho hàm số



x
y
x
2
2 3
(C)
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2. Lập phương trình tiếp tuyến của đồ thị (C) sao cho tiếp tuyến này cắt các trục Ox , Oy lần lượt tại
các điểm A và B đồng thời đường trung trực của đoạn thẳng AB đi qua góc tọa độ O(0;0).
Câu II: ( 3 điểm )
1. Giải phương trình: 2sin6 2sin 4 3 os2 3 sin 2x x c x x   
2. Giải hệ phương trình :
     

   
x y y y x
x y x
3 3 2
8 3 5 4 3
2 5 2 2
3. Tính tích phân:
 
 
x x x
I dx
x
32 2 3
4
1
2011
Câu III: ( 1 điểm )
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân đỉnh A, 2AB a . Gọi I là trung điểm của
BC, hình chiếu vuông góc H của S lên mặt đáy (ABC) thỏa mãn: 2IA IH 
 
, góc giữa SC và mặt đáy
(ABC) bằng 600
. Hãy tính thể tích khối chóp S.ABC và khoảng cách từ trung điểm K của SB tới
(SAH).
Câu IV: ( 1 điểm ) Tìm m để hệ phương trình sau có nghiệm với 2:x 2 2
3
3 5
x y
x y m
 

   
PHẦN RIÊNG ( 3 điểm ): Thí sinh chỉ được làm một trong hai phần ( phần A hoặc B )
A. Theo chương trình chuẩn:
Câu Va: ( 2 điểm )
1. Trong mặt phẳng với hệ tọa độ Oxy cho các đường tròn    C x y
2 2
1
1
( ): 1
2
và
      C x y
2 2
2( ): 2 2 4. Viết phương trình đường thẳng d tiếp xúc với đường tròn C1( ) và
cắt đường tròn C2( ) tại hai điểm M, N sao cho MN 2 2
2. Trong không gian với hệ tọa độ Oxyz cho hình thang cân ABCD có đáy lớn AB và tọa độ các
đỉnh A(1;-1;-2), B(-1;1;0), C(0;-1;2). Xác định tọa độ đỉnh D.
Câu VIa: ( 1 điểm ) Tìm số phức z có môđun nhỏ nhất thỏa mãn:
 

 
z i
z i
1 5
2
3
B. Theo chương trình nâng cao:
Câu Vb: ( 2 điểm )
1. Trong mặt phẳng với hệ toạ độ Oxy, cho hình chữ nhật ABCD có diện tích 12, tâm
 
 
 
I
9 3
;
2 2
và
trung điểm của cạnh AD là M(3;0). Xác định tọa độ các đỉnh còn lại của hình chữ nhật ABCD.
2. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng
 
 
x y
d z
1 1
:
3 1
và mặt phẳng
   P x y z( ):2 2 2 0. Lập phương trình mặt cầu S( ) có tâm nằm trên đường thẳng d có bán
kính nhỏ nhất tiếp xúc với P( ) và đi qua điểm A(1;-1;1).
Câu VIb: ( 1 điểm ) Tìm số nguyên dương n biết:
       
            
k k k n n
n n n nC C k k C n n C2 3 2 2 1 2 1
2 1 2 1 2 1 2 12 3.2.2 ... 1 1 2 ... 2 2 1 2 40200
**************HẾT**************
ĐỀ CHÍNH THỨC
Thi thử Đại học www.toanpt.net
ĐÁP ÁN VÀ THANG ĐIỂM ĐỀ THI THỬ ĐẠI HỌC LẦN 3 ( MÔN TOÁN )
CÂU NỘI DUNG ĐIỂM
I1
TXĐ , đạo hàm 0.25
 
 
   
x x
y y
3 3
2 2
lim , lim  x = -3/2 TCĐ


x
y
1
lim
2
 y=1/2 TCN
0.25
Bảng biến thiên , điểm đặt biệt 0.25
Vẽ đồ thị 0.25
I2



x
y
x
2
2 3
. Theo giả thiết ta suy ra tam giác OAB vuông cân tại O. Nên tiếp tuyến sẽ
song song song song với một trong hai đường thẳng y x hoặc y x  .
0.25
 y x0( ) 1   
x 2
0
1
1
(2 3)

 



 
x 2
0
1
1
(2 3)
0.25
+0.25
 Với
x
y
0
0
2
0
  


 : y x 2   (nhận)
Vậy phương trình tiếp tuyến cần tìm là: y x 2   .
0.25
II1
Giải phương trình: 2sin6 2sin 4 3 os2 3 sin 2x x c x x   
pt đã cho  2
2 os5 sin 3sin sin cosc x x x x x 
0.25

sinx 0
2 os5 3sinx cosc x x


 
0.25
+) sinx 0  x k 0.25
+) 2 os5 3sinx cosc x x   os5 os( )
3
c x c x

    12 2
18 3
k
x
k
k
x
 
 

  

  

 0.25
II2
Giải hệ phương trình :
     

   
x y y y x
x y x
3 3 2
8 3 5 4 3
2 5 2 2
ĐK: 2x + y + 5 0
            pt x y y y x x x y y y y3 3 2 3 3 2
:8 3 5 4 3 4 8 2 2 3 3 1
0.25
            x x y y
3 3
2 2 2 2 1 1
Xét hàm số      3 2
2 , ' 2 3 0f t t t t f t t t        HSĐB
0.25
Suy ra 2 1 2 1x y y x     thay và phương trình còn lại.
    x x4 4 2 2 4 0 Đặt   u x 1 0
  pt u u2
:2 2 4 0
 
   
u
u l
1
2( )
0.25
      x x y1 1 0 1 nghiệm của hệ (0;-1) 0.25

 
    
x x x xI dx dx dx
x x x
332 2 2 2 2 23 2
4 3 3
1 1 1
1
1
2011 2011 0.25
Thi thử Đại học www.toanpt.net
II3

 
xM dx
x
3
2 2 2
3
1
1
1
Đặt        t t t dt dx
x x x
3 23
2 2 3
1 1 2
1 1 3
      x t x t
3
7
1 0, 2 2
2

     
xM dx t dt
x
3
7
32 2 322
3
3
1 0
1
1
3 21 7
2 128
0.25+0.
25
  
     
 
 N dx x dx
x x
2 22 2 2 2
3
3 2
1 1 1
2011 2011 14077
2011
162
Suy ra đáp số của I
0.25
III
Ta có  IHIA 2 H thuộc tia đối của tia IA và IA = 2IH
BC = AB 2 a2 ; AI = a ; IH =
2
IA
=
2
a
AH = AI + IH =
2
3a 0.25
Ta có
5
2
a
HC  Vì  )(ABCSH 0
60))(;( 

SCHABCSC ;
2
15
60tan 0 a
HCSH 
0.25
6
15
2
15
)2(
2
1
.
3
1
.
3
1 3
2
.
aa
aSHSV ABCABCS  
0.25
)(SAHBI
SHBI
AHBI






22
1
)(;(
2
1
))(;(
2
1
))(;(
))(;( a
BISAHBdSAHKd
SB
SK
SAHBd
SAHKd

0.25
IV
2 2
3
3
3 5
x y
y x
x y m
 
  
   
Đặt 2 2
( ) 3 (3 ) 5    f x x x 
2 2
3
( )
3 (3 ) 5
  
  
x x
f x
x x
0.25
2 2
2
2 3
( ) 0 6 14 (3 ) 3
2 18 27 0
 
         
  
x
f x x x x x x
x x
0.25
Phương trình thứ hai có ' 81 54 135 9.15     ,
và hai nghiệm: 1,2
9 3 15
2
 
x
Dễ kiểm tra rằng cả hai nghiệm này đều bị loại vì nhỏ hơn 2. Vậy, đạo hàm của hàm số
không thể đổi dấu trên  2; , ngoài ra (3) 0 f nên ( ) 0, 2   f x x . Do đó, giá trị nhỏ
nhất của ( )f x là (2) 7 6 f .
0.25
K
B
HC
A
I
S
Thi thử Đại học www.toanpt.net
Cũng dễ thấy  lim

 
x
f x . Từ đó suy ra: hệ phương trình đã cho có nghiệm (với 2x )
khi và chỉ khi 6 7 m . 0.25
Va1
Đường tròn  1C có tâm  1 1
1
1;0 ,
2
I R
Đường tròn  2C có tâm  2 22;2 , 2I R ,  
2
2
2 2 2 , 2
2
 
    
 
MN
I H R d I MN
0.25
Gọi đường thẳng MN có dạng: Ax + By + C = 0
 
 
2
1
, 2
1
,
2
 




d I MN
d I MN
Giải hệ ta tìm được A,B,C
0.25
+0.25
Kết luận:
: 2 0 , : 7 6 0
: 2 0 , : 7 2 0
     
     
MN x y MN x y
MN x y MN x y
0.25
Va2
Ta có BC = AD = 3
Viết phương tình đường thẳng qua C và
Song song với AB
 
2
: 1 2
2 2
 

   
  
x t
CD y t t
z t

0.25
 2 ; 1 2 ;2 2     D CD D t t t tính AD và BC theo t 0.25
 1 2; 3;0   t D loại vì CD = AB = 2 3 là hình bình hành 0.25
2 4 7 2
; ;
3 3 3 3
 
    
 
t D thỏa mãn điều kiện 0.25
VIa
Tìm số phức z có môđun nhỏ nhất thỏa mãn:
 

 
z i
z i
1 5
2
3
Gọi z = a + bi (a,b thuộc R)   z a bi
   
   
      
 
      
a b iz i a bi i
a bi i a b iz i
1 51 5 1 5
3 3 13
,
   
   
   
 
    
a bz i
z i a b
2 2
2 2
1 51 5
2
3 3 1
0.25
   
   
 
  
      
  
a b
a b a b
a b
2 2
2 2
2 2
1 5
2 10 14 6 0 *
3 1
0.25
 * là phương trình của đường tròn trong mặt phẳng phức
Nên số phức có môđun nhỏ nhất phần thực và phần ảo là nghiệm của đường tròn  * và
đường thẳng IO với I là tâm của đường tròn, I(-5;-7)
0.25
C
A
D
B
Thi thử Đại học www.toanpt.net
 
           

t
a t
IO pt t t
b t
t
2
34 2 370
5 37: :37 74 3 0
7 37 2 370
37
      
     z n z l
34 2 370 34 2 370 37 2 370 37 2 370
5 7 , 5 7
37 37 37 37
0.25
Vb1
Ta có
 
 
  
ABCD
AB IM
S
AD
AB
MA MD
2 3 2 ;
2 2
2
0.25
Đường thẳng AD: x+y- 3 = 0 . Vì  MA MD 2 nên A, D là nghiệm của hệ
 
   
  
 
  
x y
A D
x y
2 2
3 0
2;1 , 4; 1
3 2
0.25
0.25
Vì I là trung điểm của AC và BD    C B7;2 , 5;4 0.25
Vb2
Gọi I là tâm của mặt cầu (S).
         I d I t t t R IA t t2
1 3 ; 1 ; , 11 2 1
0.25
(P) tiếp xúc (S) nên:
  
  
     
  

t Rt
d I P R t t
t R
2
0 15 3
, 37 24 0 24 77
3
37 37
0.25
Vì (S) có bán kính nhỏ nhất nên ta chọn      t R I0 1 1; 1;0 0.25
Vậy phương trình mặt cầu          S x y z
2 2 2
: 1 1 1 0.25
VIb
       
            
k k k n n
n n n nC C k k C n n C2 3 2 2 1 2 1
2 1 2 1 2 1 2 12 3.2.2 ... 1 1 2 ... 2 2 1 2 40200
Xét       
            
n k k k n n
n n n n nx C C x C x C x C x
2 1 0 1 2 2 2 1
2 1 2 1 2 1 2 1 2 11 ... 1 ... 1
Lấy đạo hàm hai vế ta được:
         
              
n k k k n n
n n n nn x C C x kC x n C x
2 1 2 1 2 1 2
2 1 2 1 2 1 2 12 1 1 2 ... 1 ... 2 1 2
0.25
Lại lấy đạo hàm cả hai vế của (2) ta được:
  
     

  
   
  
        
n
k k k n n
n n n n
n n x
C C x k k C x n n C x
2 1
2 3 2 2 1 2 1
2 1 2 1 2 1 2 1
2 2 1 1
2 3.2 ... 1 1 ... 2 2 1
0.25
Thay x = 2 vào đẳng thức trên ta có:
 
       
   
  
       
k k k n n
n n n n
n n
C C k k C n n C2 3 2 2 1 2 1
2 1 2 1 2 1 2 1
2 2 1
2 3.2.2 ... 1 1 2 ... 2 2 1 2
0.25
Vậy ta có phương trình:         n n n n n2
2 2 1 40200 2 20100 0 100 0.25
M
D
C
BA
I

Weitere ähnliche Inhalte

Was ist angesagt?

Toan pt.de043.2011
Toan pt.de043.2011Toan pt.de043.2011
Toan pt.de043.2011BẢO Hí
 
[Vnmath.com] de thi thu thptqg lan 4 chuyen vinh phuc 2015
[Vnmath.com]  de thi thu thptqg lan 4  chuyen vinh phuc 2015[Vnmath.com]  de thi thu thptqg lan 4  chuyen vinh phuc 2015
[Vnmath.com] de thi thu thptqg lan 4 chuyen vinh phuc 2015Dang_Khoi
 
Toan pt.de010.2012
Toan pt.de010.2012Toan pt.de010.2012
Toan pt.de010.2012BẢO Hí
 
Toan pt.de027.2011
Toan pt.de027.2011Toan pt.de027.2011
Toan pt.de027.2011BẢO Hí
 
Đề thi thử Toán - Chuyên Nguyễn Huệ 2014 lần 3
Đề thi thử Toán - Chuyên Nguyễn Huệ 2014 lần 3Đề thi thử Toán - Chuyên Nguyễn Huệ 2014 lần 3
Đề thi thử Toán - Chuyên Nguyễn Huệ 2014 lần 3dlinh123
 
Toan pt.de031.2011
Toan pt.de031.2011Toan pt.de031.2011
Toan pt.de031.2011BẢO Hí
 
[Vnmath.com] de thi thu chuye ha tinh lan 1 2015
[Vnmath.com] de thi thu chuye ha tinh lan 1 2015[Vnmath.com] de thi thu chuye ha tinh lan 1 2015
[Vnmath.com] de thi thu chuye ha tinh lan 1 2015Marco Reus Le
 
Toan pt.de055.2011
Toan pt.de055.2011Toan pt.de055.2011
Toan pt.de055.2011BẢO Hí
 
Toan pt.de064.2010
Toan pt.de064.2010Toan pt.de064.2010
Toan pt.de064.2010BẢO Hí
 
Toan pt.de091.2011
Toan pt.de091.2011Toan pt.de091.2011
Toan pt.de091.2011BẢO Hí
 
[Vnmath.com] de thi thu dh lan 1 thpt dao duy tu thanh hoa 2015
[Vnmath.com] de thi thu dh lan 1 thpt dao duy tu  thanh hoa 2015[Vnmath.com] de thi thu dh lan 1 thpt dao duy tu  thanh hoa 2015
[Vnmath.com] de thi thu dh lan 1 thpt dao duy tu thanh hoa 2015Marco Reus Le
 
Toan pt.de040.2010
Toan pt.de040.2010Toan pt.de040.2010
Toan pt.de040.2010BẢO Hí
 
3 đề thi thử toán 2015 + đáp án (Bình Thuận)
3 đề thi thử toán 2015 + đáp án (Bình Thuận)3 đề thi thử toán 2015 + đáp án (Bình Thuận)
3 đề thi thử toán 2015 + đáp án (Bình Thuận)Vui Lên Bạn Nhé
 
Đề thi thử Toán - Chuyên Vĩnh Phúc 2014 lần 4 Khối A
Đề thi thử Toán - Chuyên Vĩnh Phúc 2014 lần 4 Khối AĐề thi thử Toán - Chuyên Vĩnh Phúc 2014 lần 4 Khối A
Đề thi thử Toán - Chuyên Vĩnh Phúc 2014 lần 4 Khối Adlinh123
 
Toan pt.de046.2010
Toan pt.de046.2010Toan pt.de046.2010
Toan pt.de046.2010BẢO Hí
 
đề thi và đáp án chuyên vĩn phúc 2014
đề thi và đáp án chuyên vĩn phúc 2014đề thi và đáp án chuyên vĩn phúc 2014
đề thi và đáp án chuyên vĩn phúc 2014Oanh MJ
 
Đề thi thử ĐH và đáp án môn Toán học lần 2 (2013) trường THPT chuyên Nguyễn H...
Đề thi thử ĐH và đáp án môn Toán học lần 2 (2013) trường THPT chuyên Nguyễn H...Đề thi thử ĐH và đáp án môn Toán học lần 2 (2013) trường THPT chuyên Nguyễn H...
Đề thi thử ĐH và đáp án môn Toán học lần 2 (2013) trường THPT chuyên Nguyễn H...Megabook
 
Toan pt.de028.2011
Toan pt.de028.2011Toan pt.de028.2011
Toan pt.de028.2011BẢO Hí
 
Toan pt.de032.2012
Toan pt.de032.2012Toan pt.de032.2012
Toan pt.de032.2012BẢO Hí
 
Toan pt.de047.2011
Toan pt.de047.2011Toan pt.de047.2011
Toan pt.de047.2011BẢO Hí
 

Was ist angesagt? (20)

Toan pt.de043.2011
Toan pt.de043.2011Toan pt.de043.2011
Toan pt.de043.2011
 
[Vnmath.com] de thi thu thptqg lan 4 chuyen vinh phuc 2015
[Vnmath.com]  de thi thu thptqg lan 4  chuyen vinh phuc 2015[Vnmath.com]  de thi thu thptqg lan 4  chuyen vinh phuc 2015
[Vnmath.com] de thi thu thptqg lan 4 chuyen vinh phuc 2015
 
Toan pt.de010.2012
Toan pt.de010.2012Toan pt.de010.2012
Toan pt.de010.2012
 
Toan pt.de027.2011
Toan pt.de027.2011Toan pt.de027.2011
Toan pt.de027.2011
 
Đề thi thử Toán - Chuyên Nguyễn Huệ 2014 lần 3
Đề thi thử Toán - Chuyên Nguyễn Huệ 2014 lần 3Đề thi thử Toán - Chuyên Nguyễn Huệ 2014 lần 3
Đề thi thử Toán - Chuyên Nguyễn Huệ 2014 lần 3
 
Toan pt.de031.2011
Toan pt.de031.2011Toan pt.de031.2011
Toan pt.de031.2011
 
[Vnmath.com] de thi thu chuye ha tinh lan 1 2015
[Vnmath.com] de thi thu chuye ha tinh lan 1 2015[Vnmath.com] de thi thu chuye ha tinh lan 1 2015
[Vnmath.com] de thi thu chuye ha tinh lan 1 2015
 
Toan pt.de055.2011
Toan pt.de055.2011Toan pt.de055.2011
Toan pt.de055.2011
 
Toan pt.de064.2010
Toan pt.de064.2010Toan pt.de064.2010
Toan pt.de064.2010
 
Toan pt.de091.2011
Toan pt.de091.2011Toan pt.de091.2011
Toan pt.de091.2011
 
[Vnmath.com] de thi thu dh lan 1 thpt dao duy tu thanh hoa 2015
[Vnmath.com] de thi thu dh lan 1 thpt dao duy tu  thanh hoa 2015[Vnmath.com] de thi thu dh lan 1 thpt dao duy tu  thanh hoa 2015
[Vnmath.com] de thi thu dh lan 1 thpt dao duy tu thanh hoa 2015
 
Toan pt.de040.2010
Toan pt.de040.2010Toan pt.de040.2010
Toan pt.de040.2010
 
3 đề thi thử toán 2015 + đáp án (Bình Thuận)
3 đề thi thử toán 2015 + đáp án (Bình Thuận)3 đề thi thử toán 2015 + đáp án (Bình Thuận)
3 đề thi thử toán 2015 + đáp án (Bình Thuận)
 
Đề thi thử Toán - Chuyên Vĩnh Phúc 2014 lần 4 Khối A
Đề thi thử Toán - Chuyên Vĩnh Phúc 2014 lần 4 Khối AĐề thi thử Toán - Chuyên Vĩnh Phúc 2014 lần 4 Khối A
Đề thi thử Toán - Chuyên Vĩnh Phúc 2014 lần 4 Khối A
 
Toan pt.de046.2010
Toan pt.de046.2010Toan pt.de046.2010
Toan pt.de046.2010
 
đề thi và đáp án chuyên vĩn phúc 2014
đề thi và đáp án chuyên vĩn phúc 2014đề thi và đáp án chuyên vĩn phúc 2014
đề thi và đáp án chuyên vĩn phúc 2014
 
Đề thi thử ĐH và đáp án môn Toán học lần 2 (2013) trường THPT chuyên Nguyễn H...
Đề thi thử ĐH và đáp án môn Toán học lần 2 (2013) trường THPT chuyên Nguyễn H...Đề thi thử ĐH và đáp án môn Toán học lần 2 (2013) trường THPT chuyên Nguyễn H...
Đề thi thử ĐH và đáp án môn Toán học lần 2 (2013) trường THPT chuyên Nguyễn H...
 
Toan pt.de028.2011
Toan pt.de028.2011Toan pt.de028.2011
Toan pt.de028.2011
 
Toan pt.de032.2012
Toan pt.de032.2012Toan pt.de032.2012
Toan pt.de032.2012
 
Toan pt.de047.2011
Toan pt.de047.2011Toan pt.de047.2011
Toan pt.de047.2011
 

Andere mochten auch

Toan pt.de030.2012
Toan pt.de030.2012Toan pt.de030.2012
Toan pt.de030.2012BẢO Hí
 
Toan pt.de043.2010
Toan pt.de043.2010Toan pt.de043.2010
Toan pt.de043.2010BẢO Hí
 
Toan pt.de042.2011
Toan pt.de042.2011Toan pt.de042.2011
Toan pt.de042.2011BẢO Hí
 
Toan pt.de024.2010
Toan pt.de024.2010Toan pt.de024.2010
Toan pt.de024.2010BẢO Hí
 
Toan pt.de111.2011
Toan pt.de111.2011Toan pt.de111.2011
Toan pt.de111.2011BẢO Hí
 
Toan pt.de023.2011
Toan pt.de023.2011Toan pt.de023.2011
Toan pt.de023.2011BẢO Hí
 
Toan pt.de027.2012
Toan pt.de027.2012Toan pt.de027.2012
Toan pt.de027.2012BẢO Hí
 
Toan pt.de108.2011
Toan pt.de108.2011Toan pt.de108.2011
Toan pt.de108.2011BẢO Hí
 
Toan pt.de031.2012
Toan pt.de031.2012Toan pt.de031.2012
Toan pt.de031.2012BẢO Hí
 
Toan pt.de045.2011
Toan pt.de045.2011Toan pt.de045.2011
Toan pt.de045.2011BẢO Hí
 
Toan pt.de109.2011
Toan pt.de109.2011Toan pt.de109.2011
Toan pt.de109.2011BẢO Hí
 
Toan pt.de048.2011
Toan pt.de048.2011Toan pt.de048.2011
Toan pt.de048.2011BẢO Hí
 
Toan pt.de026.2011
Toan pt.de026.2011Toan pt.de026.2011
Toan pt.de026.2011BẢO Hí
 
Toan pt.de028.2012
Toan pt.de028.2012Toan pt.de028.2012
Toan pt.de028.2012BẢO Hí
 
Toan pt.de019.2010(+17de)
Toan pt.de019.2010(+17de)Toan pt.de019.2010(+17de)
Toan pt.de019.2010(+17de)BẢO Hí
 

Andere mochten auch (15)

Toan pt.de030.2012
Toan pt.de030.2012Toan pt.de030.2012
Toan pt.de030.2012
 
Toan pt.de043.2010
Toan pt.de043.2010Toan pt.de043.2010
Toan pt.de043.2010
 
Toan pt.de042.2011
Toan pt.de042.2011Toan pt.de042.2011
Toan pt.de042.2011
 
Toan pt.de024.2010
Toan pt.de024.2010Toan pt.de024.2010
Toan pt.de024.2010
 
Toan pt.de111.2011
Toan pt.de111.2011Toan pt.de111.2011
Toan pt.de111.2011
 
Toan pt.de023.2011
Toan pt.de023.2011Toan pt.de023.2011
Toan pt.de023.2011
 
Toan pt.de027.2012
Toan pt.de027.2012Toan pt.de027.2012
Toan pt.de027.2012
 
Toan pt.de108.2011
Toan pt.de108.2011Toan pt.de108.2011
Toan pt.de108.2011
 
Toan pt.de031.2012
Toan pt.de031.2012Toan pt.de031.2012
Toan pt.de031.2012
 
Toan pt.de045.2011
Toan pt.de045.2011Toan pt.de045.2011
Toan pt.de045.2011
 
Toan pt.de109.2011
Toan pt.de109.2011Toan pt.de109.2011
Toan pt.de109.2011
 
Toan pt.de048.2011
Toan pt.de048.2011Toan pt.de048.2011
Toan pt.de048.2011
 
Toan pt.de026.2011
Toan pt.de026.2011Toan pt.de026.2011
Toan pt.de026.2011
 
Toan pt.de028.2012
Toan pt.de028.2012Toan pt.de028.2012
Toan pt.de028.2012
 
Toan pt.de019.2010(+17de)
Toan pt.de019.2010(+17de)Toan pt.de019.2010(+17de)
Toan pt.de019.2010(+17de)
 

Ähnlich wie Toan pt.de032.2011

Toan pt.de082.2010
Toan pt.de082.2010Toan pt.de082.2010
Toan pt.de082.2010BẢO Hí
 
Toan pt.de018.2010
Toan pt.de018.2010Toan pt.de018.2010
Toan pt.de018.2010BẢO Hí
 
Toan pt.de110.2011
Toan pt.de110.2011Toan pt.de110.2011
Toan pt.de110.2011BẢO Hí
 
Toan pt.de047.2010
Toan pt.de047.2010Toan pt.de047.2010
Toan pt.de047.2010BẢO Hí
 
Toan pt.de088.2010
Toan pt.de088.2010Toan pt.de088.2010
Toan pt.de088.2010BẢO Hí
 
14 đề thi thử kì thi Quốc gia 2015 có đáp án
14 đề thi thử kì thi Quốc gia 2015 có đáp án14 đề thi thử kì thi Quốc gia 2015 có đáp án
14 đề thi thử kì thi Quốc gia 2015 có đáp ánTôi Học Tốt
 
Thi thử toán THPT Chu Văn An TN lần 2 2014
Thi thử toán THPT Chu Văn An TN lần 2 2014Thi thử toán THPT Chu Văn An TN lần 2 2014
Thi thử toán THPT Chu Văn An TN lần 2 2014dlinh123
 
Toan pt.de019.2012
Toan pt.de019.2012Toan pt.de019.2012
Toan pt.de019.2012BẢO Hí
 
Toan pt.de070.2011
Toan pt.de070.2011Toan pt.de070.2011
Toan pt.de070.2011BẢO Hí
 
Toan pt.de049.2011
Toan pt.de049.2011Toan pt.de049.2011
Toan pt.de049.2011BẢO Hí
 
thi thu dh nam 2013 thpt trieu son-4
thi thu dh nam 2013 thpt trieu son-4thi thu dh nam 2013 thpt trieu son-4
thi thu dh nam 2013 thpt trieu son-4Oanh MJ
 
Toan pt.de097.2011
Toan pt.de097.2011Toan pt.de097.2011
Toan pt.de097.2011BẢO Hí
 
Toan pt.de024.2011
Toan pt.de024.2011Toan pt.de024.2011
Toan pt.de024.2011BẢO Hí
 
Toan pt.de077.2010
Toan pt.de077.2010Toan pt.de077.2010
Toan pt.de077.2010BẢO Hí
 
Toan pt.de002.2012
Toan pt.de002.2012Toan pt.de002.2012
Toan pt.de002.2012BẢO Hí
 
Toan pt.de051.2011
Toan pt.de051.2011Toan pt.de051.2011
Toan pt.de051.2011BẢO Hí
 
Toan pt.de066.2010
Toan pt.de066.2010Toan pt.de066.2010
Toan pt.de066.2010BẢO Hí
 
Toan pt.de068.2010
Toan pt.de068.2010Toan pt.de068.2010
Toan pt.de068.2010BẢO Hí
 

Ähnlich wie Toan pt.de032.2011 (20)

Toan pt.de082.2010
Toan pt.de082.2010Toan pt.de082.2010
Toan pt.de082.2010
 
Toan pt.de018.2010
Toan pt.de018.2010Toan pt.de018.2010
Toan pt.de018.2010
 
Toan pt.de110.2011
Toan pt.de110.2011Toan pt.de110.2011
Toan pt.de110.2011
 
Toan pt.de047.2010
Toan pt.de047.2010Toan pt.de047.2010
Toan pt.de047.2010
 
Toan pt.de088.2010
Toan pt.de088.2010Toan pt.de088.2010
Toan pt.de088.2010
 
14 đề thi thử kì thi Quốc gia 2015 có đáp án
14 đề thi thử kì thi Quốc gia 2015 có đáp án14 đề thi thử kì thi Quốc gia 2015 có đáp án
14 đề thi thử kì thi Quốc gia 2015 có đáp án
 
Thi thử toán THPT Chu Văn An TN lần 2 2014
Thi thử toán THPT Chu Văn An TN lần 2 2014Thi thử toán THPT Chu Văn An TN lần 2 2014
Thi thử toán THPT Chu Văn An TN lần 2 2014
 
Toan pt.de019.2012
Toan pt.de019.2012Toan pt.de019.2012
Toan pt.de019.2012
 
Toan pt.de070.2011
Toan pt.de070.2011Toan pt.de070.2011
Toan pt.de070.2011
 
Toan pt.de049.2011
Toan pt.de049.2011Toan pt.de049.2011
Toan pt.de049.2011
 
thi thu dh nam 2013 thpt trieu son-4
thi thu dh nam 2013 thpt trieu son-4thi thu dh nam 2013 thpt trieu son-4
thi thu dh nam 2013 thpt trieu son-4
 
Toan pt.de097.2011
Toan pt.de097.2011Toan pt.de097.2011
Toan pt.de097.2011
 
Toan pt.de024.2011
Toan pt.de024.2011Toan pt.de024.2011
Toan pt.de024.2011
 
Toan pt.de077.2010
Toan pt.de077.2010Toan pt.de077.2010
Toan pt.de077.2010
 
Toan pt.de002.2012
Toan pt.de002.2012Toan pt.de002.2012
Toan pt.de002.2012
 
Laisac.de2.2012
Laisac.de2.2012Laisac.de2.2012
Laisac.de2.2012
 
Laisac.de2.2012
Laisac.de2.2012Laisac.de2.2012
Laisac.de2.2012
 
Toan pt.de051.2011
Toan pt.de051.2011Toan pt.de051.2011
Toan pt.de051.2011
 
Toan pt.de066.2010
Toan pt.de066.2010Toan pt.de066.2010
Toan pt.de066.2010
 
Toan pt.de068.2010
Toan pt.de068.2010Toan pt.de068.2010
Toan pt.de068.2010
 

Mehr von BẢO Hí

Toan pt.de083.2012
Toan pt.de083.2012Toan pt.de083.2012
Toan pt.de083.2012BẢO Hí
 
Toan pt.de082.2012
Toan pt.de082.2012Toan pt.de082.2012
Toan pt.de082.2012BẢO Hí
 
Toan pt.de081.2012
Toan pt.de081.2012Toan pt.de081.2012
Toan pt.de081.2012BẢO Hí
 
Toan pt.de080.2012
Toan pt.de080.2012Toan pt.de080.2012
Toan pt.de080.2012BẢO Hí
 
Toan pt.de079.2012
Toan pt.de079.2012Toan pt.de079.2012
Toan pt.de079.2012BẢO Hí
 
Toan pt.de077.2012
Toan pt.de077.2012Toan pt.de077.2012
Toan pt.de077.2012BẢO Hí
 
Toan pt.de076.2012
Toan pt.de076.2012Toan pt.de076.2012
Toan pt.de076.2012BẢO Hí
 
Toan pt.de075.2012
Toan pt.de075.2012Toan pt.de075.2012
Toan pt.de075.2012BẢO Hí
 
Toan pt.de073.2012
Toan pt.de073.2012Toan pt.de073.2012
Toan pt.de073.2012BẢO Hí
 
Toan pt.de071.2012
Toan pt.de071.2012Toan pt.de071.2012
Toan pt.de071.2012BẢO Hí
 
Toan pt.de069.2012
Toan pt.de069.2012Toan pt.de069.2012
Toan pt.de069.2012BẢO Hí
 
Toan pt.de068.2012
Toan pt.de068.2012Toan pt.de068.2012
Toan pt.de068.2012BẢO Hí
 
Toan pt.de067.2012
Toan pt.de067.2012Toan pt.de067.2012
Toan pt.de067.2012BẢO Hí
 
Toan pt.de066.2012
Toan pt.de066.2012Toan pt.de066.2012
Toan pt.de066.2012BẢO Hí
 
Toan pt.de064.2012
Toan pt.de064.2012Toan pt.de064.2012
Toan pt.de064.2012BẢO Hí
 
Toan pt.de060.2012
Toan pt.de060.2012Toan pt.de060.2012
Toan pt.de060.2012BẢO Hí
 
Toan pt.de059.2012
Toan pt.de059.2012Toan pt.de059.2012
Toan pt.de059.2012BẢO Hí
 
Toan pt.de058.2012
Toan pt.de058.2012Toan pt.de058.2012
Toan pt.de058.2012BẢO Hí
 
Toan pt.de057.2012
Toan pt.de057.2012Toan pt.de057.2012
Toan pt.de057.2012BẢO Hí
 
Toan pt.de056.2012
Toan pt.de056.2012Toan pt.de056.2012
Toan pt.de056.2012BẢO Hí
 

Mehr von BẢO Hí (20)

Toan pt.de083.2012
Toan pt.de083.2012Toan pt.de083.2012
Toan pt.de083.2012
 
Toan pt.de082.2012
Toan pt.de082.2012Toan pt.de082.2012
Toan pt.de082.2012
 
Toan pt.de081.2012
Toan pt.de081.2012Toan pt.de081.2012
Toan pt.de081.2012
 
Toan pt.de080.2012
Toan pt.de080.2012Toan pt.de080.2012
Toan pt.de080.2012
 
Toan pt.de079.2012
Toan pt.de079.2012Toan pt.de079.2012
Toan pt.de079.2012
 
Toan pt.de077.2012
Toan pt.de077.2012Toan pt.de077.2012
Toan pt.de077.2012
 
Toan pt.de076.2012
Toan pt.de076.2012Toan pt.de076.2012
Toan pt.de076.2012
 
Toan pt.de075.2012
Toan pt.de075.2012Toan pt.de075.2012
Toan pt.de075.2012
 
Toan pt.de073.2012
Toan pt.de073.2012Toan pt.de073.2012
Toan pt.de073.2012
 
Toan pt.de071.2012
Toan pt.de071.2012Toan pt.de071.2012
Toan pt.de071.2012
 
Toan pt.de069.2012
Toan pt.de069.2012Toan pt.de069.2012
Toan pt.de069.2012
 
Toan pt.de068.2012
Toan pt.de068.2012Toan pt.de068.2012
Toan pt.de068.2012
 
Toan pt.de067.2012
Toan pt.de067.2012Toan pt.de067.2012
Toan pt.de067.2012
 
Toan pt.de066.2012
Toan pt.de066.2012Toan pt.de066.2012
Toan pt.de066.2012
 
Toan pt.de064.2012
Toan pt.de064.2012Toan pt.de064.2012
Toan pt.de064.2012
 
Toan pt.de060.2012
Toan pt.de060.2012Toan pt.de060.2012
Toan pt.de060.2012
 
Toan pt.de059.2012
Toan pt.de059.2012Toan pt.de059.2012
Toan pt.de059.2012
 
Toan pt.de058.2012
Toan pt.de058.2012Toan pt.de058.2012
Toan pt.de058.2012
 
Toan pt.de057.2012
Toan pt.de057.2012Toan pt.de057.2012
Toan pt.de057.2012
 
Toan pt.de056.2012
Toan pt.de056.2012Toan pt.de056.2012
Toan pt.de056.2012
 

Toan pt.de032.2011

  • 1. Thi thử Đại học www.toanpt.net TRƯỜNG THPT PHƯỚC BÌNH ĐỀ THI THỬ ĐẠI HỌC LẦN 3 NĂM HỌC 2010-2011 TX. PHƯỚC LONG – BÌNH PHƯỚC Môn thi: TOÁN Thời gian làm bài 180 phút (không kể thời gian giao đề) ( Đề thi gồm có 1 trang) PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I: ( 2 điểm ) Cho hàm số    x y x 2 2 3 (C) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Lập phương trình tiếp tuyến của đồ thị (C) sao cho tiếp tuyến này cắt các trục Ox , Oy lần lượt tại các điểm A và B đồng thời đường trung trực của đoạn thẳng AB đi qua góc tọa độ O(0;0). Câu II: ( 3 điểm ) 1. Giải phương trình: 2sin6 2sin 4 3 os2 3 sin 2x x c x x    2. Giải hệ phương trình :            x y y y x x y x 3 3 2 8 3 5 4 3 2 5 2 2 3. Tính tích phân:     x x x I dx x 32 2 3 4 1 2011 Câu III: ( 1 điểm ) Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân đỉnh A, 2AB a . Gọi I là trung điểm của BC, hình chiếu vuông góc H của S lên mặt đáy (ABC) thỏa mãn: 2IA IH    , góc giữa SC và mặt đáy (ABC) bằng 600 . Hãy tính thể tích khối chóp S.ABC và khoảng cách từ trung điểm K của SB tới (SAH). Câu IV: ( 1 điểm ) Tìm m để hệ phương trình sau có nghiệm với 2:x 2 2 3 3 5 x y x y m        PHẦN RIÊNG ( 3 điểm ): Thí sinh chỉ được làm một trong hai phần ( phần A hoặc B ) A. Theo chương trình chuẩn: Câu Va: ( 2 điểm ) 1. Trong mặt phẳng với hệ tọa độ Oxy cho các đường tròn    C x y 2 2 1 1 ( ): 1 2 và       C x y 2 2 2( ): 2 2 4. Viết phương trình đường thẳng d tiếp xúc với đường tròn C1( ) và cắt đường tròn C2( ) tại hai điểm M, N sao cho MN 2 2 2. Trong không gian với hệ tọa độ Oxyz cho hình thang cân ABCD có đáy lớn AB và tọa độ các đỉnh A(1;-1;-2), B(-1;1;0), C(0;-1;2). Xác định tọa độ đỉnh D. Câu VIa: ( 1 điểm ) Tìm số phức z có môđun nhỏ nhất thỏa mãn:      z i z i 1 5 2 3 B. Theo chương trình nâng cao: Câu Vb: ( 2 điểm ) 1. Trong mặt phẳng với hệ toạ độ Oxy, cho hình chữ nhật ABCD có diện tích 12, tâm       I 9 3 ; 2 2 và trung điểm của cạnh AD là M(3;0). Xác định tọa độ các đỉnh còn lại của hình chữ nhật ABCD. 2. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng     x y d z 1 1 : 3 1 và mặt phẳng    P x y z( ):2 2 2 0. Lập phương trình mặt cầu S( ) có tâm nằm trên đường thẳng d có bán kính nhỏ nhất tiếp xúc với P( ) và đi qua điểm A(1;-1;1). Câu VIb: ( 1 điểm ) Tìm số nguyên dương n biết:                      k k k n n n n n nC C k k C n n C2 3 2 2 1 2 1 2 1 2 1 2 1 2 12 3.2.2 ... 1 1 2 ... 2 2 1 2 40200 **************HẾT************** ĐỀ CHÍNH THỨC
  • 2. Thi thử Đại học www.toanpt.net ĐÁP ÁN VÀ THANG ĐIỂM ĐỀ THI THỬ ĐẠI HỌC LẦN 3 ( MÔN TOÁN ) CÂU NỘI DUNG ĐIỂM I1 TXĐ , đạo hàm 0.25         x x y y 3 3 2 2 lim , lim  x = -3/2 TCĐ   x y 1 lim 2  y=1/2 TCN 0.25 Bảng biến thiên , điểm đặt biệt 0.25 Vẽ đồ thị 0.25 I2    x y x 2 2 3 . Theo giả thiết ta suy ra tam giác OAB vuông cân tại O. Nên tiếp tuyến sẽ song song song song với một trong hai đường thẳng y x hoặc y x  . 0.25  y x0( ) 1    x 2 0 1 1 (2 3)         x 2 0 1 1 (2 3) 0.25 +0.25  Với x y 0 0 2 0       : y x 2   (nhận) Vậy phương trình tiếp tuyến cần tìm là: y x 2   . 0.25 II1 Giải phương trình: 2sin6 2sin 4 3 os2 3 sin 2x x c x x    pt đã cho  2 2 os5 sin 3sin sin cosc x x x x x  0.25  sinx 0 2 os5 3sinx cosc x x     0.25 +) sinx 0  x k 0.25 +) 2 os5 3sinx cosc x x   os5 os( ) 3 c x c x      12 2 18 3 k x k k x               0.25 II2 Giải hệ phương trình :            x y y y x x y x 3 3 2 8 3 5 4 3 2 5 2 2 ĐK: 2x + y + 5 0             pt x y y y x x x y y y y3 3 2 3 3 2 :8 3 5 4 3 4 8 2 2 3 3 1 0.25             x x y y 3 3 2 2 2 2 1 1 Xét hàm số      3 2 2 , ' 2 3 0f t t t t f t t t        HSĐB 0.25 Suy ra 2 1 2 1x y y x     thay và phương trình còn lại.     x x4 4 2 2 4 0 Đặt   u x 1 0   pt u u2 :2 2 4 0       u u l 1 2( ) 0.25       x x y1 1 0 1 nghiệm của hệ (0;-1) 0.25         x x x xI dx dx dx x x x 332 2 2 2 2 23 2 4 3 3 1 1 1 1 1 2011 2011 0.25
  • 3. Thi thử Đại học www.toanpt.net II3    xM dx x 3 2 2 2 3 1 1 1 Đặt        t t t dt dx x x x 3 23 2 2 3 1 1 2 1 1 3       x t x t 3 7 1 0, 2 2 2        xM dx t dt x 3 7 32 2 322 3 3 1 0 1 1 3 21 7 2 128 0.25+0. 25             N dx x dx x x 2 22 2 2 2 3 3 2 1 1 1 2011 2011 14077 2011 162 Suy ra đáp số của I 0.25 III Ta có  IHIA 2 H thuộc tia đối của tia IA và IA = 2IH BC = AB 2 a2 ; AI = a ; IH = 2 IA = 2 a AH = AI + IH = 2 3a 0.25 Ta có 5 2 a HC  Vì  )(ABCSH 0 60))(;(   SCHABCSC ; 2 15 60tan 0 a HCSH  0.25 6 15 2 15 )2( 2 1 . 3 1 . 3 1 3 2 . aa aSHSV ABCABCS   0.25 )(SAHBI SHBI AHBI       22 1 )(;( 2 1 ))(;( 2 1 ))(;( ))(;( a BISAHBdSAHKd SB SK SAHBd SAHKd  0.25 IV 2 2 3 3 3 5 x y y x x y m          Đặt 2 2 ( ) 3 (3 ) 5    f x x x  2 2 3 ( ) 3 (3 ) 5       x x f x x x 0.25 2 2 2 2 3 ( ) 0 6 14 (3 ) 3 2 18 27 0                x f x x x x x x x x 0.25 Phương trình thứ hai có ' 81 54 135 9.15     , và hai nghiệm: 1,2 9 3 15 2   x Dễ kiểm tra rằng cả hai nghiệm này đều bị loại vì nhỏ hơn 2. Vậy, đạo hàm của hàm số không thể đổi dấu trên  2; , ngoài ra (3) 0 f nên ( ) 0, 2   f x x . Do đó, giá trị nhỏ nhất của ( )f x là (2) 7 6 f . 0.25 K B HC A I S
  • 4. Thi thử Đại học www.toanpt.net Cũng dễ thấy  lim    x f x . Từ đó suy ra: hệ phương trình đã cho có nghiệm (với 2x ) khi và chỉ khi 6 7 m . 0.25 Va1 Đường tròn  1C có tâm  1 1 1 1;0 , 2 I R Đường tròn  2C có tâm  2 22;2 , 2I R ,   2 2 2 2 2 , 2 2          MN I H R d I MN 0.25 Gọi đường thẳng MN có dạng: Ax + By + C = 0     2 1 , 2 1 , 2       d I MN d I MN Giải hệ ta tìm được A,B,C 0.25 +0.25 Kết luận: : 2 0 , : 7 6 0 : 2 0 , : 7 2 0             MN x y MN x y MN x y MN x y 0.25 Va2 Ta có BC = AD = 3 Viết phương tình đường thẳng qua C và Song song với AB   2 : 1 2 2 2           x t CD y t t z t  0.25  2 ; 1 2 ;2 2     D CD D t t t tính AD và BC theo t 0.25  1 2; 3;0   t D loại vì CD = AB = 2 3 là hình bình hành 0.25 2 4 7 2 ; ; 3 3 3 3          t D thỏa mãn điều kiện 0.25 VIa Tìm số phức z có môđun nhỏ nhất thỏa mãn:      z i z i 1 5 2 3 Gọi z = a + bi (a,b thuộc R)   z a bi                         a b iz i a bi i a bi i a b iz i 1 51 5 1 5 3 3 13 ,                    a bz i z i a b 2 2 2 2 1 51 5 2 3 3 1 0.25                        a b a b a b a b 2 2 2 2 2 2 1 5 2 10 14 6 0 * 3 1 0.25  * là phương trình của đường tròn trong mặt phẳng phức Nên số phức có môđun nhỏ nhất phần thực và phần ảo là nghiệm của đường tròn  * và đường thẳng IO với I là tâm của đường tròn, I(-5;-7) 0.25 C A D B
  • 5. Thi thử Đại học www.toanpt.net                t a t IO pt t t b t t 2 34 2 370 5 37: :37 74 3 0 7 37 2 370 37             z n z l 34 2 370 34 2 370 37 2 370 37 2 370 5 7 , 5 7 37 37 37 37 0.25 Vb1 Ta có        ABCD AB IM S AD AB MA MD 2 3 2 ; 2 2 2 0.25 Đường thẳng AD: x+y- 3 = 0 . Vì  MA MD 2 nên A, D là nghiệm của hệ               x y A D x y 2 2 3 0 2;1 , 4; 1 3 2 0.25 0.25 Vì I là trung điểm của AC và BD    C B7;2 , 5;4 0.25 Vb2 Gọi I là tâm của mặt cầu (S).          I d I t t t R IA t t2 1 3 ; 1 ; , 11 2 1 0.25 (P) tiếp xúc (S) nên:                 t Rt d I P R t t t R 2 0 15 3 , 37 24 0 24 77 3 37 37 0.25 Vì (S) có bán kính nhỏ nhất nên ta chọn      t R I0 1 1; 1;0 0.25 Vậy phương trình mặt cầu          S x y z 2 2 2 : 1 1 1 0.25 VIb                      k k k n n n n n nC C k k C n n C2 3 2 2 1 2 1 2 1 2 1 2 1 2 12 3.2.2 ... 1 1 2 ... 2 2 1 2 40200 Xét                     n k k k n n n n n n nx C C x C x C x C x 2 1 0 1 2 2 2 1 2 1 2 1 2 1 2 1 2 11 ... 1 ... 1 Lấy đạo hàm hai vế ta được:                          n k k k n n n n n nn x C C x kC x n C x 2 1 2 1 2 1 2 2 1 2 1 2 1 2 12 1 1 2 ... 1 ... 2 1 2 0.25 Lại lấy đạo hàm cả hai vế của (2) ta được:                              n k k k n n n n n n n n x C C x k k C x n n C x 2 1 2 3 2 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 1 2 3.2 ... 1 1 ... 2 2 1 0.25 Thay x = 2 vào đẳng thức trên ta có:                          k k k n n n n n n n n C C k k C n n C2 3 2 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 3.2.2 ... 1 1 2 ... 2 2 1 2 0.25 Vậy ta có phương trình:         n n n n n2 2 2 1 40200 2 20100 0 100 0.25 M D C BA I