SlideShare a Scribd company logo
1 of 2
           The gap between the top of the valence band and bottom of the conduction band is called the energy band gap (Energy gap Eg). It may be large, small, or zero, depending upon the material.<br />Case I: One can have a metal either when the conduction band is partially filled and the balanced band is partially empty or when the conduction and valance bands overlap. When there is overlap electrons from valence band can easily move into the conduction band. This situation makes a large number of electrons available for electrical conduction. When the valence band is partially empty, electrons from its lower level can move to higher level making conduction possible. Therefore, the resistance of such materials is low or the conductivity is high.<br />      CB<br />          CB<br />VB          VB                                                                                                                  Overlap<br /> <br />Case II:  In this case, as shown in Fig. A large band gap Eg exists (Eg > 3 eV). There are no electrons in the conduction band, and therefore no electrical conduction is possible. Note that the energy gap is so large that electrons cannot be excited from the valence band to the conduction band by thermal excitation. This is the case of insulators.<br /> <br /> CB<br /> <br /> Eg(>3 eV)<br /> <br />          VB<br />Case III: This situation is shown in Fig.  Here a finite but small band gap (Eg < 3 eV) exists. Because of the small band gap, at room temperature some electrons from valence band can acquire enough energy to cross the energy gap and enter the conduction band. These electrons (though small in numbers) can move in the conduction band. Hence, the resistance of semiconductors is not as high as that of the insulators.<br /> CB<br />  Eg(<3 eV)<br /> VB<br />Semiconductors<br />Based on the purity, semiconductors are classified into two types,<br />1. Intrinsic semiconductor and<br />2. Extrinsic semiconductor.<br />Intrinsic semiconductor<br />A semiconductor which is pure and contains no impurity is known as an intrinsic semiconductor. Example: pure germanium (Ge) and silicon (Si).<br /> Each Si and Ge atom is surrounded by four nearest neighbours. We know that Si and Ge have four valence electrons. In its crystalline structure, every Si or Ge atom tends to share one of its four valence electrons with each of its four nearest neighbour atoms, and also to take share of one electron from each such neighbour. These shared electrons pairs are referred to as forming a covalent bond.<br />Fig. Intrinsic semiconductor<br />As the temperature increases, more thermal energy becomes available to these electrons and some of these electrons may break–away (becoming free electrons contributing to conduction). The thermal energy effectively ionizes only a few atoms in the crystalline lattice and creates a vacancy in the bond.  <br />The neighbourhood, from which the free electron (with charge –q) has come out leaves a vacancy with an effective charge (+q). This vacancy with the effective positive electronic charge is called a hole. The hole behaves as an apparent free particle with effective positive charge.<br />An intrinsic semiconductor will behave like an insulator at T = 0 K as shown in Fig. It is the thermal energy at higher temperatures (T > 0K), which excites some electrons from the valence band to the conduction band. These thermally excited electrons at T > 0 K, partially occupy the conduction band. Therefore, the energy-band diagram of an intrinsic semiconductor will be as shown in Fig. Here, some electrons are shown in the conduction band. These have come from the valence band leaving equal number of holes there.<br />In intrinsic semiconductors, the number of free electrons, ne is equal to the number of holes, nh. That is ne = nh = ni<br />Where ni is called intrinsic carrier concentration.<br />
Semi conductors

More Related Content

What's hot

Semiconductor devices
Semiconductor devicesSemiconductor devices
Semiconductor devicesAbha Agrawal
 
4.2 semiconductor diodes
4.2 semiconductor diodes4.2 semiconductor diodes
4.2 semiconductor diodesSyiera Rahman
 
Norton's theorem
Norton's theoremNorton's theorem
Norton's theoremSyed Saeed
 
A BASIC INTRODUCTION TO SEMICONDUCTOR DEVICES - THE
A BASIC INTRODUCTION TO SEMICONDUCTOR DEVICES - THEA BASIC INTRODUCTION TO SEMICONDUCTOR DEVICES - THE
A BASIC INTRODUCTION TO SEMICONDUCTOR DEVICES - THEWinston Bent A.S.S.
 
Introduction to semiconductor devices
Introduction to semiconductor devicesIntroduction to semiconductor devices
Introduction to semiconductor devicesshiva Reddy
 
Unit 1 Mechanism of Conduction in Semiconductors
Unit 1 Mechanism of Conduction in SemiconductorsUnit 1 Mechanism of Conduction in Semiconductors
Unit 1 Mechanism of Conduction in SemiconductorsDr Piyush Charan
 
Current Electricity Class 12 Part-1
Current Electricity Class 12 Part-1Current Electricity Class 12 Part-1
Current Electricity Class 12 Part-1Self-employed
 
Halfwave and full wave rectificaton
Halfwave and full wave rectificaton Halfwave and full wave rectificaton
Halfwave and full wave rectificaton University of Karachi
 
Semiconductor Devices Class 12 Part-1
Semiconductor Devices Class 12 Part-1Semiconductor Devices Class 12 Part-1
Semiconductor Devices Class 12 Part-1Self-employed
 
Pn junction diode class 12 investegatory project
Pn junction diode class 12 investegatory projectPn junction diode class 12 investegatory project
Pn junction diode class 12 investegatory projectabhijeet singh
 
Conductor semiconductor insulator
Conductor semiconductor insulatorConductor semiconductor insulator
Conductor semiconductor insulatorravikumar s
 
Metals,insulators & semiconductors
Metals,insulators &  semiconductorsMetals,insulators &  semiconductors
Metals,insulators & semiconductorsAL- AMIN
 

What's hot (20)

Semiconductor devices
Semiconductor devicesSemiconductor devices
Semiconductor devices
 
Magnetic circuits
Magnetic circuitsMagnetic circuits
Magnetic circuits
 
4.2 semiconductor diodes
4.2 semiconductor diodes4.2 semiconductor diodes
4.2 semiconductor diodes
 
Norton's theorem
Norton's theoremNorton's theorem
Norton's theorem
 
A BASIC INTRODUCTION TO SEMICONDUCTOR DEVICES - THE
A BASIC INTRODUCTION TO SEMICONDUCTOR DEVICES - THEA BASIC INTRODUCTION TO SEMICONDUCTOR DEVICES - THE
A BASIC INTRODUCTION TO SEMICONDUCTOR DEVICES - THE
 
Introduction to semiconductor devices
Introduction to semiconductor devicesIntroduction to semiconductor devices
Introduction to semiconductor devices
 
Pn junction diode
Pn junction diodePn junction diode
Pn junction diode
 
LCR Circuit
LCR CircuitLCR Circuit
LCR Circuit
 
Unit 1 Mechanism of Conduction in Semiconductors
Unit 1 Mechanism of Conduction in SemiconductorsUnit 1 Mechanism of Conduction in Semiconductors
Unit 1 Mechanism of Conduction in Semiconductors
 
Physics project
Physics projectPhysics project
Physics project
 
Semiconductors
SemiconductorsSemiconductors
Semiconductors
 
semiconductors ppt
semiconductors pptsemiconductors ppt
semiconductors ppt
 
Current Electricity Class 12 Part-1
Current Electricity Class 12 Part-1Current Electricity Class 12 Part-1
Current Electricity Class 12 Part-1
 
Halfwave and full wave rectificaton
Halfwave and full wave rectificaton Halfwave and full wave rectificaton
Halfwave and full wave rectificaton
 
Semiconductor Devices Class 12 Part-1
Semiconductor Devices Class 12 Part-1Semiconductor Devices Class 12 Part-1
Semiconductor Devices Class 12 Part-1
 
Pn junction diode class 12 investegatory project
Pn junction diode class 12 investegatory projectPn junction diode class 12 investegatory project
Pn junction diode class 12 investegatory project
 
Thévenin’s Theorems
Thévenin’s Theorems Thévenin’s Theorems
Thévenin’s Theorems
 
Conductor semiconductor insulator
Conductor semiconductor insulatorConductor semiconductor insulator
Conductor semiconductor insulator
 
Metals,insulators & semiconductors
Metals,insulators &  semiconductorsMetals,insulators &  semiconductors
Metals,insulators & semiconductors
 
Half wave rectifier
Half wave rectifierHalf wave rectifier
Half wave rectifier
 

Viewers also liked (20)

Analysis of ship management for better practices
Analysis of ship management for better practicesAnalysis of ship management for better practices
Analysis of ship management for better practices
 
Semi conductors
Semi conductorsSemi conductors
Semi conductors
 
Shipmanagement System Selection Process
Shipmanagement System Selection ProcessShipmanagement System Selection Process
Shipmanagement System Selection Process
 
Ss for b,ed
Ss for b,edSs for b,ed
Ss for b,ed
 
ISPS REVIVE
ISPS REVIVEISPS REVIVE
ISPS REVIVE
 
17th Edition Part 4 3
17th  Edition  Part 4 317th  Edition  Part 4 3
17th Edition Part 4 3
 
pn junction diodes
pn junction diodespn junction diodes
pn junction diodes
 
Transistor
TransistorTransistor
Transistor
 
Ship dry docking
Ship dry dockingShip dry docking
Ship dry docking
 
Auxiliary machinery
Auxiliary machineryAuxiliary machinery
Auxiliary machinery
 
Ship Organization
Ship OrganizationShip Organization
Ship Organization
 
ISM Code
ISM CodeISM Code
ISM Code
 
Light-emitting diodes
Light-emitting diodes Light-emitting diodes
Light-emitting diodes
 
Ship survey presentation
Ship survey presentationShip survey presentation
Ship survey presentation
 
2 classification societies
2 classification societies2 classification societies
2 classification societies
 
Pipe Fittings and Valves for Marine Use
Pipe Fittings and Valves for Marine UsePipe Fittings and Valves for Marine Use
Pipe Fittings and Valves for Marine Use
 
Zener diodes
Zener diodesZener diodes
Zener diodes
 
Parts of a Ship Engine
Parts of a Ship Engine Parts of a Ship Engine
Parts of a Ship Engine
 
Edc(electronics devices and circuits)
Edc(electronics devices and circuits)Edc(electronics devices and circuits)
Edc(electronics devices and circuits)
 
Diodes
DiodesDiodes
Diodes
 

Similar to Semi conductors

ENERGY BANDS AND EFFECTIVE MASSppt
ENERGY BANDS AND EFFECTIVE MASSpptENERGY BANDS AND EFFECTIVE MASSppt
ENERGY BANDS AND EFFECTIVE MASSpptBiswajeetMishra21
 
Semiconductors (rawat d agreatt)
Semiconductors (rawat d agreatt)Semiconductors (rawat d agreatt)
Semiconductors (rawat d agreatt)Rawat DA Greatt
 
semiconductor and hall effect.pptx chemistry .....
semiconductor and hall effect.pptx chemistry .....semiconductor and hall effect.pptx chemistry .....
semiconductor and hall effect.pptx chemistry .....amruthatk3
 
Diploma sem 2 applied science physics-unit 3-chap-1 band theory of solid
Diploma sem 2 applied science physics-unit 3-chap-1 band theory of solidDiploma sem 2 applied science physics-unit 3-chap-1 band theory of solid
Diploma sem 2 applied science physics-unit 3-chap-1 band theory of solidRai University
 
semiconductor-physics-3.pdf. Semiconductor
semiconductor-physics-3.pdf.  Semiconductorsemiconductor-physics-3.pdf.  Semiconductor
semiconductor-physics-3.pdf. SemiconductorMinaNath2
 
semo conductor.ppt
semo conductor.pptsemo conductor.ppt
semo conductor.pptkasthuri73
 
TRM-11fhsdbjbfffffffffffffffffffffffffffffffffffffff.ppt
TRM-11fhsdbjbfffffffffffffffffffffffffffffffffffffff.pptTRM-11fhsdbjbfffffffffffffffffffffffffffffffffffffff.ppt
TRM-11fhsdbjbfffffffffffffffffffffffffffffffffffffff.pptsauravnair2003
 
Topic energy band gap material science ppt
Topic  energy band gap material science pptTopic  energy band gap material science ppt
Topic energy band gap material science pptSubhashYadav144
 
Unit1.2 Band Theory of Solids
Unit1.2 Band Theory of SolidsUnit1.2 Band Theory of Solids
Unit1.2 Band Theory of SolidsFarhat Ansari
 
Module 1 Semiconductors (1).pptx
Module 1  Semiconductors (1).pptxModule 1  Semiconductors (1).pptx
Module 1 Semiconductors (1).pptxPriyaSharma135745
 
UNIT 3 Analog Electronics.pptx
UNIT 3 Analog Electronics.pptxUNIT 3 Analog Electronics.pptx
UNIT 3 Analog Electronics.pptxDHARUNESHBOOPATHY
 
B.tech sem i engineering physics u ii chapter 1-band theory of solid
B.tech sem i engineering physics u ii chapter 1-band theory of solidB.tech sem i engineering physics u ii chapter 1-band theory of solid
B.tech sem i engineering physics u ii chapter 1-band theory of solidRai University
 
хагас дамжуулагчийн физик
хагас дамжуулагчийн физикхагас дамжуулагчийн физик
хагас дамжуулагчийн физикJkl L
 
Band theory of solids
Band theory of solidsBand theory of solids
Band theory of solidsutpal sarkar
 
Fisika Modern 15 molecules andsolid_semiconductor
Fisika Modern 15 molecules andsolid_semiconductorFisika Modern 15 molecules andsolid_semiconductor
Fisika Modern 15 molecules andsolid_semiconductorjayamartha
 
Fisika Modern 15 molecules andsolid_semiconductor
Fisika Modern 15 molecules andsolid_semiconductorFisika Modern 15 molecules andsolid_semiconductor
Fisika Modern 15 molecules andsolid_semiconductorjayamartha
 

Similar to Semi conductors (20)

ENERGY BANDS AND EFFECTIVE MASSppt
ENERGY BANDS AND EFFECTIVE MASSpptENERGY BANDS AND EFFECTIVE MASSppt
ENERGY BANDS AND EFFECTIVE MASSppt
 
Semiconductors (rawat d agreatt)
Semiconductors (rawat d agreatt)Semiconductors (rawat d agreatt)
Semiconductors (rawat d agreatt)
 
semiconductor and hall effect.pptx chemistry .....
semiconductor and hall effect.pptx chemistry .....semiconductor and hall effect.pptx chemistry .....
semiconductor and hall effect.pptx chemistry .....
 
Diploma sem 2 applied science physics-unit 3-chap-1 band theory of solid
Diploma sem 2 applied science physics-unit 3-chap-1 band theory of solidDiploma sem 2 applied science physics-unit 3-chap-1 band theory of solid
Diploma sem 2 applied science physics-unit 3-chap-1 band theory of solid
 
semiconductor-physics-3.pdf. Semiconductor
semiconductor-physics-3.pdf.  Semiconductorsemiconductor-physics-3.pdf.  Semiconductor
semiconductor-physics-3.pdf. Semiconductor
 
semo conductor.ppt
semo conductor.pptsemo conductor.ppt
semo conductor.ppt
 
TRM-11fhsdbjbfffffffffffffffffffffffffffffffffffffff.ppt
TRM-11fhsdbjbfffffffffffffffffffffffffffffffffffffff.pptTRM-11fhsdbjbfffffffffffffffffffffffffffffffffffffff.ppt
TRM-11fhsdbjbfffffffffffffffffffffffffffffffffffffff.ppt
 
Topic energy band gap material science ppt
Topic  energy band gap material science pptTopic  energy band gap material science ppt
Topic energy band gap material science ppt
 
Unit1.2 Band Theory of Solids
Unit1.2 Band Theory of SolidsUnit1.2 Band Theory of Solids
Unit1.2 Band Theory of Solids
 
Module 1 Semiconductors (1).pptx
Module 1  Semiconductors (1).pptxModule 1  Semiconductors (1).pptx
Module 1 Semiconductors (1).pptx
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 
UNIT 3 Analog Electronics.pptx
UNIT 3 Analog Electronics.pptxUNIT 3 Analog Electronics.pptx
UNIT 3 Analog Electronics.pptx
 
B.tech sem i engineering physics u ii chapter 1-band theory of solid
B.tech sem i engineering physics u ii chapter 1-band theory of solidB.tech sem i engineering physics u ii chapter 1-band theory of solid
B.tech sem i engineering physics u ii chapter 1-band theory of solid
 
хагас дамжуулагчийн физик
хагас дамжуулагчийн физикхагас дамжуулагчийн физик
хагас дамжуулагчийн физик
 
Band theory of solids
Band theory of solidsBand theory of solids
Band theory of solids
 
Basic electronics
Basic electronicsBasic electronics
Basic electronics
 
Fisika Modern 15 molecules andsolid_semiconductor
Fisika Modern 15 molecules andsolid_semiconductorFisika Modern 15 molecules andsolid_semiconductor
Fisika Modern 15 molecules andsolid_semiconductor
 
Fisika Modern 15 molecules andsolid_semiconductor
Fisika Modern 15 molecules andsolid_semiconductorFisika Modern 15 molecules andsolid_semiconductor
Fisika Modern 15 molecules andsolid_semiconductor
 
Energy bands and gaps in semiconductor
Energy bands and gaps in semiconductorEnergy bands and gaps in semiconductor
Energy bands and gaps in semiconductor
 
Presentation1.pdf
Presentation1.pdfPresentation1.pdf
Presentation1.pdf
 

More from sunmo

Temple
TempleTemple
Templesunmo
 
Unit II
Unit IIUnit II
Unit IIsunmo
 
Unit i
Unit i Unit i
Unit i sunmo
 
CONDUCTING MATERIALS-BASICS
CONDUCTING MATERIALS-BASICSCONDUCTING MATERIALS-BASICS
CONDUCTING MATERIALS-BASICSsunmo
 
ENGINEERING PHYSICS -SEMICONDUCTING MATERIALS PROBLEMS KEYS
ENGINEERING PHYSICS -SEMICONDUCTING MATERIALS PROBLEMS KEYSENGINEERING PHYSICS -SEMICONDUCTING MATERIALS PROBLEMS KEYS
ENGINEERING PHYSICS -SEMICONDUCTING MATERIALS PROBLEMS KEYSsunmo
 
Electron configuration for all elements
Electron configuration for all elementsElectron configuration for all elements
Electron configuration for all elementssunmo
 

More from sunmo (6)

Temple
TempleTemple
Temple
 
Unit II
Unit IIUnit II
Unit II
 
Unit i
Unit i Unit i
Unit i
 
CONDUCTING MATERIALS-BASICS
CONDUCTING MATERIALS-BASICSCONDUCTING MATERIALS-BASICS
CONDUCTING MATERIALS-BASICS
 
ENGINEERING PHYSICS -SEMICONDUCTING MATERIALS PROBLEMS KEYS
ENGINEERING PHYSICS -SEMICONDUCTING MATERIALS PROBLEMS KEYSENGINEERING PHYSICS -SEMICONDUCTING MATERIALS PROBLEMS KEYS
ENGINEERING PHYSICS -SEMICONDUCTING MATERIALS PROBLEMS KEYS
 
Electron configuration for all elements
Electron configuration for all elementsElectron configuration for all elements
Electron configuration for all elements
 

Recently uploaded

Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Shubhangi Sonawane
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfSanaAli374401
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 

Recently uploaded (20)

Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 

Semi conductors

  • 1. The gap between the top of the valence band and bottom of the conduction band is called the energy band gap (Energy gap Eg). It may be large, small, or zero, depending upon the material.<br />Case I: One can have a metal either when the conduction band is partially filled and the balanced band is partially empty or when the conduction and valance bands overlap. When there is overlap electrons from valence band can easily move into the conduction band. This situation makes a large number of electrons available for electrical conduction. When the valence band is partially empty, electrons from its lower level can move to higher level making conduction possible. Therefore, the resistance of such materials is low or the conductivity is high.<br /> CB<br /> CB<br />VB VB Overlap<br /> <br />Case II: In this case, as shown in Fig. A large band gap Eg exists (Eg > 3 eV). There are no electrons in the conduction band, and therefore no electrical conduction is possible. Note that the energy gap is so large that electrons cannot be excited from the valence band to the conduction band by thermal excitation. This is the case of insulators.<br /> <br /> CB<br /> <br /> Eg(>3 eV)<br /> <br /> VB<br />Case III: This situation is shown in Fig. Here a finite but small band gap (Eg < 3 eV) exists. Because of the small band gap, at room temperature some electrons from valence band can acquire enough energy to cross the energy gap and enter the conduction band. These electrons (though small in numbers) can move in the conduction band. Hence, the resistance of semiconductors is not as high as that of the insulators.<br /> CB<br /> Eg(<3 eV)<br /> VB<br />Semiconductors<br />Based on the purity, semiconductors are classified into two types,<br />1. Intrinsic semiconductor and<br />2. Extrinsic semiconductor.<br />Intrinsic semiconductor<br />A semiconductor which is pure and contains no impurity is known as an intrinsic semiconductor. Example: pure germanium (Ge) and silicon (Si).<br /> Each Si and Ge atom is surrounded by four nearest neighbours. We know that Si and Ge have four valence electrons. In its crystalline structure, every Si or Ge atom tends to share one of its four valence electrons with each of its four nearest neighbour atoms, and also to take share of one electron from each such neighbour. These shared electrons pairs are referred to as forming a covalent bond.<br />Fig. Intrinsic semiconductor<br />As the temperature increases, more thermal energy becomes available to these electrons and some of these electrons may break–away (becoming free electrons contributing to conduction). The thermal energy effectively ionizes only a few atoms in the crystalline lattice and creates a vacancy in the bond. <br />The neighbourhood, from which the free electron (with charge –q) has come out leaves a vacancy with an effective charge (+q). This vacancy with the effective positive electronic charge is called a hole. The hole behaves as an apparent free particle with effective positive charge.<br />An intrinsic semiconductor will behave like an insulator at T = 0 K as shown in Fig. It is the thermal energy at higher temperatures (T > 0K), which excites some electrons from the valence band to the conduction band. These thermally excited electrons at T > 0 K, partially occupy the conduction band. Therefore, the energy-band diagram of an intrinsic semiconductor will be as shown in Fig. Here, some electrons are shown in the conduction band. These have come from the valence band leaving equal number of holes there.<br />In intrinsic semiconductors, the number of free electrons, ne is equal to the number of holes, nh. That is ne = nh = ni<br />Where ni is called intrinsic carrier concentration.<br />