Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

Let M be an invertible matrix- and let lambda be an eigenvalue of M- S.docx

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige

Hier ansehen

1 von 1 Anzeige

Let M be an invertible matrix- and let lambda be an eigenvalue of M- S.docx

Herunterladen, um offline zu lesen

Let M be an invertible matrix, and let lambda be an eigenvalue of M. Show that 1/lambda is an eigenvalue of M-1.
Solution
is eigenvalue so we have
Mx=x for some nonzero vector x
By multiplying both sides with M -1
we get
M -1 Mx=M -1 x
x=M -1 x
Now is nonzero because if =0, then Mx=0, so M -1 Mx=x=0. But x was nonzero
so we can divide by
1/x=M -1 x which shows 1/ is an eigenvalue of M -1
.

Let M be an invertible matrix, and let lambda be an eigenvalue of M. Show that 1/lambda is an eigenvalue of M-1.
Solution
is eigenvalue so we have
Mx=x for some nonzero vector x
By multiplying both sides with M -1
we get
M -1 Mx=M -1 x
x=M -1 x
Now is nonzero because if =0, then Mx=0, so M -1 Mx=x=0. But x was nonzero
so we can divide by
1/x=M -1 x which shows 1/ is an eigenvalue of M -1
.

Anzeige
Anzeige

Weitere Verwandte Inhalte

Weitere von sthomas232 (20)

Aktuellste (20)

Anzeige

Let M be an invertible matrix- and let lambda be an eigenvalue of M- S.docx

  1. 1. Let M be an invertible matrix, and let lambda be an eigenvalue of M. Show that 1/lambda is an eigenvalue of M-1. Solution is eigenvalue so we have Mx=x for some nonzero vector x By multiplying both sides with M -1 we get M -1 Mx=M -1 x x=M -1 x Now is nonzero because if =0, then Mx=0, so M -1 Mx=x=0. But x was nonzero so we can divide by 1/x=M -1 x which shows 1/ is an eigenvalue of M -1

×