SlideShare a Scribd company logo
1 of 30
0
Power Electronic Systems
Power electronics refers to control and conversion of electrical
power by power semiconductor devices wherein these devices
operate as switches. Advent of silicon-controlled rectifiers,
abbreviated as SCRs, led to the development of a new field of
application called the power electronics. Before SCRs,
mercury-arc rectifiers were used for controlling electrical
power, but such rectifier circuits were part of industrial
electronics and the scope for applications of mercury-arc
rectifiers was limited. The application spread to many fields
such as drives, power supplies, aviation electronics, high
frequency inverters and power electronics.
• Power electronics relates to the control and flow
of electrical energy.
• Control is done using electronic switches,
capacitors, magnetics, and control systems.
• Scope of power electronics: milliWatts ⇒
gigaWatts
• Power electronics is a growing field due to the
improvement in switching technologies and the
need for more and more efficient switching
circuits.
1
2
Interdisciplinary Nature of Power Electronics
3
Applications
• Heating and lighting control
• Induction heating
• Uninterruptible power supplies (UPS)
• Fluorescent lamp ballasts: Passive; Active
• Electric power transmission
• Automotive electronics
• Electronic ignitions
• Motor drives
• Battery chargers
• Alternators
• Energy storage
• Electric vehicles
• Alternative power sources: Solar; Wind; Fuel Cells
• And more!
4
Tasks of Power Electronics
Rectification referring to conversion of ac voltage to dc
voltage
DC-to-AC conversion
DC-to DC conversion
AC-to-AC conversion
5
Example
6
7
Converters
Electronic power converter is the term that is used to refer to a
power electronic circuit that converts voltage and current from
one form to another.
 Rectifier converting an ac voltage to a dc voltage
 Inverter converting a dc voltage to an ac voltage
 Chopper or a switch-mode power supply that converts a
dc voltage to another dc voltage
 Cycloconverter and cycloinverter converting an ac voltage
to another ac voltage.
8
Rectifiers
Rectifiers may be classified as uncontrolled and controlled rectifiers.
Controlled rectifiers can be further divided into semi-controlled and fully-
controlled rectifiers. Uncontrolled rectifier circuits are built with diodes,
and fully-controlled rectifier circuits are built with SCRs.
Both diodes and SCRs are used in semi-controlled rectifier circuits.
 Single-phase semi-controlled bridge rectifier
 Single-phase fully-controlled bridge rectifier
 Three-phase three-pulse, star-connected rectifier
 Double three-phase, three-pulse star-connected rectifiers with inter-
phase transformer (IPT)
 Three-phase semi-controlled bridge rectifier
 Three-phase fully-controlled bridge rectifier
 Double three-phase fully-controlled bridge rectifiers with IPT.
9
DC to AC Conversion
The converter that changes a DC to AC is called an inverter. Earlier inverters
were built with SCRs. Since the circuitry required to turn the SCR off tends to be
complex, other power semiconductor devices such as bipolar junction transistors,
power MOSFETs, insulated gate bipolar transistors (IGBT) and MOS-controlled
thyristors (MCTs) are used nowadays. Currently only the inverters with a high
power rating, such as 500 kW or higher.
 Emergency lighting systems
 AC variable speed drives
 Uninterrupted power supplies
 Frequency converters.
10
DC to DC Conversion
When the SCR came into use, a dc-to-dc converter circuit was called a
chopper. Nowadays, an SCR is rarely used in a dc-to-dc converter. Either a
power BJT or a power MOSFET is normally used in such a converter and this
converter is called a switch-mode power supply.
 Step-down switch-mode power supply
 Step-up chopper
 Fly-back converter
 Resonant converter.
11
AC to AC Converter
• A cycloconverter or a cycloinverter converts an ac voltage, such as the mains
supply, to another ac voltage. The amplitude and the frequency of input
voltage to a cycloconverter tend to be fixed values, whereas both the amplitude
and the frequency of output voltage of a cycloconverter tend to be variable.
• Tthe circuit that converts an ac voltage to another ac voltage at the same
frequency is known as an AC-chopper.
A typical application of a cycloconverter is to use it for controlling the speed
of an ac traction motor and most of these cycloconverters have a high power
output, of the order a few megawatts and SCRs are used in these circuits. In
contrast, low cost, low power cycloconverters for low power ac motors are
also in use and many of these circuit tend to use TRIACS in place of SCRs.
• Unlike an SCR which conducts in only one direction, a TRIACS is capable of
conducting in either direction and like an SCR, it is also a three terminal
device. It may be noted that the use of a cycloconverter is not as common as
that of an inverter and a cycloinverter is rarely used.
12
Applications of Power Electronics
• In a conventional car, power electronics applications are a
major area of future expansion.
• Look inside the audio system, for example; the amplifiers
in today’s car stereos are usually capable of delivering 40
W or more. But a 12 V supply applied to an 8 Ohm speaker
produces 18 W output at best.
• To solve this power supply problem, designers use a boost
converter (DC to DC Converter) to provide higher voltage
power to the amplifier circuit. This allows car amplifiers to
generate the same audio output power as home stereos.
13
Automobile’s Ignition System
• Another universal power electronics application is the
automobile’s ignition system.
• Thousands of volts are required to ignite the fuel-air
mixture inside a cylinder so that internal combustion can
occur.
• Today’s cars employ all-electronic ignition systems, which
have replaced the traditional spark plugs with boost
converters coupled to transformers.
14
• We are curious about new electric and hybrid cars, in which the primary
electrical system is dominated by power electronics. Electric cars offer
high performance, zero tailpipe emissions, and low costs, but are still
limited in range by the need for batteries.
• Hybrid car designs use various strategies to combine both an engine and
electrical elements to gain advantages of each.
• Inverters and DC-DC converters rated for many kilowatts serve as
primary energy control blocks. See
http://www.howstuffworks.com/hybrid-car2.htm.
Hybrid Cars
15
Diodes
16
Zener Diodes
17
Silicon Controlled Rectifiers
The basic purpose of the SCR is to function as a switch that can turn on or
off small or large amounts of power. It performs this function with no
moving parts that wear out and no points that require replacing. There can
be a tremendous power gain in the SCR; in some units a very small
triggering current is able to switch several hundred amperes without
exceeding its rated abilities. The SCR can often replace much slower and
larger mechanical switches.
18
Motor Controllers
19
AC to DC Conversion: Half-Wave Rectifier
20
Full Wave Rectifier
21
Figure
12.1
Classification of Power Electronic Devices
The following is taken from Principles and Applications of Electrical Engineering by G. Rizzoni, McGraw Hill
22
Table 12.1
Power Electric Circuits
23
Figure 12.2
AC-DC Converter Circuit and Waveform
24
Figure
12.3
AC-AC Converter Circuit and Waveform
25
Figure
12.4
DC-DC Converter Circuit and Waveform
26
Figure 12.17,
12.18
Rectifier Connected to an
Inductive Load
Operation of a Freewheeling Diode
27
Figure
12.20,
12.21
Three-Phase Diode Bridge
Rectifier
Waveforms and Conduction
Times of Three-Phase Bridge
Rectifier
28
Controlled Rectifier
Circuit
Half-Wave
Controlled Rectifier
Waveforms
Figure 12.25, 12.26
29
Figure
12.34, 12.35
DC Motor Step-Down Chopper (Buck Converter)
m
m
a
a w
T
I
E 



More Related Content

Similar to POWER-ELECTRONICS.ppt

cycloconverters-200609063230.pdf
cycloconverters-200609063230.pdfcycloconverters-200609063230.pdf
cycloconverters-200609063230.pdf
fychgffgh
 
Electric-Traction-Railways.ppt
Electric-Traction-Railways.pptElectric-Traction-Railways.ppt
Electric-Traction-Railways.ppt
ssuserf805c8
 
Electronic_Load_Controller
Electronic_Load_ControllerElectronic_Load_Controller
Electronic_Load_Controller
ANURAG YADAV
 
MINI INVERTER PROJECT.pptx
MINI INVERTER PROJECT.pptxMINI INVERTER PROJECT.pptx
MINI INVERTER PROJECT.pptx
shamlaK
 
Power electronics and its applications.pptx
Power electronics and its applications.pptxPower electronics and its applications.pptx
Power electronics and its applications.pptx
SHIVANICHAUUHAN1
 
29082013161402 automatic-street-light-powered-through-speed-break
29082013161402 automatic-street-light-powered-through-speed-break29082013161402 automatic-street-light-powered-through-speed-break
29082013161402 automatic-street-light-powered-through-speed-break
krishnasarraf03
 

Similar to POWER-ELECTRONICS.ppt (20)

A DC-DC Converter with Ripple Current Cancellation Based On Duty Cycle Selection
A DC-DC Converter with Ripple Current Cancellation Based On Duty Cycle SelectionA DC-DC Converter with Ripple Current Cancellation Based On Duty Cycle Selection
A DC-DC Converter with Ripple Current Cancellation Based On Duty Cycle Selection
 
Electrical AC & DC Drives in Control of Electrical Drives
Electrical AC & DC Drives in Control of Electrical DrivesElectrical AC & DC Drives in Control of Electrical Drives
Electrical AC & DC Drives in Control of Electrical Drives
 
lecture_1jjjjjjjjj*jjjjjjjjjjjjjjjjkkkkkkkkkkkkkkkkkk
lecture_1jjjjjjjjj*jjjjjjjjjjjjjjjjkkkkkkkkkkkkkkkkkklecture_1jjjjjjjjj*jjjjjjjjjjjjjjjjkkkkkkkkkkkkkkkkkk
lecture_1jjjjjjjjj*jjjjjjjjjjjjjjjjkkkkkkkkkkkkkkkkkk
 
cycloconverters-200609063230.pdf
cycloconverters-200609063230.pdfcycloconverters-200609063230.pdf
cycloconverters-200609063230.pdf
 
Cycloconverters
CycloconvertersCycloconverters
Cycloconverters
 
Electrical ac & dc drives ppt
Electrical ac & dc drives pptElectrical ac & dc drives ppt
Electrical ac & dc drives ppt
 
Electric-Traction-Railways.ppt
Electric-Traction-Railways.pptElectric-Traction-Railways.ppt
Electric-Traction-Railways.ppt
 
Basic electrical
Basic electricalBasic electrical
Basic electrical
 
Electronic_Load_Controller
Electronic_Load_ControllerElectronic_Load_Controller
Electronic_Load_Controller
 
MINI INVERTER PROJECT.pptx
MINI INVERTER PROJECT.pptxMINI INVERTER PROJECT.pptx
MINI INVERTER PROJECT.pptx
 
Applications of Smart Grid through Harmonic Current & Reactive Power Compensa...
Applications of Smart Grid through Harmonic Current & Reactive Power Compensa...Applications of Smart Grid through Harmonic Current & Reactive Power Compensa...
Applications of Smart Grid through Harmonic Current & Reactive Power Compensa...
 
Technical3.ppt
Technical3.pptTechnical3.ppt
Technical3.ppt
 
Regeneration in Variable Frequency Drives and Energy Saving Methods
Regeneration in Variable Frequency Drives and Energy Saving MethodsRegeneration in Variable Frequency Drives and Energy Saving Methods
Regeneration in Variable Frequency Drives and Energy Saving Methods
 
Power electronics and its applications.pptx
Power electronics and its applications.pptxPower electronics and its applications.pptx
Power electronics and its applications.pptx
 
High Step-Up Converter with Voltage Multiplier Module for Renewable Energy Sy...
High Step-Up Converter with Voltage Multiplier Module for Renewable Energy Sy...High Step-Up Converter with Voltage Multiplier Module for Renewable Energy Sy...
High Step-Up Converter with Voltage Multiplier Module for Renewable Energy Sy...
 
High Step-Up Converter with Voltage Multiplier Module for Renewable Energy Sy...
High Step-Up Converter with Voltage Multiplier Module for Renewable Energy Sy...High Step-Up Converter with Voltage Multiplier Module for Renewable Energy Sy...
High Step-Up Converter with Voltage Multiplier Module for Renewable Energy Sy...
 
29082013161402 automatic-street-light-powered-through-speed-break
29082013161402 automatic-street-light-powered-through-speed-break29082013161402 automatic-street-light-powered-through-speed-break
29082013161402 automatic-street-light-powered-through-speed-break
 
Chapter 1 part 2 introduction
Chapter 1 part 2 introductionChapter 1 part 2 introduction
Chapter 1 part 2 introduction
 
TRACTION-INVETERS-LOCOMOTIVES-10.doc
TRACTION-INVETERS-LOCOMOTIVES-10.docTRACTION-INVETERS-LOCOMOTIVES-10.doc
TRACTION-INVETERS-LOCOMOTIVES-10.doc
 
1. Introduction.pdf
1. Introduction.pdf1. Introduction.pdf
1. Introduction.pdf
 

More from suresh386785

More from suresh386785 (8)

Grid.pptxdfsdgfsdfghdfcdfsdgdsfghgbnfghdfgd
Grid.pptxdfsdgfsdfghdfcdfsdgdsfghgbnfghdfgdGrid.pptxdfsdgfsdfghdfcdfsdgdsfghgbnfghdfgd
Grid.pptxdfsdgfsdfghdfcdfsdgdsfghgbnfghdfgd
 
15.02.2024.pptxDSD3E23DSDSDQWE23EWQDSDSDQWD
15.02.2024.pptxDSD3E23DSDSDQWE23EWQDSDSDQWD15.02.2024.pptxDSD3E23DSDSDQWE23EWQDSDSDQWD
15.02.2024.pptxDSD3E23DSDSDQWE23EWQDSDSDQWD
 
13.03.2024.pptx ncsjcnjsnoasnsjduowqndsdsd
13.03.2024.pptx ncsjcnjsnoasnsjduowqndsdsd13.03.2024.pptx ncsjcnjsnoasnsjduowqndsdsd
13.03.2024.pptx ncsjcnjsnoasnsjduowqndsdsd
 
Solar Tracking System for renewable energy system
Solar Tracking System for renewable energy systemSolar Tracking System for renewable energy system
Solar Tracking System for renewable energy system
 
POWER-ELECTRONICS for renewable energy systems.ppt
POWER-ELECTRONICS for renewable energy systems.pptPOWER-ELECTRONICS for renewable energy systems.ppt
POWER-ELECTRONICS for renewable energy systems.ppt
 
EE3020 SSA Introduction smart system automation
EE3020 SSA Introduction smart system automationEE3020 SSA Introduction smart system automation
EE3020 SSA Introduction smart system automation
 
04_2023_Combined Library_ English.pdf
04_2023_Combined Library_ English.pdf04_2023_Combined Library_ English.pdf
04_2023_Combined Library_ English.pdf
 
UNIT1.ppt
UNIT1.pptUNIT1.ppt
UNIT1.ppt
 

Recently uploaded

notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 

Recently uploaded (20)

notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 

POWER-ELECTRONICS.ppt

  • 1. 0 Power Electronic Systems Power electronics refers to control and conversion of electrical power by power semiconductor devices wherein these devices operate as switches. Advent of silicon-controlled rectifiers, abbreviated as SCRs, led to the development of a new field of application called the power electronics. Before SCRs, mercury-arc rectifiers were used for controlling electrical power, but such rectifier circuits were part of industrial electronics and the scope for applications of mercury-arc rectifiers was limited. The application spread to many fields such as drives, power supplies, aviation electronics, high frequency inverters and power electronics.
  • 2. • Power electronics relates to the control and flow of electrical energy. • Control is done using electronic switches, capacitors, magnetics, and control systems. • Scope of power electronics: milliWatts ⇒ gigaWatts • Power electronics is a growing field due to the improvement in switching technologies and the need for more and more efficient switching circuits. 1
  • 3. 2
  • 4. Interdisciplinary Nature of Power Electronics 3
  • 5. Applications • Heating and lighting control • Induction heating • Uninterruptible power supplies (UPS) • Fluorescent lamp ballasts: Passive; Active • Electric power transmission • Automotive electronics • Electronic ignitions • Motor drives • Battery chargers • Alternators • Energy storage • Electric vehicles • Alternative power sources: Solar; Wind; Fuel Cells • And more! 4
  • 6. Tasks of Power Electronics Rectification referring to conversion of ac voltage to dc voltage DC-to-AC conversion DC-to DC conversion AC-to-AC conversion 5
  • 8. 7 Converters Electronic power converter is the term that is used to refer to a power electronic circuit that converts voltage and current from one form to another.  Rectifier converting an ac voltage to a dc voltage  Inverter converting a dc voltage to an ac voltage  Chopper or a switch-mode power supply that converts a dc voltage to another dc voltage  Cycloconverter and cycloinverter converting an ac voltage to another ac voltage.
  • 9. 8 Rectifiers Rectifiers may be classified as uncontrolled and controlled rectifiers. Controlled rectifiers can be further divided into semi-controlled and fully- controlled rectifiers. Uncontrolled rectifier circuits are built with diodes, and fully-controlled rectifier circuits are built with SCRs. Both diodes and SCRs are used in semi-controlled rectifier circuits.  Single-phase semi-controlled bridge rectifier  Single-phase fully-controlled bridge rectifier  Three-phase three-pulse, star-connected rectifier  Double three-phase, three-pulse star-connected rectifiers with inter- phase transformer (IPT)  Three-phase semi-controlled bridge rectifier  Three-phase fully-controlled bridge rectifier  Double three-phase fully-controlled bridge rectifiers with IPT.
  • 10. 9 DC to AC Conversion The converter that changes a DC to AC is called an inverter. Earlier inverters were built with SCRs. Since the circuitry required to turn the SCR off tends to be complex, other power semiconductor devices such as bipolar junction transistors, power MOSFETs, insulated gate bipolar transistors (IGBT) and MOS-controlled thyristors (MCTs) are used nowadays. Currently only the inverters with a high power rating, such as 500 kW or higher.  Emergency lighting systems  AC variable speed drives  Uninterrupted power supplies  Frequency converters.
  • 11. 10 DC to DC Conversion When the SCR came into use, a dc-to-dc converter circuit was called a chopper. Nowadays, an SCR is rarely used in a dc-to-dc converter. Either a power BJT or a power MOSFET is normally used in such a converter and this converter is called a switch-mode power supply.  Step-down switch-mode power supply  Step-up chopper  Fly-back converter  Resonant converter.
  • 12. 11 AC to AC Converter • A cycloconverter or a cycloinverter converts an ac voltage, such as the mains supply, to another ac voltage. The amplitude and the frequency of input voltage to a cycloconverter tend to be fixed values, whereas both the amplitude and the frequency of output voltage of a cycloconverter tend to be variable. • Tthe circuit that converts an ac voltage to another ac voltage at the same frequency is known as an AC-chopper. A typical application of a cycloconverter is to use it for controlling the speed of an ac traction motor and most of these cycloconverters have a high power output, of the order a few megawatts and SCRs are used in these circuits. In contrast, low cost, low power cycloconverters for low power ac motors are also in use and many of these circuit tend to use TRIACS in place of SCRs. • Unlike an SCR which conducts in only one direction, a TRIACS is capable of conducting in either direction and like an SCR, it is also a three terminal device. It may be noted that the use of a cycloconverter is not as common as that of an inverter and a cycloinverter is rarely used.
  • 13. 12 Applications of Power Electronics • In a conventional car, power electronics applications are a major area of future expansion. • Look inside the audio system, for example; the amplifiers in today’s car stereos are usually capable of delivering 40 W or more. But a 12 V supply applied to an 8 Ohm speaker produces 18 W output at best. • To solve this power supply problem, designers use a boost converter (DC to DC Converter) to provide higher voltage power to the amplifier circuit. This allows car amplifiers to generate the same audio output power as home stereos.
  • 14. 13 Automobile’s Ignition System • Another universal power electronics application is the automobile’s ignition system. • Thousands of volts are required to ignite the fuel-air mixture inside a cylinder so that internal combustion can occur. • Today’s cars employ all-electronic ignition systems, which have replaced the traditional spark plugs with boost converters coupled to transformers.
  • 15. 14 • We are curious about new electric and hybrid cars, in which the primary electrical system is dominated by power electronics. Electric cars offer high performance, zero tailpipe emissions, and low costs, but are still limited in range by the need for batteries. • Hybrid car designs use various strategies to combine both an engine and electrical elements to gain advantages of each. • Inverters and DC-DC converters rated for many kilowatts serve as primary energy control blocks. See http://www.howstuffworks.com/hybrid-car2.htm. Hybrid Cars
  • 18. 17 Silicon Controlled Rectifiers The basic purpose of the SCR is to function as a switch that can turn on or off small or large amounts of power. It performs this function with no moving parts that wear out and no points that require replacing. There can be a tremendous power gain in the SCR; in some units a very small triggering current is able to switch several hundred amperes without exceeding its rated abilities. The SCR can often replace much slower and larger mechanical switches.
  • 20. 19 AC to DC Conversion: Half-Wave Rectifier
  • 22. 21 Figure 12.1 Classification of Power Electronic Devices The following is taken from Principles and Applications of Electrical Engineering by G. Rizzoni, McGraw Hill
  • 24. 23 Figure 12.2 AC-DC Converter Circuit and Waveform
  • 27. 26 Figure 12.17, 12.18 Rectifier Connected to an Inductive Load Operation of a Freewheeling Diode
  • 28. 27 Figure 12.20, 12.21 Three-Phase Diode Bridge Rectifier Waveforms and Conduction Times of Three-Phase Bridge Rectifier
  • 30. 29 Figure 12.34, 12.35 DC Motor Step-Down Chopper (Buck Converter) m m a a w T I E   