SlideShare a Scribd company logo
1 of 79
Prepared By
Omar Faruk
Lecturer in Mathematics
Department of Basic Science
World University of Bangladesh
Email: omar.faruk@science.wub.edu.bd
Introduction
Definition
Addition and Subtraction of Matrix
Multiplication of Matrix
Solved problems on Matrix Multiplication
Matrix: A matrix is a rectangular array of elements or numbers arranged in rows
and columns. Matrix is denoted by first or third parentheses(bracket).
A matrix consists of m horizontal rows and n vertical columns is called 𝑚 × 𝑛
matrix, denoted by
𝐴 =
𝑎11 𝑎12 . . . . . . . 𝑎1𝑛
𝑎21 𝑎22 . . . . . . . 𝑎2𝑛
⋮ ⋮
𝑎𝑚1 𝑎𝑚2 . . . . . . . 𝑎𝑚𝑛
= (𝑎𝑖𝑗)𝑚𝑛
For the entry 𝑎𝑖𝑗, the row number is denoted by 𝑖 and the column number is
denoted by 𝑗. The numbers in a matrix are called its elements.
Example: 𝐴 =
1 5 3
2 4 1
4 3 5
is a 3 × 3 matrix.
The size or order of a matrix is described by its number of rows and the
number of columns.
If a matrix 𝑨 has 𝒎 rows and 𝒏 columns then the order of 𝑨 is 𝒎 × 𝒏.
Example: If 𝐴 =
2 1 1
3 4 7
then the order of A is 2 × 3.
 Row Matrix: A matrix having only a single row is called a row matrix.
Example: 2 3 4
 Column Matrix: A matrix having only a single column is called a row matrix.
Example:
5
2
1
 Square Matrix: A matrix having equal number of rows and columns is called
a square matrix.
Example:
2 0 −1
5 3 2
1 7 3
 Rectangular Matrix: A matrix having equal number of rows and columns is
called a square matrix.
Example:
2 0 −1
1 7 3
 Null Matrix: If all elements of a matrix is zero the matrix is called null or zero
matrix and it is shown by 𝟎.
Example:
0 0 0
0 0 0
0 0 0
 Diagonal Matrix: A square matrix in which all the elements except the main
diagonal are zero is called diagonal matrix.
Example:
2 0 0
0 3 0
0 0 5
 Scalar Matrix: In a diagonal matrix if all elements are equal the matrix is
called a scalar matrix.
Example:
3 0 0
0 3 0
0 0 3
 Unit/Identity Matrix: A diagonal matrix whose all elements on the main
diagonal are equal to one is called identity or unit matrix. A unit matrix is
usually shown by letter I .
Example: 𝐼 = 𝐼3 =
1 0 0
0 1 0
0 0 1
Transpose Matrix: If the rows and columns of a matrix A are interchanged then
the resulting matrix is called transpose of A matrix. It is denoted by 𝐴′/𝐴𝑇.
Example: 𝐴 =
3 2 6
1 5 0
4 3 2
; 𝐴′
= 𝐴𝑇
=
3 2 6
1 5 0
4 3 2
Symmetric Matrix: A matrix A is called symmetric if 𝐴𝑇 = 𝐴.
Example:
1 2
2 4
is a symmetric matrix.
Skew Symmetric Matrix: A matrix A is called skew symmetric if 𝐴 = −𝐴𝑇.
Example:
0 −1
1 0
is a skew symmetric matrix
Conditions for Addition and Subtraction of Matrix:
 Matrices must have same dimension.
 Add/subtract matrices element-by-element
Example: If 𝐴 =
1 3 2
4 2 3
1 5 4
and 𝐵 =
5 2 1
3 1 2
4 3 2
then
𝐴 + 𝐵 =
1 + 5 3 + 2 2 + 1
4 + 3 2 + 1 3 + 2
1 + 4 5 + 3 4 + 2
=
6 5 3
7 3 5
5 8 6
And 𝐴 − 𝐵 =
1 − 5 3 − 2 2 − 1
4 − 3 2 − 1 3 − 2
1 − 4 5 − 3 4 − 2
=
−4 1 1
1 1 1
−3 2 2
Multiplication by scalar: If 𝐴 is a matrix and 𝑘 is any scalar then
𝑘. 𝐴 = 𝑘. (𝑎𝑖𝑗)
𝑚𝑛
This means that all elements of the matrix are multiplied by the scalar 𝑘.
Example: 3
2 3
−1 1
=
6 9
−3 3
 Multiplication of two matrices 𝑨 and 𝑩, in the form of 𝑨 × 𝑩 or 𝑨𝑩, is
possible if the number of columns in 𝑨 is equal to the number of rows in 𝑩
.
 The result of this multiplication is another matrix 𝑪 where the number of
its rows is equal to the number of rows in 𝑨 and number of its columns is
equal to the number of columns in 𝑩; that is:
𝑨𝒎×𝒏 × 𝑩𝒏×𝒑 = 𝑪𝒎×𝒑
For example, if 𝐴 =
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖
and 𝑋 =
𝑥
𝑦
𝑧
then the multiplication of
A and X will be
AX =
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖
𝑥
𝑦
𝑧
=
𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧
𝑑𝑥 + 𝑒𝑦 + 𝑓𝑧
𝑔𝑥 + ℎ𝑦 + 𝑖𝑧
Example: If 𝐴 =
2 3
1 2
and 𝐵 =
1 2
4 1
then find 𝐴𝐵 and 𝐵𝐴.
Solution:
𝐴𝐵 =
2 3
1 2
1 2
4 1
=
2 × 1 + 3 × 4 2 × 2 + 3 × 1
1 × 1 + 2 × 4 1 × 2 + 2 × 1
=
2 + 12 4 + 3
1 + 8 2 + 2
=
14 7
9 4
Again, 𝐵𝐴 =
1 2
4 1
2 3
1 2
=
2 + 2 3 + 4
8 + 1 12 + 2
=
4 7
9 14
Problem: If 𝐴 =
1 −1
0 2
, 𝐵 =
1 3 0
2 0 1
and 𝐶 =
2
3
1
then show that
(𝐴𝐵)𝐶 = 𝐴(𝐵𝐶).
Solution:
Here 𝐴𝐵 =
1 −1
0 2
1 3 0
2 0 1
=
1 − 2 3 + 0 0 − 1
0 + 4 0 + 0 0 + 2
=
−1 3 −1
4 0 2
Now 𝐴𝐵 𝐶 =
−1 3 −1
4 0 2
2
3
1
=
−2 + 9 − 1
8 + 0 + 2
=
−2 + 9 − 1
8 + 0 + 2
=
6
10
Again, 𝐵𝐶 =
1 3 0
2 0 1
2
3
1
=
2 + 9 + 0
4 + 0 + 1
=
11
5
Now, 𝐴 𝐵𝐶 =
1 −1
0 2
11
5
=
11 − 5
0 + 10
=
6
10
Hence 𝐴𝐵 𝐶 = 𝐴(𝐵𝐶).
Problem: If 𝐴 =
1 2 2
2 1 2
2 2 1
then show that 𝐴2
− 4𝐴 − 5𝐼 = 0.
Solution: Here, 𝐴2
= 𝐴. 𝐴
=
1 2 2
2 1 2
2 2 1
1 2 2
2 1 2
2 2 1
=
1 + 4 + 4 2 + 2 + 4 2 + 4 + 2
2 + 2 + 4 4 + 1 + 4 4 + 2 + 2
2 + 4 + 2 4 + 2 + 2 4 + 4 + 1
=
9 8 8
8 9 8
8 8 9
Now, 𝐴2
− 4𝐴 − 5𝐼 =
9 8 8
8 9 8
8 8 9
− 4
1 2 2
2 1 2
2 2 1
− 5
1 0 0
0 1 0
0 0 1
=
9 8 8
8 9 8
8 8 9
−
4 8 8
8 4 8
8 8 4
−
5 0 0
0 5 0
0 0 5
=
9 − 4 − 5 8 − 8 − 0 8 − 8 − 0
8 − 8 − 0 9 − 4 − 5 8 − 8 − 0
8 − 8 − 0 8 − 8 − 0 9 − 4 − 5
=
0 0 0
0 0 0
0 0 0
= 0
Hence 𝐴2 − 4𝐴 − 5𝐼 = 0.
 Idempotent Matrix: A matrix 𝐴 is called idempotent if 𝐴2
= 𝐴.
Example:
2 −3 −5
−1 4 5
1 −3 −4
 Nilpotent Matrix: A matrix 𝐴 is called nilpotent if 𝐴𝑝
= 0 where 𝑝 ∈ 𝑁.
Example:
1 −1
1 −1
 Orthogonal Matrix: A matrix 𝐴 is called orthogonal if 𝐴𝐴𝑇 = 𝐼.
Example:
1
3
2 −2 1
1 2 2
2 1 −2
 Involutory Matrix: A matrix 𝐴 is called involutary matrix if 𝐴2 = 𝐼.
Example:
4 3 3
−1 0 −1
−4 −4 −3
𝐓𝐡𝐚𝐧𝐤 𝐲𝐨𝐮
Prepared By
Omar Faruk
Lecturer in Mathematics
Department of Basic Science
World University of Bangladesh
Email: omar.faruk@science.wub.edu.bd
Determinant of Matrix
Adjoint of Matrix
Inverse of Matrix
Rank of Matrix
The determinant of a matrix 𝐴2×2 =
𝑎 𝑏
𝑐 𝑑
denoted by det 𝐴 / 𝐴 is defined as
𝐴 =
𝑎 𝑏
𝑐 𝑑
= 𝑎𝑑 − 𝑏𝑐
 For 𝐴3×3 =
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖
𝐴 =
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖
= 𝑎 𝑒𝑖 − ℎ𝑓 − 𝑏 𝑑𝑖 − 𝑔𝑓 + 𝑐(𝑔ℎ − 𝑔𝑒)
 Example: If A=
3 1 2
2 1 4
3 2 1
then
𝐴 =
3 1 2
2 1 4
3 2 1
= 3 1 − 8 − 1 2 − 12 + 2 4 − 3
= −21 + 10 + 2 = −9
 The transposed matrix 𝐴 formed by the cofactors of the elements of 𝐴 is
called the adjoint of 𝐴. It is denoted by 𝐴𝑑𝑗 𝐴.
 Example: If A=
2 1 0
3 2 1
1 2 0
then the co-factors of 𝐴 are
𝐶11 = +
2 1
2 0
= 0 − 2 = −2; 𝐶12 = −
3 1
1 0
= −(0 − 1) = 1
𝐶13 = +
3 2
1 2
= 6 − 2 = 4; 𝐶21 = −
1 0
2 0
= −(0 − 0) = 0
𝐶22 = +
2 0
1 0
= 0 − 0 = 0; 𝐶23 = −
2 1
1 2
= −(4 − 1) = −3
𝐶31 = +
1 0
2 1
= 1 − 0 = 1; 𝐶32 = −
2 0
3 1
= −(2 − 0) = −2
𝐶33 = +
2 1
3 2
= 4 − 3 = 1
𝐴𝑑𝑗 𝐴 =
−2 1 4
0 0 −3
1 −2 1
𝑇
=
−2 0 1
1 0 −2
4 −3 1
 Singular and Non-singular Matrix: A matrix 𝐴 is called singular if 𝐴 = 0
and non-singular if |𝐴| ≠ 0.
Example:
1 2
1 2
is singular and
3 2
4 1
is non-singular Matrix.
 Inverse Matrix: A matrix 𝐵 is called inverse of a matrix 𝐴 if 𝐴𝐵 = 𝐵𝐴 = 𝐼. It
is denoted by 𝐴−1
.
𝐴−1
=
1
𝐴
𝐴𝑑𝑗 𝐴
Example: Find 𝐴−1 where 𝐴 =
0 1 1
1 2 0
3 −1 4
.
Solution: Here,
𝐴 =
0 1 1
1 2 0
3 −1 4
= 0 − 1 4 − 0 + 1 −1 − 6
= −11 ≠ 0
So, 𝐴 is non-singular. Hence 𝐴 is inversible.
 A matrix is inversible only if the matrix is non-singular.
Now we will find the co-factors of 𝐴.
𝐶11 = +
2 0
−1 4
= 8 − 0 = 8; 𝐶12 = −
1 0
3 4
= − 4 − 0 = −4
𝐶13 = +
1 2
3 −1
= −1 − 6 = −7; 𝐶21 = −
1 1
−1 4
= − 4 + 1 = −5
𝐶22 = +
0 1
3 4
= 0 − 3 = −3; 𝐶23 = −
0 1
3 −1
= −(0 − 3) = 3
𝐶31 = +
1 1
2 0
= 0 − 2 = −2; 𝐶32 = −
0 1
1 0
= −(0 − 1) = 1
𝐶33 = +
0 1
1 2
= 0 − 1 = −1
𝐴𝑑𝑗 𝐴 =
8 −4 −7
−5 −3 3
−2 1 −1
𝑇
=
8 −5 −2
−4 −3 1
−7 3 −1
Hence, 𝐴−1 =
1
𝐴
𝐴𝑑𝑗 𝐴
=
1
−11
8 −5 −2
−4 −3 1
−7 3 −1
 The number of linearly independent rows of a matrix is called the rank of a
matrix. It is denoted by 𝝆.
Example: Find the rank of the matrix 𝐴 =
6 2 0 4
−2 −1 3 4
−1 −1 6 10
.
Solution:
6 2 0 4
−2 −1 3 4
−1 −1 6 10
~
−1 −1 6 10
−2 −1 3 4
6 2 0 4
𝑹𝟏 ⟷ 𝑹𝟑
~
1 1 −6 −10
−2 −1 3 4
6 2 0 4
𝑹𝟏
′
= (−𝟏) × 𝑹𝟏
 The number of non zero rows in echelon form will be the rank of the
matrix.
 Echelon form−
𝟏 𝒂 𝒃
𝟎 𝟏 𝒄
𝟎 𝟎 𝟏
~
1 1 −6 −10
0 1 −9 −16
0 4 −36 −64
𝑹𝟐
′
= −𝟐 × 𝑹𝟏 + 𝑹𝟐
𝑹𝟑
′
= −𝟔 × 𝑹𝟏 − 𝑹𝟑
~
1 1 −6 −10
0 1 −9 −16
0 0 0 0
𝑹𝟑
′
= 𝟒 × 𝑹𝟐 − 𝑹𝟑
The matrix is in echelon form having 2 non-zero rows.
So, Rank of 𝐴, 𝜌 𝐴 = 2.
𝐓𝐡𝐚𝐧𝐤 𝐲𝐨𝐮
Prepared By
Omar Faruk
Lecturer in Mathematics
Department of Basic Science
World University of Bangladesh
Email: omar.faruk@science.wub.edu.bd
Solved Problem on Inverse Matrix
Cramer’s Rule
 If 𝑨 =
𝟏 −𝟏 𝟏
𝟑 𝟏 𝟒
−𝟐 𝟑 𝟓
then show that 𝑨−𝟏
𝑨 = 𝑰.
Solution: Here,
𝐴 =
1 −1 1
3 1 4
−2 3 5
= 1 5 − 12 − −1 15 + 8 + 1 9 + 2
= 27 ≠ 0
So, 𝐴 is non-singular. Hence 𝐴 is inversible.
Now we will find the co-factors of 𝐴.
𝐶11 = +
1 4
3 5
= 5 − 12 = −7; 𝐶12 = −
3 4
−2 5
= − 15 − −8 = −23
𝐶13 = +
3 1
−2 3
= 9 − −2 = 11; 𝐶21 = −
−1 1
3 5
= − −5 − 3 = 8
𝐶22 = +
1 1
−2 5
= 5 − −2 = 7; 𝐶23 = −
1 −1
−2 3
= − 3 − 2 = −1
𝐶31 = +
−1 1
1 4
= −4 − 1 = −5; 𝐶32 = −
1 1
3 4
= − 4 − 3 = −1
𝐶33 = +
1 −1
3 1
= 1 − (−3) = 4
𝐴𝑑𝑗 𝐴 =
−7 −23 11
8 7 −1
−5 −1 4
𝑇
=
−7 8 −5
−23 7 −1
11 −1 4
Hence, 𝐴−1
=
1
𝐴
𝐴𝑑𝑗 𝐴
=
1
27
−7 8 −5
−23 7 −1
11 −1 4
Now, 𝐴−1
𝐴 =
1
27
−7 8 −5
−23 7 −1
11 −1 4
1 −1 1
3 1 4
−2 3 5
=
1
27
−7 + 24 + 10 7 + 8 − 15 −7 + 32 − 25
−23 + 21 + 2 23 + 7 − 3 −23 + 28 − 5
11 − 3 − 8 −11 − 1 + 12 11 − 4 + 20
=
1
27
27 0 0
0 27 0
0 0 27
=
1 0 0
0 1 0
0 0 1
= 𝑰
Hence, 𝑨−𝟏
𝑨 = 𝑰.
 Solve the following system of equation by Cramer’s rule.
𝑥 + 𝑦 + 𝑧 = 3
𝑥 + 2𝑦 + 3𝑧 = 4
𝑥 + 4𝑦 + 9𝑧 = 6
Solution:
𝐷 =
1 1 1
1 2 3
1 4 9
= 1 18 − 12 − 1 9 − 3 + 1 4 − 2 = 2
𝐷𝑥 =
𝟑 1 1
𝟒 2 3
𝟔 4 9
= 3 18 − 12 − 1 36 − 18 + 1 16 − 12 = 4
𝐷𝑦 =
1 𝟑 1
1 𝟒 3
1 𝟔 9
= 1 36 − 18 − 3 9 − 3 + 1 6 − 4 = 2
𝐷𝑧 =
1 1 𝟑
1 2 𝟒
1 4 𝟔
= 1 12 − 16 − 1 6 − 4 + 3 4 − 2 = 0
∴ 𝒙 =
𝑫𝒙
𝑫
=
4
2
= 2
𝒚 =
𝑫𝒚
𝑫
=
2
2
= 1
𝐳 =
𝑫𝒛
𝑫
=
0
2
= 0
∴ 𝒙, 𝒚, 𝒛 = (𝟐, 𝟏, 𝟎)
𝐓𝐡𝐚𝐧𝐤 𝐲𝐨𝐮
Prepared By
Omar Faruk
Lecturer in Mathematics
Department of Basic Science
World University of Bangladesh
Email: omar.faruk@science.wub.edu.bd
Solution of System of Equations by Inverse Matrix
Characteristic Vector and Root
 Solve the following system of equation by Inverse method
𝒙 − 𝟑𝒚 + 𝟐𝒛 = 𝟑
𝟑𝒙 + 𝟐𝒚 − 𝒛 = 𝟐
𝟐𝒙 − 𝒚 + 𝒛 = 𝟒
Solution: The given system of equation can be written in Matrix-form as
𝟏 −𝟑 𝟐
𝟑 𝟐 −𝟏
𝟐 −𝟏 𝟏
𝒙
𝒚
𝒛
=
𝟑
𝟐
𝟒
Let,
𝐴 =
1 −3 2
3 2 −1
2 −1 1
, B =
3
2
4
and X =
𝑥
𝑦
𝑧
Then the equation reduces to
𝑨𝑿 = 𝑩
Now we have to find 𝐴−1
.
Here,
𝐴 =
1 −3 2
3 2 −1
2 −1 1
= 1 2 − 1 − −3 3 + 2 + 2 −3 − 4
= 2 ≠ 0
So, 𝐴 is non-singular. Hence 𝐴−1
exists.
Now we will find the co-factors of 𝐴.
𝐶11 = +
2 −1
−1 1
= 2 − 1 = 1; 𝐶12 = −
3 −1
2 1
= − 3 − −2 = −5
𝐶13 = +
3 2
2 −1
= −3 − 4 = −7; 𝐶21 = −
−3 2
−1 1
= − −3 − (−2 = 1
∴ 𝑿 = 𝑨−𝟏
𝑩
𝐶22 = +
1 2
2 1
= 1 − 4 = −3; 𝐶23 = −
1 −3
2 −1
= − −1 − −6 = −5
𝐶31 = +
−3 2
2 −1
= 3 − 4 = −1; 𝐶32 = −
1 2
3 −1
= − −1 − 6 = 7
𝐶33 = +
1 −3
3 2
= 2 − (−9) = 11
𝑨𝒅𝒋 𝑨 =
1 −5 −7
1 −3 −5
−1 7 11
𝑇
=
1 1 −1
−5 −3 7
−7 −5 11
Hence, 𝑨−𝟏
=
𝟏
𝑨
𝑨𝒅𝒋 𝑨
=
1
2
1 1 −1
−5 −3 7
−7 −5 11
Now, 𝑿 = 𝑨−𝟏
𝑩
⇒
𝑥
𝑦
𝑧
=
1
2
1 1 −1
−5 −3 7
−7 −5 11
3
2
4
=
1
2
3 + 2 − 4
−15 − 6 + 28
−21 − 10 + 44
=
1
2
1
7
13
=
1
2
7
2
13
2
Hence, 𝒙 =
𝟏
𝟐
𝒚 =
𝟕
𝟐
𝒛 =
𝟏𝟑
𝟐
 A non-zero vector 𝑿 is defined as characteristic vector or Eigen vector of a
matrix 𝐴 if there exists a number 𝝀 such that 𝑨𝑿 = 𝝀𝑿 where 𝝀 is defined as
characteristic root or eigen value corresponding to the characteristic vector 𝑿.
 The matrix 𝑨 − 𝝀𝑰 is called the characteristic matrix of 𝐴.
 The determinant 𝑨 − 𝝀𝑰 is called the characteristic polynomial of 𝐴.
 The equation 𝑨 − 𝝀𝑰 = 𝟎 is called the characteristic equation of 𝐴.
Example: If 𝐴 =
1 3 2
4 2 3
1 5 4
then
𝟏 − 𝝀 3 2
4 𝟐 − 𝝀 3
1 5 𝟒 − 𝝀
= 0 is characteristic
equation of 𝐴.
𝐓𝐡𝐚𝐧𝐤 𝐲𝐨𝐮
Prepared By
Omar Faruk
Lecturer in Mathematics
Department of Basic Science
World University of Bangladesh
Email: omar.faruk@science.wub.edu.bd
Characteristic Root / Eigen value
 Find the Characteristic Root or Eigen value of the matrix 𝐴 =
2 2 1
1 3 1
1 2 2
.
Solution: We know, the characteristic equation is,
𝑨 − 𝝀𝑰 = 𝟎
⇒
2 2 1
1 3 1
1 2 2
− 𝜆
1 0 0
0 1 0
0 0 1
= 0
⇒
2 2 1
1 3 1
1 2 2
−
𝜆 0 0
0 𝜆 0
0 0 𝜆
= 0
⇒
2 − 𝜆 2 1
1 3 − 𝜆 1
1 2 2 − 𝜆
= 0
⇒ 2 − 𝜆 3 − 𝜆 2 − 𝜆 − 2 − 2 1. 2 − 𝜆 − 1 + 1 2 − 3 − 𝜆 . 1 = 0
⇒ 2 − 𝜆 6 − 3𝜆 − 2𝜆 + 𝜆2
− 2 − 2 2 − 𝜆 − 1 + 2 − 3 + 𝜆 = 0
⇒ 2 − 𝜆 𝜆2
− 5𝜆 + 4 − 2 1 − 𝜆 + 𝜆 − 1 = 0
⇒ 2 − 𝜆 𝜆2
− 4𝜆 − 𝜆 + 4 − 2 1 − 𝜆 + 𝜆 − 1 = 0
⇒ 2 − 𝜆 𝜆 𝜆 − 4 − 1 𝜆 − 4 − 2 1 − 𝜆 + 𝜆 − 1 = 0
⇒ 2 − 𝜆 𝜆 − 4 𝜆 − 1 − 2 1 − 𝜆 + 𝜆 − 1 = 0
⇒ 2 − 𝜆 𝜆 − 4 𝜆 − 1 + 2 𝜆 − 1 + 𝜆 − 1 = 0
⇒ 𝜆 − 1 2 − 𝜆 𝜆 − 4 + 2 + 1 = 0
⇒ 𝜆 − 1 2𝜆 − 8 − 𝜆2 + 4𝜆 + 3 = 0
⇒ 𝜆 − 1 −𝜆2
+ 6𝜆 − 5 = 0
⇒ 𝜆 − 1 − 𝜆2
− 6𝜆 + 5 = 0
⇒ 𝜆 − 1 𝜆2 − 6𝜆 + 5 = 0
⇒ 𝜆 − 1 𝜆2 − 5𝜆 − 𝜆 + 5 = 0
⇒ 𝜆 − 1 𝜆 𝜆 − 5 − 1 𝜆 − 5 = 0
⇒ 𝜆 − 1 𝜆 − 5 𝜆 − 1 = 0
∴ 𝜆 − 1 = 0 𝜆 − 5 = 0 𝜆 − 1 = 0
⇒ 𝜆 = 1 ⇒ 𝜆 = 5 ⇒ 𝜆 = 1
∴ The characteristic root or eigen values are, 𝝀 = 𝟏, 𝟏, 𝟓.
 Find the Characteristic Root or Eigen value of the matrix 𝐴 =
1 1 3
1 5 1
3 1 1
.
Solution: We know, the characteristic equation is,
𝑨 − 𝝀𝑰 = 𝟎
⇒
1 1 3
1 5 1
3 1 1
− 𝜆
1 0 0
0 1 0
0 0 1
= 0
⇒
1 1 3
1 5 1
3 1 1
−
𝜆 0 0
0 𝜆 0
0 0 𝜆
= 0
⇒
1 − 𝜆 1 3
1 5 − 𝜆 1
3 1 1 − 𝜆
= 0
⇒ 1 − 𝜆 5 − 𝜆 1 − 𝜆 − 1 − 1 1. 1 − 𝜆 − 3 + 3 1 − 3. 5 − 𝜆 = 0
⇒ 1 − 𝜆 5 − 5𝜆 − 𝜆 + 𝜆2 − 1 − 1 − 𝜆 − 3 + 3 1 − 15 + 3𝜆 = 0
⇒ 1 − 𝜆 𝜆2
− 6𝜆 + 4 − −𝜆 − 2 + 3 3𝜆 − 14 = 0
⇒ 𝜆2
− 6𝜆 + 4 − 𝜆3
+ 6𝜆2
− 4𝜆 + 𝜆 + 2 + 9𝜆 − 42 = 0
⇒ −𝜆3
+ 7𝜆2
− 36 = 0
⇒ 𝜆3
− 7𝜆2
+ 36 = 0
Now,
𝑓 𝜆 = 𝜆3 − 7𝜆2 + 36
𝒇 −𝟐 = −2 3
− 7. −2 2
+ 36
= 0
Hence,
𝜆3 − 7𝜆2 + 36 = 0
⇒ 𝜆3
+ 2𝜆2
− 9𝜆2
− 18𝜆 + 18𝜆 + 36 = 0
⇒ 𝜆2 𝜆 + 2 − 9𝜆 𝜆 + 2 + 18 𝜆 + 2 = 0
⇒ 𝜆 + 2 𝜆2
− 9𝜆 + 18 = 0
⇒ (𝜆 + 2)(𝜆2
− 6𝜆 − 3𝜆 + 18) = 0
⇒ 𝜆 + 2 𝜆 𝜆 − 6 − 3 𝜆 − 6 = 0
⇒ 𝜆 + 2 𝜆 − 6 𝜆 − 3 = 0
∴ 𝜆 + 2 = 0 𝜆 − 6 = 0 𝜆 − 3 = 0
⇒ 𝜆 = −2 ⇒ 𝜆 = 6 ⇒ 𝜆 = 3
∴ The characteristic root or eigen values are, 𝝀 = −𝟐, 𝟑, 𝟔.
𝐓𝐡𝐚𝐧𝐤 𝐲𝐨𝐮
Prepared By
Omar Faruk
Lecturer in Mathematics
Department of Basic Science
World University of Bangladesh
Email: omar.faruk@science.wub.edu.bd
Cayley-Hamilton Theorem
Application of Cayley-Hamilton Theorem
 Cayley-Hamilton Theorem: Every square matrix satisfies it’s own
characteristic equation.
 Explanation: If 𝑨 is an 𝑚 × 𝑛 matrix (where 𝑚 = 𝑛) and 𝑰 is the identity
matrix then the characteristic polynomial of 𝑨 is defined as
If we replace 𝝀 with the matrix 𝑨 then the polynomial will be zero matrix.
 Example: Verify Cayley-Hamilton theorem for 𝑨 =
𝟐 𝟐 𝟏
𝟏 𝟑 𝟏
𝟏 𝟐 𝟐
.
Solution: The characteristic polynomial of 𝐴 is,
𝒑 𝝀 = 𝑨 − 𝝀𝑰
𝒑 𝑨 = 𝟎
𝒑 𝝀 = 𝑨 − 𝝀𝑰
=
2 2 1
1 3 1
1 2 2
− 𝜆
1 0 0
0 1 0
0 0 1
=
2 2 1
1 3 1
1 2 2
−
𝜆 0 0
0 𝜆 0
0 0 𝜆
=
2 − 𝜆 2 1
1 3 − 𝜆 1
1 2 2 − 𝜆
= 2 − 𝜆 3 − 𝜆 2 − 𝜆 − 2 − 2 1. 2 − 𝜆 − 1 + 1 2 − 3 − 𝜆 . 1
= 2 − 𝜆 6 − 3𝜆 − 2𝜆 + 𝜆2 − 2 − 2 2 − 𝜆 − 1 + 2 − 3 + 𝜆
= 2 − 𝜆 𝜆2
− 5𝜆 + 4 − 2 1 − 𝜆 + 𝜆 − 1
= 2𝜆2
− 10𝜆 + 8 − 𝜆3
+ 5𝜆2
− 4𝜆 − 2 + 2𝜆 + 𝜆 − 1
= −𝜆3
+ 7𝜆2
− 11𝜆 + 5
∴ The characteristic polynomial of 𝐴 is
𝒑 𝝀 = −𝝀𝟑 + 𝟕𝝀𝟐 − 𝟏𝟏𝝀 + 𝟓
Now, replacing 𝜆 with 𝐴, we get,
𝒑 𝑨 = −𝑨𝟑 + 𝟕𝑨𝟐 − 𝟏𝟏𝑨 + 𝟓𝑰
Now, 𝑨𝟐
=
𝟐 𝟐 𝟏
𝟏 𝟑 𝟏
𝟏 𝟐 𝟐
.
𝟐 𝟐 𝟏
𝟏 𝟑 𝟏
𝟏 𝟐 𝟐
=
4 + 2 + 1 4 + 6 + 2 2 + 2 + 2
2 + 3 + 1 2 + 9 + 2 1 + 3 + 2
2 + 2 + 2 2 + 6 + 4 1 + 2 + 4
=
7 12 6
6 13 6
6 12 7
And 𝑨𝟑 = 𝑨𝟐. 𝑨
=
7 12 6
6 13 6
6 12 7
.
2 2 1
1 3 1
1 2 2
=
14 + 12 + 6 14 + 36 + 12 7 + 12 + 12
12 + 13 + 6 12 + 39 + 12 6 + 13 + 12
12 + 12 + 7 12 + 36 + 14 6 + 12 + 14
=
32 62 31
31 63 31
31 62 32
∴ 𝒑 𝑨 = −𝑨𝟑
+ 𝟕𝑨𝟐
− 𝟏𝟏𝑨 + 𝟓𝑰
= −
32 62 31
31 63 31
31 62 32
+ 7
7 12 6
6 13 6
6 12 7
− 11
2 2 1
1 3 1
1 2 2
+ 5
1 0 0
0 1 0
0 0 1
=
−32 −62 −31
−31 −63 −31
−31 −62 −32
+
49 84 42
42 91 42
42 84 49
−
22 22 11
11 33 11
11 22 22
+
5 0 0
0 5 0
0 0 5
=
−32 + 49 − 22 + 5 −62 + 84 − 22 + 0 −31 + 42 − 11 + 0
−31 + 42 − 11 + 0 −63 + 91 − 33 + 5 −31 + 42 − 11 + 0
−31 + 42 − 11 + 0 −62 + 84 − 22 + 0 −32 + 49 − 22 + 5
=
0 0 0
0 0 0
0 0 0
= 0
∴ 𝒑 𝑨 = 𝟎
Hence the Cayley-Hamilton theorem is verified.
 Find 𝑨−𝟏
by using Cayley-Hamilton theorem where 𝑨 =
𝟕 𝟐 −𝟐
−𝟔 −𝟏 𝟐
𝟔 𝟐 −𝟏
.
Solution: The characteristic polynomial of 𝐴 is,
𝒑 𝝀 = 𝑨 − 𝝀𝑰
=
7 2 −2
−6 −1 2
6 2 −1
− 𝜆
1 0 0
0 1 0
0 0 1
=
7 2 −2
−6 −1 2
6 2 −1
−
𝜆 0 0
0 𝜆 0
0 0 𝜆
=
7 − 𝜆 2 −2
−6 −1 − 𝜆 2
6 2 −1 − 𝜆
= 7 − 𝜆 −1 − 𝜆 −1 − 𝜆 − 4 − 2 −6. −1 − 𝜆 − 12 − 2 −12 −
Now, 𝑨𝟐
=
𝟕 𝟐 −𝟐
−𝟔 −𝟏 𝟐
𝟔 𝟐 −𝟏
.
𝟕 𝟐 −𝟐
−𝟔 −𝟏 𝟐
𝟔 𝟐 −𝟏
=
49 − 12 − 12 14 − 2 − 4 −14 + 4 + 2
−42 + 6 + 12 −12 + 1 + 4 12 − 2 − 2
42 − 12 − 6 12 − 2 − 2 −12 + 4 + 1
=
25 8 −8
−24 −7 8
24 8 −7
And 𝑨𝟑 = 𝑨𝟐. 𝑨
=
25 8 −8
−24 −7 8
24 8 −7
.
7 2 −2
−6 −1 2
6 2 −1
=
175 − 48 − 48 56 − 14 − 16 −56 + 16 + 14
−150 + 24 + 48 −48 + 7 + 16 48 − 8 − 14
150 − 48 − 24 48 − 14 − 8 −48 + 16 + 7
=
79 26 −26
−78 −25 26
78 26 −25
∴ 𝒑 𝑨 = −𝑨𝟑 + 𝟓𝑨𝟐 − 𝟕𝑨 + 𝟑𝑰
= −
79 26 −26
−78 −25 26
78 26 −25
+ 5
25 8 −8
−24 −7 8
24 8 −7
− 7
7 2 −2
−6 −1 2
6 2 −1
+ 3
1 0 0
0 1 0
0 0 1
=
−79 −26 26
78 25 −26
−78 −26 25
+
125 40 −40
−120 −35 40
120 40 −35
−
49 14 −14
−42 −7 14
42 14 −7
+
3 0 0
0 3 0
0 0 3
=
−79 + 125 − 49 + 3 −26 + 40 − 14 + 0 26 − 40 + 14 + 0
78 − 120 + 42 + 0 25 − 35 + 7 + 3 −26 + 40 − 14 + 0
−78 + 120 − 42 + 0 −26 + 40 − 14 + 0 25 − 35 + 7 + 3
=
0 0 0
0 0 0
0 0 0
= 0
∴ 𝒑 𝑨 = 𝟎
∴ −𝑨𝟑
+ 𝟓𝑨𝟐
− 𝟕𝑨 + 𝟑𝑰 = 𝟎 … … … … … . . 𝒊
Hence the Cayley-Hamilton theorem is verified.
Now multiplying 𝑨−𝟏
with both sides of (𝒊), we get
−𝐴−1𝐴3 + 5𝐴−1𝐴2 − 7𝐴−1𝐴 + 3𝐴−1𝐼 = 0
⇒ −𝐴2 +5𝐴 − 7𝐼 + 3𝐴−1 = 0
⇒ 3𝐴−1
= 𝐴2
− 5𝐴 + 7𝐼
⇒ 𝐴−1
=
1
3
𝐴2
− 5𝐴 + 7𝐼
⇒ 𝐴−1
=
1
3
25 8 −8
−24 −7 8
24 8 −7
− 5
7 2 −2
−6 −1 2
6 2 −1
+ 7
1 0 0
0 1 0
0 0 1
⇒ 𝐴−1
=
1
3
25 8 −8
−24 −7 8
24 8 −7
−
35 10 −10
−30 −5 10
30 10 −5
+
7 0 0
0 7 0
0 0 7
⇒ 𝐴−1 =
1
3
25 − 35 + 7 8 − 10 + 0 −8 + 10 + 0
−24 + 30 + 0 −7 + 5 + 7 8 − 10 + 0
24 − 30 + 0 8 − 10 + 0 −7 + 5 + 7
∴ 𝑨−𝟏
=
𝟏
𝟑
−𝟑 −𝟐 𝟐
𝟔 𝟓 −𝟐
−𝟔 −𝟐 𝟓
𝐓𝐡𝐚𝐧𝐤 𝐲𝐨𝐮
Prepared By
Omar Faruk
Lecturer in Mathematics
Department of Basic Science
World University of Bangladesh
Email: omar.faruk@science.wub.edu.bd
Special Types of Matrices
Involutory Matrix
Idempotent Matrix
Nilpotent Matrix
Orthogonal Matrix
Involutary Matrix: A matrix 𝑨 is called involutary matrix if 𝑨𝟐
= 𝑰.
Example:
4 3
−5 −4
is an involutary matrix.
 Show that A =
4 3 3
−1 0 −1
−4 −4 −3
is an involutary matrix.
Solution: Here,
𝐴2
= 𝐴. 𝐴
=
4 3 3
−1 0 −1
−4 −4 −3
.
4 3 3
−1 0 −1
−4 −4 −3
=
16 − 3 − 12 12 + 0 − 12 12 − 3 − 9
−4 + 0 + 4 −3 + 0 + 4 −3 + 0 + 3
−16 + 4 + 12 −12 + 0 + 12 −12 + 4 + 9
=
1 0 0
0 1 0
0 0 1
= 𝑰
Since 𝑨𝟐 = 𝑰, so 𝑨 is an involutary matrix.
 Idempotent Matrix: A matrix 𝑨 is called idempotent if 𝑨𝟐
= 𝑨.
Example:
2 −2 −4
−1 3 4
1 −2 −3
is an idempotent matrix.
 Show that 𝑨 =
𝟐 −𝟑 −𝟓
−𝟏 𝟒 𝟓
𝟏 −𝟑 −𝟒
is an idempotent matrix.
Solution: Here,
𝐴2
= 𝐴. 𝐴
=
2 −3 −5
−1 4 5
1 −3 −4
.
2 −3 −5
−1 4 5
1 −3 −4
=
4 + 3 − 5 −6 − 12 + 15 −10 − 15 + 20
−2 − 4 + 5 3 + 16 − 15 5 + 20 − 20
2 + 3 − 4 −3 − 12 + 12 −5 − 15 + 16
=
2 −3 −5
−1 4 5
1 −3 −4
= 𝑨
Since 𝑨𝟐
= 𝑨, so 𝐴 is an idempotent matrix.
 Nilpotent Matrix: A matrix 𝐴 is called nilpotent if 𝑨𝒑 = 𝟎 where 𝒑 ∈ 𝑵.
Example:
1 −1
1 −1
is a nilpotent matrix.
 Show that 𝑨 =
𝟏 −𝟑 −𝟒
−𝟏 𝟑 𝟒
𝟏 −𝟑 −𝟒
is a nilpotent matrix.
Solution: Here,
𝐴2
= 𝐴. 𝐴
=
𝟏 −𝟑 −𝟒
−𝟏 𝟑 𝟒
𝟏 −𝟑 −𝟒
.
𝟏 −𝟑 −𝟒
−𝟏 𝟑 𝟒
𝟏 −𝟑 −𝟒
=
𝟏 + 𝟑 − 𝟒 −𝟑 − 𝟗 + 𝟏𝟐 −𝟒 − 𝟏𝟐 + 𝟏𝟔
−𝟏 − 𝟑 + 𝟒 𝟑 + 𝟗 − 𝟏𝟐 𝟒 + 𝟏𝟐 − 𝟏𝟔
𝟏 + 𝟑 − 𝟒 −𝟑 − 𝟗 + 𝟏𝟐 −𝟒 − 𝟏𝟐 + 𝟏𝟔
=
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎
= 0
Since 𝑨𝟐
= 𝟎, so 𝐴 is a nilpotent matrix.
 Orthogonal Matrix: A matrix 𝑨 is called orthogonal if 𝑨𝑨𝑻 = 𝑰.
Example:
1
3
−1 2 2
2 −1 2
2 2 −1
is an orthogonal matrix.
 Show that 𝑨 =
𝟏
𝟑
−𝟏 𝟐 𝟐
𝟐 −𝟏 𝟐
𝟐 𝟐 −𝟏
is an orthogonal matrix.
Solution: Here,
𝐴𝑇
=
1
3
−1 2 2
2 −1 2
2 2 −1
∴ 𝐴. 𝐴𝑇 =
1
3
−1 2 2
2 −1 2
2 2 −1
.
1
3
−1 2 2
2 −1 2
2 2 −1
=
1
9
1 + 4 + 4 −2 − 2 + 4 −2 + 4 − 2
−2 − 2 + 4 4 + 1 + 4 4 − 2 − 2
−2 + 4 − 2 4 − 2 − 2 4 + 4 + 1
=
1
9
9 0 0
0 9 0
0 0 9
=
1 0 0
0 1 0
0 0 1
= 𝑰
Since 𝑨𝑨𝑻 = 𝑰, so 𝐴 is an orthogonal matrix.
 If 𝐴 =
1 2 3
−2 5 −1
2 3 4
and 𝐵 =
−1 5 3
7 −2 1
2 0 −3
then show that 𝑨𝑩 𝑻 = 𝑩𝑻𝑨𝑻.
Solution: Here,
𝐴𝐵 =
1 2 3
−2 5 −1
2 3 4
−1 5 3
7 −2 1
2 0 −3
=
−1 + 14 + 6 5 − 4 + 0 3 + 2 − 9
2 + 35 − 2 −10 − 10 + 0 −6 + 5 + 3
−2 + 21 + 8 10 − 6 + 0 6 + 3 − 12
=
19 1 −4
35 −20 2
27 4 −3
∴ 𝐴𝐵 𝑇
=
19 1 −4
35 −20 2
27 4 −3
𝑇
=
19 35 27
1 −20 4
−4 2 −3
Now, 𝐴𝑇
=
1 2 3
−2 5 −1
2 3 4
𝑇
=
1 −2 2
2 5 3
3 −1 4
𝐵𝑇
=
−1 5 3
7 −2 1
2 0 −3
𝑇
=
−1 7 2
5 −2 0
3 1 −3
∴ 𝐵𝑇
𝐴𝑇
=
−1 7 2
5 −2 0
3 1 −3
1 −2 2
2 5 3
3 −1 4
=
−1 + 14 + 6 2 + 35 − 2 −2 + 21 + 8
5 − 4 + 0 −10 − 10 + 0 10 − 6 + 0
3 + 2 − 9 −6 + 5 + 3 6 + 3 − 12
=
19 35 27
1 −20 4
−4 2 −3
= 𝑨𝑩 𝑻
∴ 𝑨𝑩 𝑻= 𝑩𝑻𝑨𝑻.
𝐓𝐡𝐚𝐧𝐤 𝐲𝐨𝐮

More Related Content

What's hot

Set Theory
Set TheorySet Theory
Set Theory
itutor
 
Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theorem
itutor
 
Matrix Operations
Matrix OperationsMatrix Operations
Matrix Operations
Ron Eick
 
Cramers rule
Cramers ruleCramers rule
Cramers rule
mstf mstf
 
MATRICES
MATRICESMATRICES
MATRICES
daferro
 
systems of linear equations & matrices
systems of linear equations & matricessystems of linear equations & matrices
systems of linear equations & matrices
Student
 

What's hot (20)

Determinants
DeterminantsDeterminants
Determinants
 
Set Theory
Set TheorySet Theory
Set Theory
 
Introduction of matrices
Introduction of matricesIntroduction of matrices
Introduction of matrices
 
Matrix Algebra seminar ppt
Matrix Algebra seminar pptMatrix Algebra seminar ppt
Matrix Algebra seminar ppt
 
Matrix and its operation (addition, subtraction, multiplication)
Matrix and its operation (addition, subtraction, multiplication)Matrix and its operation (addition, subtraction, multiplication)
Matrix and its operation (addition, subtraction, multiplication)
 
system linear equations and matrices
 system linear equations and matrices system linear equations and matrices
system linear equations and matrices
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinants
 
Presentation on matrix
Presentation on matrixPresentation on matrix
Presentation on matrix
 
Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theorem
 
MATRICES AND ITS TYPE
MATRICES AND ITS TYPEMATRICES AND ITS TYPE
MATRICES AND ITS TYPE
 
Matrix Operations
Matrix OperationsMatrix Operations
Matrix Operations
 
Cramers rule
Cramers ruleCramers rule
Cramers rule
 
Applications of set theory
Applications of  set theoryApplications of  set theory
Applications of set theory
 
MATRICES
MATRICESMATRICES
MATRICES
 
RELATIONS CLASS XII
RELATIONS CLASS XIIRELATIONS CLASS XII
RELATIONS CLASS XII
 
Sets, functions and groups
Sets, functions and groupsSets, functions and groups
Sets, functions and groups
 
Limits and continuity
Limits and continuityLimits and continuity
Limits and continuity
 
INTRODUCTION TO MATRICES, TYPES OF MATRICES,
INTRODUCTION TO MATRICES, TYPES OF MATRICES, INTRODUCTION TO MATRICES, TYPES OF MATRICES,
INTRODUCTION TO MATRICES, TYPES OF MATRICES,
 
Venn Diagram
Venn DiagramVenn Diagram
Venn Diagram
 
systems of linear equations & matrices
systems of linear equations & matricessystems of linear equations & matrices
systems of linear equations & matrices
 

Similar to Matrix

University of duhok
University of duhokUniversity of duhok
University of duhok
Rwan Kamal
 
Introduction to Matrices
Introduction to MatricesIntroduction to Matrices
Introduction to Matrices
holmsted
 

Similar to Matrix (20)

BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
 
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
 
Matrices
MatricesMatrices
Matrices
 
MATRICES-MATHED204.pptx
MATRICES-MATHED204.pptxMATRICES-MATHED204.pptx
MATRICES-MATHED204.pptx
 
Lesson 5 a matrix inverse
Lesson 5 a   matrix inverseLesson 5 a   matrix inverse
Lesson 5 a matrix inverse
 
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
 
Semana 31 matrices álgebra uni ccesa007
Semana 31 matrices  álgebra uni ccesa007Semana 31 matrices  álgebra uni ccesa007
Semana 31 matrices álgebra uni ccesa007
 
Rank, Nullity, and Fundamental Matrix Spaces.pptx
Rank, Nullity, and Fundamental Matrix Spaces.pptxRank, Nullity, and Fundamental Matrix Spaces.pptx
Rank, Nullity, and Fundamental Matrix Spaces.pptx
 
lec15.ppt
lec15.pptlec15.ppt
lec15.ppt
 
1.6 Other Types of Equations
1.6 Other Types of Equations1.6 Other Types of Equations
1.6 Other Types of Equations
 
Matrix.pptx
Matrix.pptxMatrix.pptx
Matrix.pptx
 
Lesson 3 - matrix multiplication
Lesson 3 - matrix multiplicationLesson 3 - matrix multiplication
Lesson 3 - matrix multiplication
 
Eigenvalues, Eigenvectors and Quadratic Forms.pdf
Eigenvalues, Eigenvectors and Quadratic Forms.pdfEigenvalues, Eigenvectors and Quadratic Forms.pdf
Eigenvalues, Eigenvectors and Quadratic Forms.pdf
 
Дараалал ба цуваа
Дараалал ба цуваа Дараалал ба цуваа
Дараалал ба цуваа
 
4.1 matrices
4.1 matrices4.1 matrices
4.1 matrices
 
University of duhok
University of duhokUniversity of duhok
University of duhok
 
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
 
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
 
Introduction to Matrices
Introduction to MatricesIntroduction to Matrices
Introduction to Matrices
 
Matrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptxMatrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptx
 

Recently uploaded

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Recently uploaded (20)

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 

Matrix

  • 1. Prepared By Omar Faruk Lecturer in Mathematics Department of Basic Science World University of Bangladesh Email: omar.faruk@science.wub.edu.bd
  • 2. Introduction Definition Addition and Subtraction of Matrix Multiplication of Matrix Solved problems on Matrix Multiplication
  • 3. Matrix: A matrix is a rectangular array of elements or numbers arranged in rows and columns. Matrix is denoted by first or third parentheses(bracket). A matrix consists of m horizontal rows and n vertical columns is called 𝑚 × 𝑛 matrix, denoted by 𝐴 = 𝑎11 𝑎12 . . . . . . . 𝑎1𝑛 𝑎21 𝑎22 . . . . . . . 𝑎2𝑛 ⋮ ⋮ 𝑎𝑚1 𝑎𝑚2 . . . . . . . 𝑎𝑚𝑛 = (𝑎𝑖𝑗)𝑚𝑛 For the entry 𝑎𝑖𝑗, the row number is denoted by 𝑖 and the column number is denoted by 𝑗. The numbers in a matrix are called its elements. Example: 𝐴 = 1 5 3 2 4 1 4 3 5 is a 3 × 3 matrix.
  • 4. The size or order of a matrix is described by its number of rows and the number of columns. If a matrix 𝑨 has 𝒎 rows and 𝒏 columns then the order of 𝑨 is 𝒎 × 𝒏. Example: If 𝐴 = 2 1 1 3 4 7 then the order of A is 2 × 3.
  • 5.  Row Matrix: A matrix having only a single row is called a row matrix. Example: 2 3 4  Column Matrix: A matrix having only a single column is called a row matrix. Example: 5 2 1  Square Matrix: A matrix having equal number of rows and columns is called a square matrix. Example: 2 0 −1 5 3 2 1 7 3  Rectangular Matrix: A matrix having equal number of rows and columns is called a square matrix. Example: 2 0 −1 1 7 3  Null Matrix: If all elements of a matrix is zero the matrix is called null or zero matrix and it is shown by 𝟎.
  • 6. Example: 0 0 0 0 0 0 0 0 0  Diagonal Matrix: A square matrix in which all the elements except the main diagonal are zero is called diagonal matrix. Example: 2 0 0 0 3 0 0 0 5  Scalar Matrix: In a diagonal matrix if all elements are equal the matrix is called a scalar matrix. Example: 3 0 0 0 3 0 0 0 3  Unit/Identity Matrix: A diagonal matrix whose all elements on the main diagonal are equal to one is called identity or unit matrix. A unit matrix is usually shown by letter I . Example: 𝐼 = 𝐼3 = 1 0 0 0 1 0 0 0 1
  • 7. Transpose Matrix: If the rows and columns of a matrix A are interchanged then the resulting matrix is called transpose of A matrix. It is denoted by 𝐴′/𝐴𝑇. Example: 𝐴 = 3 2 6 1 5 0 4 3 2 ; 𝐴′ = 𝐴𝑇 = 3 2 6 1 5 0 4 3 2 Symmetric Matrix: A matrix A is called symmetric if 𝐴𝑇 = 𝐴. Example: 1 2 2 4 is a symmetric matrix. Skew Symmetric Matrix: A matrix A is called skew symmetric if 𝐴 = −𝐴𝑇. Example: 0 −1 1 0 is a skew symmetric matrix
  • 8. Conditions for Addition and Subtraction of Matrix:  Matrices must have same dimension.  Add/subtract matrices element-by-element Example: If 𝐴 = 1 3 2 4 2 3 1 5 4 and 𝐵 = 5 2 1 3 1 2 4 3 2 then 𝐴 + 𝐵 = 1 + 5 3 + 2 2 + 1 4 + 3 2 + 1 3 + 2 1 + 4 5 + 3 4 + 2 = 6 5 3 7 3 5 5 8 6 And 𝐴 − 𝐵 = 1 − 5 3 − 2 2 − 1 4 − 3 2 − 1 3 − 2 1 − 4 5 − 3 4 − 2 = −4 1 1 1 1 1 −3 2 2 Multiplication by scalar: If 𝐴 is a matrix and 𝑘 is any scalar then 𝑘. 𝐴 = 𝑘. (𝑎𝑖𝑗) 𝑚𝑛 This means that all elements of the matrix are multiplied by the scalar 𝑘. Example: 3 2 3 −1 1 = 6 9 −3 3
  • 9.  Multiplication of two matrices 𝑨 and 𝑩, in the form of 𝑨 × 𝑩 or 𝑨𝑩, is possible if the number of columns in 𝑨 is equal to the number of rows in 𝑩 .  The result of this multiplication is another matrix 𝑪 where the number of its rows is equal to the number of rows in 𝑨 and number of its columns is equal to the number of columns in 𝑩; that is: 𝑨𝒎×𝒏 × 𝑩𝒏×𝒑 = 𝑪𝒎×𝒑 For example, if 𝐴 = 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖 and 𝑋 = 𝑥 𝑦 𝑧 then the multiplication of A and X will be AX = 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖 𝑥 𝑦 𝑧 = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 𝑑𝑥 + 𝑒𝑦 + 𝑓𝑧 𝑔𝑥 + ℎ𝑦 + 𝑖𝑧
  • 10. Example: If 𝐴 = 2 3 1 2 and 𝐵 = 1 2 4 1 then find 𝐴𝐵 and 𝐵𝐴. Solution: 𝐴𝐵 = 2 3 1 2 1 2 4 1 = 2 × 1 + 3 × 4 2 × 2 + 3 × 1 1 × 1 + 2 × 4 1 × 2 + 2 × 1 = 2 + 12 4 + 3 1 + 8 2 + 2 = 14 7 9 4 Again, 𝐵𝐴 = 1 2 4 1 2 3 1 2 = 2 + 2 3 + 4 8 + 1 12 + 2 = 4 7 9 14
  • 11. Problem: If 𝐴 = 1 −1 0 2 , 𝐵 = 1 3 0 2 0 1 and 𝐶 = 2 3 1 then show that (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶). Solution: Here 𝐴𝐵 = 1 −1 0 2 1 3 0 2 0 1 = 1 − 2 3 + 0 0 − 1 0 + 4 0 + 0 0 + 2 = −1 3 −1 4 0 2 Now 𝐴𝐵 𝐶 = −1 3 −1 4 0 2 2 3 1 = −2 + 9 − 1 8 + 0 + 2 = −2 + 9 − 1 8 + 0 + 2 = 6 10
  • 12. Again, 𝐵𝐶 = 1 3 0 2 0 1 2 3 1 = 2 + 9 + 0 4 + 0 + 1 = 11 5 Now, 𝐴 𝐵𝐶 = 1 −1 0 2 11 5 = 11 − 5 0 + 10 = 6 10 Hence 𝐴𝐵 𝐶 = 𝐴(𝐵𝐶).
  • 13. Problem: If 𝐴 = 1 2 2 2 1 2 2 2 1 then show that 𝐴2 − 4𝐴 − 5𝐼 = 0. Solution: Here, 𝐴2 = 𝐴. 𝐴 = 1 2 2 2 1 2 2 2 1 1 2 2 2 1 2 2 2 1 = 1 + 4 + 4 2 + 2 + 4 2 + 4 + 2 2 + 2 + 4 4 + 1 + 4 4 + 2 + 2 2 + 4 + 2 4 + 2 + 2 4 + 4 + 1 = 9 8 8 8 9 8 8 8 9 Now, 𝐴2 − 4𝐴 − 5𝐼 = 9 8 8 8 9 8 8 8 9 − 4 1 2 2 2 1 2 2 2 1 − 5 1 0 0 0 1 0 0 0 1 = 9 8 8 8 9 8 8 8 9 − 4 8 8 8 4 8 8 8 4 − 5 0 0 0 5 0 0 0 5
  • 14. = 9 − 4 − 5 8 − 8 − 0 8 − 8 − 0 8 − 8 − 0 9 − 4 − 5 8 − 8 − 0 8 − 8 − 0 8 − 8 − 0 9 − 4 − 5 = 0 0 0 0 0 0 0 0 0 = 0 Hence 𝐴2 − 4𝐴 − 5𝐼 = 0.
  • 15.  Idempotent Matrix: A matrix 𝐴 is called idempotent if 𝐴2 = 𝐴. Example: 2 −3 −5 −1 4 5 1 −3 −4  Nilpotent Matrix: A matrix 𝐴 is called nilpotent if 𝐴𝑝 = 0 where 𝑝 ∈ 𝑁. Example: 1 −1 1 −1  Orthogonal Matrix: A matrix 𝐴 is called orthogonal if 𝐴𝐴𝑇 = 𝐼. Example: 1 3 2 −2 1 1 2 2 2 1 −2  Involutory Matrix: A matrix 𝐴 is called involutary matrix if 𝐴2 = 𝐼. Example: 4 3 3 −1 0 −1 −4 −4 −3
  • 17. Prepared By Omar Faruk Lecturer in Mathematics Department of Basic Science World University of Bangladesh Email: omar.faruk@science.wub.edu.bd
  • 18. Determinant of Matrix Adjoint of Matrix Inverse of Matrix Rank of Matrix
  • 19. The determinant of a matrix 𝐴2×2 = 𝑎 𝑏 𝑐 𝑑 denoted by det 𝐴 / 𝐴 is defined as 𝐴 = 𝑎 𝑏 𝑐 𝑑 = 𝑎𝑑 − 𝑏𝑐  For 𝐴3×3 = 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖 𝐴 = 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖 = 𝑎 𝑒𝑖 − ℎ𝑓 − 𝑏 𝑑𝑖 − 𝑔𝑓 + 𝑐(𝑔ℎ − 𝑔𝑒)  Example: If A= 3 1 2 2 1 4 3 2 1 then 𝐴 = 3 1 2 2 1 4 3 2 1 = 3 1 − 8 − 1 2 − 12 + 2 4 − 3 = −21 + 10 + 2 = −9
  • 20.  The transposed matrix 𝐴 formed by the cofactors of the elements of 𝐴 is called the adjoint of 𝐴. It is denoted by 𝐴𝑑𝑗 𝐴.  Example: If A= 2 1 0 3 2 1 1 2 0 then the co-factors of 𝐴 are 𝐶11 = + 2 1 2 0 = 0 − 2 = −2; 𝐶12 = − 3 1 1 0 = −(0 − 1) = 1 𝐶13 = + 3 2 1 2 = 6 − 2 = 4; 𝐶21 = − 1 0 2 0 = −(0 − 0) = 0 𝐶22 = + 2 0 1 0 = 0 − 0 = 0; 𝐶23 = − 2 1 1 2 = −(4 − 1) = −3 𝐶31 = + 1 0 2 1 = 1 − 0 = 1; 𝐶32 = − 2 0 3 1 = −(2 − 0) = −2 𝐶33 = + 2 1 3 2 = 4 − 3 = 1 𝐴𝑑𝑗 𝐴 = −2 1 4 0 0 −3 1 −2 1 𝑇 = −2 0 1 1 0 −2 4 −3 1
  • 21.  Singular and Non-singular Matrix: A matrix 𝐴 is called singular if 𝐴 = 0 and non-singular if |𝐴| ≠ 0. Example: 1 2 1 2 is singular and 3 2 4 1 is non-singular Matrix.  Inverse Matrix: A matrix 𝐵 is called inverse of a matrix 𝐴 if 𝐴𝐵 = 𝐵𝐴 = 𝐼. It is denoted by 𝐴−1 . 𝐴−1 = 1 𝐴 𝐴𝑑𝑗 𝐴 Example: Find 𝐴−1 where 𝐴 = 0 1 1 1 2 0 3 −1 4 . Solution: Here, 𝐴 = 0 1 1 1 2 0 3 −1 4 = 0 − 1 4 − 0 + 1 −1 − 6 = −11 ≠ 0 So, 𝐴 is non-singular. Hence 𝐴 is inversible.  A matrix is inversible only if the matrix is non-singular.
  • 22. Now we will find the co-factors of 𝐴. 𝐶11 = + 2 0 −1 4 = 8 − 0 = 8; 𝐶12 = − 1 0 3 4 = − 4 − 0 = −4 𝐶13 = + 1 2 3 −1 = −1 − 6 = −7; 𝐶21 = − 1 1 −1 4 = − 4 + 1 = −5 𝐶22 = + 0 1 3 4 = 0 − 3 = −3; 𝐶23 = − 0 1 3 −1 = −(0 − 3) = 3 𝐶31 = + 1 1 2 0 = 0 − 2 = −2; 𝐶32 = − 0 1 1 0 = −(0 − 1) = 1 𝐶33 = + 0 1 1 2 = 0 − 1 = −1 𝐴𝑑𝑗 𝐴 = 8 −4 −7 −5 −3 3 −2 1 −1 𝑇 = 8 −5 −2 −4 −3 1 −7 3 −1
  • 23. Hence, 𝐴−1 = 1 𝐴 𝐴𝑑𝑗 𝐴 = 1 −11 8 −5 −2 −4 −3 1 −7 3 −1
  • 24.  The number of linearly independent rows of a matrix is called the rank of a matrix. It is denoted by 𝝆. Example: Find the rank of the matrix 𝐴 = 6 2 0 4 −2 −1 3 4 −1 −1 6 10 . Solution: 6 2 0 4 −2 −1 3 4 −1 −1 6 10 ~ −1 −1 6 10 −2 −1 3 4 6 2 0 4 𝑹𝟏 ⟷ 𝑹𝟑 ~ 1 1 −6 −10 −2 −1 3 4 6 2 0 4 𝑹𝟏 ′ = (−𝟏) × 𝑹𝟏  The number of non zero rows in echelon form will be the rank of the matrix.  Echelon form− 𝟏 𝒂 𝒃 𝟎 𝟏 𝒄 𝟎 𝟎 𝟏
  • 25. ~ 1 1 −6 −10 0 1 −9 −16 0 4 −36 −64 𝑹𝟐 ′ = −𝟐 × 𝑹𝟏 + 𝑹𝟐 𝑹𝟑 ′ = −𝟔 × 𝑹𝟏 − 𝑹𝟑 ~ 1 1 −6 −10 0 1 −9 −16 0 0 0 0 𝑹𝟑 ′ = 𝟒 × 𝑹𝟐 − 𝑹𝟑 The matrix is in echelon form having 2 non-zero rows. So, Rank of 𝐴, 𝜌 𝐴 = 2.
  • 27. Prepared By Omar Faruk Lecturer in Mathematics Department of Basic Science World University of Bangladesh Email: omar.faruk@science.wub.edu.bd
  • 28. Solved Problem on Inverse Matrix Cramer’s Rule
  • 29.  If 𝑨 = 𝟏 −𝟏 𝟏 𝟑 𝟏 𝟒 −𝟐 𝟑 𝟓 then show that 𝑨−𝟏 𝑨 = 𝑰. Solution: Here, 𝐴 = 1 −1 1 3 1 4 −2 3 5 = 1 5 − 12 − −1 15 + 8 + 1 9 + 2 = 27 ≠ 0 So, 𝐴 is non-singular. Hence 𝐴 is inversible. Now we will find the co-factors of 𝐴. 𝐶11 = + 1 4 3 5 = 5 − 12 = −7; 𝐶12 = − 3 4 −2 5 = − 15 − −8 = −23 𝐶13 = + 3 1 −2 3 = 9 − −2 = 11; 𝐶21 = − −1 1 3 5 = − −5 − 3 = 8
  • 30. 𝐶22 = + 1 1 −2 5 = 5 − −2 = 7; 𝐶23 = − 1 −1 −2 3 = − 3 − 2 = −1 𝐶31 = + −1 1 1 4 = −4 − 1 = −5; 𝐶32 = − 1 1 3 4 = − 4 − 3 = −1 𝐶33 = + 1 −1 3 1 = 1 − (−3) = 4 𝐴𝑑𝑗 𝐴 = −7 −23 11 8 7 −1 −5 −1 4 𝑇 = −7 8 −5 −23 7 −1 11 −1 4
  • 31. Hence, 𝐴−1 = 1 𝐴 𝐴𝑑𝑗 𝐴 = 1 27 −7 8 −5 −23 7 −1 11 −1 4 Now, 𝐴−1 𝐴 = 1 27 −7 8 −5 −23 7 −1 11 −1 4 1 −1 1 3 1 4 −2 3 5 = 1 27 −7 + 24 + 10 7 + 8 − 15 −7 + 32 − 25 −23 + 21 + 2 23 + 7 − 3 −23 + 28 − 5 11 − 3 − 8 −11 − 1 + 12 11 − 4 + 20
  • 32. = 1 27 27 0 0 0 27 0 0 0 27 = 1 0 0 0 1 0 0 0 1 = 𝑰 Hence, 𝑨−𝟏 𝑨 = 𝑰.
  • 33.  Solve the following system of equation by Cramer’s rule. 𝑥 + 𝑦 + 𝑧 = 3 𝑥 + 2𝑦 + 3𝑧 = 4 𝑥 + 4𝑦 + 9𝑧 = 6 Solution: 𝐷 = 1 1 1 1 2 3 1 4 9 = 1 18 − 12 − 1 9 − 3 + 1 4 − 2 = 2 𝐷𝑥 = 𝟑 1 1 𝟒 2 3 𝟔 4 9 = 3 18 − 12 − 1 36 − 18 + 1 16 − 12 = 4 𝐷𝑦 = 1 𝟑 1 1 𝟒 3 1 𝟔 9 = 1 36 − 18 − 3 9 − 3 + 1 6 − 4 = 2
  • 34. 𝐷𝑧 = 1 1 𝟑 1 2 𝟒 1 4 𝟔 = 1 12 − 16 − 1 6 − 4 + 3 4 − 2 = 0 ∴ 𝒙 = 𝑫𝒙 𝑫 = 4 2 = 2 𝒚 = 𝑫𝒚 𝑫 = 2 2 = 1 𝐳 = 𝑫𝒛 𝑫 = 0 2 = 0 ∴ 𝒙, 𝒚, 𝒛 = (𝟐, 𝟏, 𝟎)
  • 36. Prepared By Omar Faruk Lecturer in Mathematics Department of Basic Science World University of Bangladesh Email: omar.faruk@science.wub.edu.bd
  • 37. Solution of System of Equations by Inverse Matrix Characteristic Vector and Root
  • 38.  Solve the following system of equation by Inverse method 𝒙 − 𝟑𝒚 + 𝟐𝒛 = 𝟑 𝟑𝒙 + 𝟐𝒚 − 𝒛 = 𝟐 𝟐𝒙 − 𝒚 + 𝒛 = 𝟒 Solution: The given system of equation can be written in Matrix-form as 𝟏 −𝟑 𝟐 𝟑 𝟐 −𝟏 𝟐 −𝟏 𝟏 𝒙 𝒚 𝒛 = 𝟑 𝟐 𝟒 Let, 𝐴 = 1 −3 2 3 2 −1 2 −1 1 , B = 3 2 4 and X = 𝑥 𝑦 𝑧 Then the equation reduces to 𝑨𝑿 = 𝑩
  • 39. Now we have to find 𝐴−1 . Here, 𝐴 = 1 −3 2 3 2 −1 2 −1 1 = 1 2 − 1 − −3 3 + 2 + 2 −3 − 4 = 2 ≠ 0 So, 𝐴 is non-singular. Hence 𝐴−1 exists. Now we will find the co-factors of 𝐴. 𝐶11 = + 2 −1 −1 1 = 2 − 1 = 1; 𝐶12 = − 3 −1 2 1 = − 3 − −2 = −5 𝐶13 = + 3 2 2 −1 = −3 − 4 = −7; 𝐶21 = − −3 2 −1 1 = − −3 − (−2 = 1 ∴ 𝑿 = 𝑨−𝟏 𝑩
  • 40. 𝐶22 = + 1 2 2 1 = 1 − 4 = −3; 𝐶23 = − 1 −3 2 −1 = − −1 − −6 = −5 𝐶31 = + −3 2 2 −1 = 3 − 4 = −1; 𝐶32 = − 1 2 3 −1 = − −1 − 6 = 7 𝐶33 = + 1 −3 3 2 = 2 − (−9) = 11 𝑨𝒅𝒋 𝑨 = 1 −5 −7 1 −3 −5 −1 7 11 𝑇 = 1 1 −1 −5 −3 7 −7 −5 11
  • 41. Hence, 𝑨−𝟏 = 𝟏 𝑨 𝑨𝒅𝒋 𝑨 = 1 2 1 1 −1 −5 −3 7 −7 −5 11 Now, 𝑿 = 𝑨−𝟏 𝑩 ⇒ 𝑥 𝑦 𝑧 = 1 2 1 1 −1 −5 −3 7 −7 −5 11 3 2 4 = 1 2 3 + 2 − 4 −15 − 6 + 28 −21 − 10 + 44
  • 43.  A non-zero vector 𝑿 is defined as characteristic vector or Eigen vector of a matrix 𝐴 if there exists a number 𝝀 such that 𝑨𝑿 = 𝝀𝑿 where 𝝀 is defined as characteristic root or eigen value corresponding to the characteristic vector 𝑿.  The matrix 𝑨 − 𝝀𝑰 is called the characteristic matrix of 𝐴.  The determinant 𝑨 − 𝝀𝑰 is called the characteristic polynomial of 𝐴.  The equation 𝑨 − 𝝀𝑰 = 𝟎 is called the characteristic equation of 𝐴. Example: If 𝐴 = 1 3 2 4 2 3 1 5 4 then 𝟏 − 𝝀 3 2 4 𝟐 − 𝝀 3 1 5 𝟒 − 𝝀 = 0 is characteristic equation of 𝐴.
  • 45. Prepared By Omar Faruk Lecturer in Mathematics Department of Basic Science World University of Bangladesh Email: omar.faruk@science.wub.edu.bd
  • 46. Characteristic Root / Eigen value
  • 47.  Find the Characteristic Root or Eigen value of the matrix 𝐴 = 2 2 1 1 3 1 1 2 2 . Solution: We know, the characteristic equation is, 𝑨 − 𝝀𝑰 = 𝟎 ⇒ 2 2 1 1 3 1 1 2 2 − 𝜆 1 0 0 0 1 0 0 0 1 = 0 ⇒ 2 2 1 1 3 1 1 2 2 − 𝜆 0 0 0 𝜆 0 0 0 𝜆 = 0 ⇒ 2 − 𝜆 2 1 1 3 − 𝜆 1 1 2 2 − 𝜆 = 0
  • 48. ⇒ 2 − 𝜆 3 − 𝜆 2 − 𝜆 − 2 − 2 1. 2 − 𝜆 − 1 + 1 2 − 3 − 𝜆 . 1 = 0 ⇒ 2 − 𝜆 6 − 3𝜆 − 2𝜆 + 𝜆2 − 2 − 2 2 − 𝜆 − 1 + 2 − 3 + 𝜆 = 0 ⇒ 2 − 𝜆 𝜆2 − 5𝜆 + 4 − 2 1 − 𝜆 + 𝜆 − 1 = 0 ⇒ 2 − 𝜆 𝜆2 − 4𝜆 − 𝜆 + 4 − 2 1 − 𝜆 + 𝜆 − 1 = 0 ⇒ 2 − 𝜆 𝜆 𝜆 − 4 − 1 𝜆 − 4 − 2 1 − 𝜆 + 𝜆 − 1 = 0 ⇒ 2 − 𝜆 𝜆 − 4 𝜆 − 1 − 2 1 − 𝜆 + 𝜆 − 1 = 0 ⇒ 2 − 𝜆 𝜆 − 4 𝜆 − 1 + 2 𝜆 − 1 + 𝜆 − 1 = 0 ⇒ 𝜆 − 1 2 − 𝜆 𝜆 − 4 + 2 + 1 = 0 ⇒ 𝜆 − 1 2𝜆 − 8 − 𝜆2 + 4𝜆 + 3 = 0
  • 49. ⇒ 𝜆 − 1 −𝜆2 + 6𝜆 − 5 = 0 ⇒ 𝜆 − 1 − 𝜆2 − 6𝜆 + 5 = 0 ⇒ 𝜆 − 1 𝜆2 − 6𝜆 + 5 = 0 ⇒ 𝜆 − 1 𝜆2 − 5𝜆 − 𝜆 + 5 = 0 ⇒ 𝜆 − 1 𝜆 𝜆 − 5 − 1 𝜆 − 5 = 0 ⇒ 𝜆 − 1 𝜆 − 5 𝜆 − 1 = 0 ∴ 𝜆 − 1 = 0 𝜆 − 5 = 0 𝜆 − 1 = 0 ⇒ 𝜆 = 1 ⇒ 𝜆 = 5 ⇒ 𝜆 = 1 ∴ The characteristic root or eigen values are, 𝝀 = 𝟏, 𝟏, 𝟓.
  • 50.  Find the Characteristic Root or Eigen value of the matrix 𝐴 = 1 1 3 1 5 1 3 1 1 . Solution: We know, the characteristic equation is, 𝑨 − 𝝀𝑰 = 𝟎 ⇒ 1 1 3 1 5 1 3 1 1 − 𝜆 1 0 0 0 1 0 0 0 1 = 0 ⇒ 1 1 3 1 5 1 3 1 1 − 𝜆 0 0 0 𝜆 0 0 0 𝜆 = 0 ⇒ 1 − 𝜆 1 3 1 5 − 𝜆 1 3 1 1 − 𝜆 = 0
  • 51. ⇒ 1 − 𝜆 5 − 𝜆 1 − 𝜆 − 1 − 1 1. 1 − 𝜆 − 3 + 3 1 − 3. 5 − 𝜆 = 0 ⇒ 1 − 𝜆 5 − 5𝜆 − 𝜆 + 𝜆2 − 1 − 1 − 𝜆 − 3 + 3 1 − 15 + 3𝜆 = 0 ⇒ 1 − 𝜆 𝜆2 − 6𝜆 + 4 − −𝜆 − 2 + 3 3𝜆 − 14 = 0 ⇒ 𝜆2 − 6𝜆 + 4 − 𝜆3 + 6𝜆2 − 4𝜆 + 𝜆 + 2 + 9𝜆 − 42 = 0 ⇒ −𝜆3 + 7𝜆2 − 36 = 0 ⇒ 𝜆3 − 7𝜆2 + 36 = 0 Now, 𝑓 𝜆 = 𝜆3 − 7𝜆2 + 36 𝒇 −𝟐 = −2 3 − 7. −2 2 + 36 = 0
  • 52. Hence, 𝜆3 − 7𝜆2 + 36 = 0 ⇒ 𝜆3 + 2𝜆2 − 9𝜆2 − 18𝜆 + 18𝜆 + 36 = 0 ⇒ 𝜆2 𝜆 + 2 − 9𝜆 𝜆 + 2 + 18 𝜆 + 2 = 0 ⇒ 𝜆 + 2 𝜆2 − 9𝜆 + 18 = 0 ⇒ (𝜆 + 2)(𝜆2 − 6𝜆 − 3𝜆 + 18) = 0 ⇒ 𝜆 + 2 𝜆 𝜆 − 6 − 3 𝜆 − 6 = 0 ⇒ 𝜆 + 2 𝜆 − 6 𝜆 − 3 = 0 ∴ 𝜆 + 2 = 0 𝜆 − 6 = 0 𝜆 − 3 = 0 ⇒ 𝜆 = −2 ⇒ 𝜆 = 6 ⇒ 𝜆 = 3 ∴ The characteristic root or eigen values are, 𝝀 = −𝟐, 𝟑, 𝟔.
  • 54. Prepared By Omar Faruk Lecturer in Mathematics Department of Basic Science World University of Bangladesh Email: omar.faruk@science.wub.edu.bd
  • 55. Cayley-Hamilton Theorem Application of Cayley-Hamilton Theorem
  • 56.  Cayley-Hamilton Theorem: Every square matrix satisfies it’s own characteristic equation.  Explanation: If 𝑨 is an 𝑚 × 𝑛 matrix (where 𝑚 = 𝑛) and 𝑰 is the identity matrix then the characteristic polynomial of 𝑨 is defined as If we replace 𝝀 with the matrix 𝑨 then the polynomial will be zero matrix.  Example: Verify Cayley-Hamilton theorem for 𝑨 = 𝟐 𝟐 𝟏 𝟏 𝟑 𝟏 𝟏 𝟐 𝟐 . Solution: The characteristic polynomial of 𝐴 is, 𝒑 𝝀 = 𝑨 − 𝝀𝑰 𝒑 𝑨 = 𝟎 𝒑 𝝀 = 𝑨 − 𝝀𝑰
  • 57. = 2 2 1 1 3 1 1 2 2 − 𝜆 1 0 0 0 1 0 0 0 1 = 2 2 1 1 3 1 1 2 2 − 𝜆 0 0 0 𝜆 0 0 0 𝜆 = 2 − 𝜆 2 1 1 3 − 𝜆 1 1 2 2 − 𝜆 = 2 − 𝜆 3 − 𝜆 2 − 𝜆 − 2 − 2 1. 2 − 𝜆 − 1 + 1 2 − 3 − 𝜆 . 1 = 2 − 𝜆 6 − 3𝜆 − 2𝜆 + 𝜆2 − 2 − 2 2 − 𝜆 − 1 + 2 − 3 + 𝜆 = 2 − 𝜆 𝜆2 − 5𝜆 + 4 − 2 1 − 𝜆 + 𝜆 − 1 = 2𝜆2 − 10𝜆 + 8 − 𝜆3 + 5𝜆2 − 4𝜆 − 2 + 2𝜆 + 𝜆 − 1
  • 58. = −𝜆3 + 7𝜆2 − 11𝜆 + 5 ∴ The characteristic polynomial of 𝐴 is 𝒑 𝝀 = −𝝀𝟑 + 𝟕𝝀𝟐 − 𝟏𝟏𝝀 + 𝟓 Now, replacing 𝜆 with 𝐴, we get, 𝒑 𝑨 = −𝑨𝟑 + 𝟕𝑨𝟐 − 𝟏𝟏𝑨 + 𝟓𝑰 Now, 𝑨𝟐 = 𝟐 𝟐 𝟏 𝟏 𝟑 𝟏 𝟏 𝟐 𝟐 . 𝟐 𝟐 𝟏 𝟏 𝟑 𝟏 𝟏 𝟐 𝟐 = 4 + 2 + 1 4 + 6 + 2 2 + 2 + 2 2 + 3 + 1 2 + 9 + 2 1 + 3 + 2 2 + 2 + 2 2 + 6 + 4 1 + 2 + 4
  • 59. = 7 12 6 6 13 6 6 12 7 And 𝑨𝟑 = 𝑨𝟐. 𝑨 = 7 12 6 6 13 6 6 12 7 . 2 2 1 1 3 1 1 2 2 = 14 + 12 + 6 14 + 36 + 12 7 + 12 + 12 12 + 13 + 6 12 + 39 + 12 6 + 13 + 12 12 + 12 + 7 12 + 36 + 14 6 + 12 + 14 = 32 62 31 31 63 31 31 62 32
  • 60. ∴ 𝒑 𝑨 = −𝑨𝟑 + 𝟕𝑨𝟐 − 𝟏𝟏𝑨 + 𝟓𝑰 = − 32 62 31 31 63 31 31 62 32 + 7 7 12 6 6 13 6 6 12 7 − 11 2 2 1 1 3 1 1 2 2 + 5 1 0 0 0 1 0 0 0 1 = −32 −62 −31 −31 −63 −31 −31 −62 −32 + 49 84 42 42 91 42 42 84 49 − 22 22 11 11 33 11 11 22 22 + 5 0 0 0 5 0 0 0 5 = −32 + 49 − 22 + 5 −62 + 84 − 22 + 0 −31 + 42 − 11 + 0 −31 + 42 − 11 + 0 −63 + 91 − 33 + 5 −31 + 42 − 11 + 0 −31 + 42 − 11 + 0 −62 + 84 − 22 + 0 −32 + 49 − 22 + 5 = 0 0 0 0 0 0 0 0 0 = 0 ∴ 𝒑 𝑨 = 𝟎 Hence the Cayley-Hamilton theorem is verified.
  • 61.  Find 𝑨−𝟏 by using Cayley-Hamilton theorem where 𝑨 = 𝟕 𝟐 −𝟐 −𝟔 −𝟏 𝟐 𝟔 𝟐 −𝟏 . Solution: The characteristic polynomial of 𝐴 is, 𝒑 𝝀 = 𝑨 − 𝝀𝑰 = 7 2 −2 −6 −1 2 6 2 −1 − 𝜆 1 0 0 0 1 0 0 0 1 = 7 2 −2 −6 −1 2 6 2 −1 − 𝜆 0 0 0 𝜆 0 0 0 𝜆 = 7 − 𝜆 2 −2 −6 −1 − 𝜆 2 6 2 −1 − 𝜆
  • 62. = 7 − 𝜆 −1 − 𝜆 −1 − 𝜆 − 4 − 2 −6. −1 − 𝜆 − 12 − 2 −12 −
  • 63. Now, 𝑨𝟐 = 𝟕 𝟐 −𝟐 −𝟔 −𝟏 𝟐 𝟔 𝟐 −𝟏 . 𝟕 𝟐 −𝟐 −𝟔 −𝟏 𝟐 𝟔 𝟐 −𝟏 = 49 − 12 − 12 14 − 2 − 4 −14 + 4 + 2 −42 + 6 + 12 −12 + 1 + 4 12 − 2 − 2 42 − 12 − 6 12 − 2 − 2 −12 + 4 + 1 = 25 8 −8 −24 −7 8 24 8 −7 And 𝑨𝟑 = 𝑨𝟐. 𝑨 = 25 8 −8 −24 −7 8 24 8 −7 . 7 2 −2 −6 −1 2 6 2 −1
  • 64. = 175 − 48 − 48 56 − 14 − 16 −56 + 16 + 14 −150 + 24 + 48 −48 + 7 + 16 48 − 8 − 14 150 − 48 − 24 48 − 14 − 8 −48 + 16 + 7 = 79 26 −26 −78 −25 26 78 26 −25 ∴ 𝒑 𝑨 = −𝑨𝟑 + 𝟓𝑨𝟐 − 𝟕𝑨 + 𝟑𝑰 = − 79 26 −26 −78 −25 26 78 26 −25 + 5 25 8 −8 −24 −7 8 24 8 −7 − 7 7 2 −2 −6 −1 2 6 2 −1 + 3 1 0 0 0 1 0 0 0 1 = −79 −26 26 78 25 −26 −78 −26 25 + 125 40 −40 −120 −35 40 120 40 −35 − 49 14 −14 −42 −7 14 42 14 −7 + 3 0 0 0 3 0 0 0 3
  • 65. = −79 + 125 − 49 + 3 −26 + 40 − 14 + 0 26 − 40 + 14 + 0 78 − 120 + 42 + 0 25 − 35 + 7 + 3 −26 + 40 − 14 + 0 −78 + 120 − 42 + 0 −26 + 40 − 14 + 0 25 − 35 + 7 + 3 = 0 0 0 0 0 0 0 0 0 = 0 ∴ 𝒑 𝑨 = 𝟎 ∴ −𝑨𝟑 + 𝟓𝑨𝟐 − 𝟕𝑨 + 𝟑𝑰 = 𝟎 … … … … … . . 𝒊 Hence the Cayley-Hamilton theorem is verified. Now multiplying 𝑨−𝟏 with both sides of (𝒊), we get −𝐴−1𝐴3 + 5𝐴−1𝐴2 − 7𝐴−1𝐴 + 3𝐴−1𝐼 = 0 ⇒ −𝐴2 +5𝐴 − 7𝐼 + 3𝐴−1 = 0 ⇒ 3𝐴−1 = 𝐴2 − 5𝐴 + 7𝐼
  • 66. ⇒ 𝐴−1 = 1 3 𝐴2 − 5𝐴 + 7𝐼 ⇒ 𝐴−1 = 1 3 25 8 −8 −24 −7 8 24 8 −7 − 5 7 2 −2 −6 −1 2 6 2 −1 + 7 1 0 0 0 1 0 0 0 1 ⇒ 𝐴−1 = 1 3 25 8 −8 −24 −7 8 24 8 −7 − 35 10 −10 −30 −5 10 30 10 −5 + 7 0 0 0 7 0 0 0 7 ⇒ 𝐴−1 = 1 3 25 − 35 + 7 8 − 10 + 0 −8 + 10 + 0 −24 + 30 + 0 −7 + 5 + 7 8 − 10 + 0 24 − 30 + 0 8 − 10 + 0 −7 + 5 + 7 ∴ 𝑨−𝟏 = 𝟏 𝟑 −𝟑 −𝟐 𝟐 𝟔 𝟓 −𝟐 −𝟔 −𝟐 𝟓
  • 68. Prepared By Omar Faruk Lecturer in Mathematics Department of Basic Science World University of Bangladesh Email: omar.faruk@science.wub.edu.bd
  • 69. Special Types of Matrices Involutory Matrix Idempotent Matrix Nilpotent Matrix Orthogonal Matrix
  • 70. Involutary Matrix: A matrix 𝑨 is called involutary matrix if 𝑨𝟐 = 𝑰. Example: 4 3 −5 −4 is an involutary matrix.  Show that A = 4 3 3 −1 0 −1 −4 −4 −3 is an involutary matrix. Solution: Here, 𝐴2 = 𝐴. 𝐴 = 4 3 3 −1 0 −1 −4 −4 −3 . 4 3 3 −1 0 −1 −4 −4 −3 = 16 − 3 − 12 12 + 0 − 12 12 − 3 − 9 −4 + 0 + 4 −3 + 0 + 4 −3 + 0 + 3 −16 + 4 + 12 −12 + 0 + 12 −12 + 4 + 9
  • 71. = 1 0 0 0 1 0 0 0 1 = 𝑰 Since 𝑨𝟐 = 𝑰, so 𝑨 is an involutary matrix.  Idempotent Matrix: A matrix 𝑨 is called idempotent if 𝑨𝟐 = 𝑨. Example: 2 −2 −4 −1 3 4 1 −2 −3 is an idempotent matrix.  Show that 𝑨 = 𝟐 −𝟑 −𝟓 −𝟏 𝟒 𝟓 𝟏 −𝟑 −𝟒 is an idempotent matrix. Solution: Here, 𝐴2 = 𝐴. 𝐴
  • 72. = 2 −3 −5 −1 4 5 1 −3 −4 . 2 −3 −5 −1 4 5 1 −3 −4 = 4 + 3 − 5 −6 − 12 + 15 −10 − 15 + 20 −2 − 4 + 5 3 + 16 − 15 5 + 20 − 20 2 + 3 − 4 −3 − 12 + 12 −5 − 15 + 16 = 2 −3 −5 −1 4 5 1 −3 −4 = 𝑨 Since 𝑨𝟐 = 𝑨, so 𝐴 is an idempotent matrix.  Nilpotent Matrix: A matrix 𝐴 is called nilpotent if 𝑨𝒑 = 𝟎 where 𝒑 ∈ 𝑵. Example: 1 −1 1 −1 is a nilpotent matrix.
  • 73.  Show that 𝑨 = 𝟏 −𝟑 −𝟒 −𝟏 𝟑 𝟒 𝟏 −𝟑 −𝟒 is a nilpotent matrix. Solution: Here, 𝐴2 = 𝐴. 𝐴 = 𝟏 −𝟑 −𝟒 −𝟏 𝟑 𝟒 𝟏 −𝟑 −𝟒 . 𝟏 −𝟑 −𝟒 −𝟏 𝟑 𝟒 𝟏 −𝟑 −𝟒 = 𝟏 + 𝟑 − 𝟒 −𝟑 − 𝟗 + 𝟏𝟐 −𝟒 − 𝟏𝟐 + 𝟏𝟔 −𝟏 − 𝟑 + 𝟒 𝟑 + 𝟗 − 𝟏𝟐 𝟒 + 𝟏𝟐 − 𝟏𝟔 𝟏 + 𝟑 − 𝟒 −𝟑 − 𝟗 + 𝟏𝟐 −𝟒 − 𝟏𝟐 + 𝟏𝟔 = 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 = 0 Since 𝑨𝟐 = 𝟎, so 𝐴 is a nilpotent matrix.
  • 74.  Orthogonal Matrix: A matrix 𝑨 is called orthogonal if 𝑨𝑨𝑻 = 𝑰. Example: 1 3 −1 2 2 2 −1 2 2 2 −1 is an orthogonal matrix.  Show that 𝑨 = 𝟏 𝟑 −𝟏 𝟐 𝟐 𝟐 −𝟏 𝟐 𝟐 𝟐 −𝟏 is an orthogonal matrix. Solution: Here, 𝐴𝑇 = 1 3 −1 2 2 2 −1 2 2 2 −1 ∴ 𝐴. 𝐴𝑇 = 1 3 −1 2 2 2 −1 2 2 2 −1 . 1 3 −1 2 2 2 −1 2 2 2 −1
  • 75. = 1 9 1 + 4 + 4 −2 − 2 + 4 −2 + 4 − 2 −2 − 2 + 4 4 + 1 + 4 4 − 2 − 2 −2 + 4 − 2 4 − 2 − 2 4 + 4 + 1 = 1 9 9 0 0 0 9 0 0 0 9 = 1 0 0 0 1 0 0 0 1 = 𝑰 Since 𝑨𝑨𝑻 = 𝑰, so 𝐴 is an orthogonal matrix.
  • 76.  If 𝐴 = 1 2 3 −2 5 −1 2 3 4 and 𝐵 = −1 5 3 7 −2 1 2 0 −3 then show that 𝑨𝑩 𝑻 = 𝑩𝑻𝑨𝑻. Solution: Here, 𝐴𝐵 = 1 2 3 −2 5 −1 2 3 4 −1 5 3 7 −2 1 2 0 −3 = −1 + 14 + 6 5 − 4 + 0 3 + 2 − 9 2 + 35 − 2 −10 − 10 + 0 −6 + 5 + 3 −2 + 21 + 8 10 − 6 + 0 6 + 3 − 12 = 19 1 −4 35 −20 2 27 4 −3
  • 77. ∴ 𝐴𝐵 𝑇 = 19 1 −4 35 −20 2 27 4 −3 𝑇 = 19 35 27 1 −20 4 −4 2 −3 Now, 𝐴𝑇 = 1 2 3 −2 5 −1 2 3 4 𝑇 = 1 −2 2 2 5 3 3 −1 4 𝐵𝑇 = −1 5 3 7 −2 1 2 0 −3 𝑇 = −1 7 2 5 −2 0 3 1 −3 ∴ 𝐵𝑇 𝐴𝑇 = −1 7 2 5 −2 0 3 1 −3 1 −2 2 2 5 3 3 −1 4
  • 78. = −1 + 14 + 6 2 + 35 − 2 −2 + 21 + 8 5 − 4 + 0 −10 − 10 + 0 10 − 6 + 0 3 + 2 − 9 −6 + 5 + 3 6 + 3 − 12 = 19 35 27 1 −20 4 −4 2 −3 = 𝑨𝑩 𝑻 ∴ 𝑨𝑩 𝑻= 𝑩𝑻𝑨𝑻.