SlideShare ist ein Scribd-Unternehmen logo
1 von 23
Downloaden Sie, um offline zu lesen
Análisis Estadístico de Datos
Climáticos
SERIES TEMPORALES I
2015
Ya hemos visto series
temporales o cronológicas.
Ahora nos va a interesar
mucho el orden en que
aparecen los datos. Ese orden
será típicamente cronológico,
pero puede ser otro orden más
o menos arbitrario.
Ej. se ordenan estaciones
meteorológicas, numerándolas
con algún criterio (espacial u
otro), lo cual induce un
ordenamiento en los datos.
Observar que la media, desv std, cuantiles, histograma, una dist.
de ajuste, son independientes del orden de los datos.
Recíprocamente, ninguno de esos (media….., dist. de ajuste…)
nos informarán sobre si la serie presenta periodicidades, o trends,
etc…
Caudales en nov en SG (1909-2007)
Permutación aleatoria de los datos
Las series pueden ser continuas o discretas (veremos estas últimas, en general con
datos equi-espaciados).
También hay series univariadas o multivariadas.
Nos va a interesar especialmente si los datos de una serie presentan una estructura
temporal más bien aleatoria, o si hay alguna dependencia entre datos en la serie.
Ya vimos y volveremos a ver la función de
autocorrelación, o correlograma
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-0.2
0
0.2
0.4
0.6
0.8
Lag
Sample
Autocorrelation
Sample Autocorrelation Function
Módulo Viento
Horas
La existencia de
autocorrelaciones positivas
significativas
durante varios de los primeros
lags, indica la presencia de
persistencia de valores por
encima (o por debajo) de la media
durante algunas horas.
Series determinísticas y series estocásticas
La característica especial del análisis de las series de tiempo es el
hecho de que las observaciones sucesivas habitualmente no son
independientes y que el análisis debe tomar en cuenta el orden
temporal de las observaciones.
Cuando las observaciones sucesivas son dependientes, hay cierta
capacidad de predecir valores futuros en función de los pasados. Si
ua serie temporal puede ser predicha exactamente, se dice que es
determinística.
Sin embargo, la mayoría de las series son estocásticas (o aleatorias)
porque el futuro es sólo parcialmente determinado por los valores
pasados, de modo que las predicciones exactas son imposibles y
deben ser reemplazadas por la idea de que los valores futuros
tienen una distribuciónn de probabilidades, que está condicionada
por el conocimiento de valores pasados.
Algunos patrones que pueden aparecer cuando no hay independencia
son: ciclos, pseudo-ciclos, tendencias, o “saltos” en la serie.
La detección de patrones temporales que presenten alguna regularidad
puede tener consecuencias para el pronóstico.
En particular, algunas variables meteorológicas o climáticas suelen presentar un ciclo
diario o ciclo anual más o menos definido, que son de origen astronómico. Se suele
llamar variabilidad estacional a la asociada al ciclo anual.
Temperaturas medias mensuales
0.0
5.0
10.0
15.0
20.0
25.0
ENE MAR MAY JUL SET NOV ENE MAR MAY JUL SET NOV
Ciclo u oscilación diaria Ciclo u oscilación anual
Las componentes de variabilidad estacional pueden ser estimadas si son de
interés, o pueden ser removidas si no lo son.
Para la descripción de la serie lo primero es hacer una gráfica (con el tiempo
en abscisas). Es bien posible que muchas características esenciales de la serie
se puedan percibir por el análisis visual. Adicionalmente se pueden detectar
outliers.
Notar las diferencias en la presentación de ambas figuras
Temperatura media mensual en Recife entre 1953 y 1962
A veces se hacen transformaciones a las series, con
distintos propósitos:
•estabilizar la varianza
•hacer constante una variabilidad estacional cuando
esta no lo es
•obtener datos que sigan una distribución gausiana
•otros
Es más fácil ajustar algunos modelos estadísticos a las
series así transformadas.
Una “definición” informal de tendencia (trend) es: “un cambio de largo plazo en el
nivel medio”.
Tiene la dificultad de que no es claro qué significa “largo plazo”, lo cual suele
depender de la cantidad de datos disponibles.
P. ej., si tenemos una variable climática con una variación cíclica de unos 50
años, pero sólo tenemos 20 años de datos, la variación puede parecer una
tendencia.
(Si tuviéramos varios centenares de años de datos, la variación cíclica sería
visible.)
Si sólo se conocen los datos de los primeros
20 años (en rojo) y nada más, puede ser bien
Razonable considerar, para el corto plazo, que
se está en presencia de una trend.
Tests de aleatoriedad y de tendencia
Hay varios tests de aleatoriedad cuya hipótesis nula es que los datos de
la serie en cuestión son iid, y puede haber varias hipótesis alternativas.
Uno de esos tests es el de “rachas hacia arriba y hacia abajo” (“runs up
and down”, no confundir con otros tests con runs, o rachas).
Dada la serie con n datos, se toma el segundo elemento y se compara
con el anterior (el primero), anotando “+” si es mayor y “–” si es menor, y
así se procede hasta el último de la serie, comparando cada término con
el anterior, obteniendo una sucesión de n-1 “+” y “-” (suponiendo que
no hay empates).
Ej: +---+--+++-----+
El estadístico es el número total de rachas R, que en el caso
anterior es: R=7, (con n=17).
Suponiendo que el nivel de significancia de la prueba es α, la idea
intuitiva es que:
•si la hipótesis alternativa HA es simplemente “no aleatoriedad” la
región de rechazo es: la unión de R ≤ rα/2 y R ≥ r’α/2
•si HA es que los + y – tiendan a agruparse por separado, sólo
rechazaremos H0 cuando haya muy pocas rachas, o sea sólo para
R ≤ rα (en este caso, según predominen los + o los -, si eso ocurre,
interpretaremos que existe una trend creciente o decreciente)
•si HA es que los + y – tiendan a mezclarse, sólo rechazaremos H0
cuando haya demasiadas rachas (R ≥ r’α) e interpretaremos que hay
variaciones cíclicas.
Hay tablas para ambos extremos para n ≤ 25.
Si n >25, se puede aplicar una aproximación normal y las regiones de
rechazo de un extremo son:
Hay otros tests de aleatoriedad, varios basados en rachas, el test de Spearman, etc
Y hay tests para trends (Kendall-Mann, Spearman).
Una vez determinada la existencia de una tendencia, puede ser estimada o
removida, según lo que se quiera.
Hay métodos para estimar y/o remover trends, en particular en presencia
de variabilidad estacional.
En el caso de que se quiten la trend y las variaciones cíclicas de una serie,
se puede intentar ajustar algún modelo apropiado a la serie residual.
Por otra parte, si no se rechaza la hipótesis de aleatoriedad, luego se
puede hacer, p.ej., un test de Kolmogorov-Smirnov para la hipótesis de
que los datos provengan de una cierta distribución (normal, uniforme, etc)
Series estacionarias
Veremos más adelante una definición de modelo de serie de tiempo
estacionaria.
Ahora damos una idea intuitiva del concepto de estacionariedad.
Decimos que una serie temporal es estacionaria si no hay un cambio
sistemático en la media (o sea no hay tendencia), si no hay un
cambio sistemático en la varianza y si las variaciones estrictamente
periódicas han sido removidas.
En otras palabras, las propiedades de una sección de los datos son
muy parecidas a las de cualquier otra sección.
Hablando estrictamente, no hay tal cosa como una “serie temporal
estacionaria”, ya que la propiedad de estacionariedad se define para
un modelo, (que probablemente tenga componentes aleatorias).
Sin embargo, la expresión se usa a menudo para datos de series
temporales, indicando que muestran características que sugieren
que se les puede razonablemente ajustar un modelo estacionario.
Series estacionarias
Gran parte de la teoría de la probabilidad para series temporales
se aplica a series estacionarias; por eso, a menudo es necesario
transformar una serie no estacionaria en otra serie estacionaria
para poder usar los resultados de la teoría.
Por ejemplo, puede ser de interés quitar la trend y la variación
estacional de un conjunto de datos y luego tratar modelar la
variación de los residuos por medio de un proceso estocástico
estacionario. Sin embargo, hay que destacar que las componentes
no estacionarias, como la trend, puede ser de más interés que los
residuos estacionarios.
Interpretación del correlograma
El correlograma (o función de
autocorrelación muestral) es útil
en el análisis de series
temporales, pero no siempre es
de fácil interpretación.
El correlograma en general se
construye con un número de lags
mucho menor que la longitud de
la serie (el default de Matlab es el
mínimo entre 20 y la longitud de
la serie).
0 6 12 18 24 30 36 42 48
-0.2
0
0.2
0.4
0.6
0.8
Lag
Sample
Autocorrelation
Sample Autocorrelation Function
Cada rk tiene asociado un diagrama de dispersión (scatter) asociado.
Ejemplo:
A continuación veremos varios casos de correlogramas.
1)Serie aleatoria (o sea iid)
Esperamos que, para grandes valores de N, rk ~ 0 para todo k>0.
De hecho, se demuestra que, para una serie aleatoria de longitud N,
rk se distribuye aproximadamente N(0,1/N), para todo k>0.
Por lo tanto, si una serie es aleatoria, podemos esperar en un 95%
de los casos (o sea para 19 de 20 casos) que los valores de rk estén
entre ± 1.96/sqrt(N).
Por eso, es práctica común considerar valores fuera de este rango
como “significativos” (al 5%).
En 20 valores, es
esperable tener uno
(en promedio)
“significativo” por
azar, o sea que debe
examinarse si ese valor
tiene un significado
físico
La conclusión es que si tenemos una serie real con un
correlograma de ese tipo, podemos razonablemente
suponer que estamos en presencia de una serie aleatoria.
Tenemos así otro test de aleatoriedad.
Es claro que si aparece un solo valor fuera de los límites
de significancia, y es un valor muy alto, corresponderá
estudiar si era esperable o no, etc..
2) Correlación de “corto plazo”
Las series estacionarias a
menudo muestran auto-
correlación de corto plazo,
caracterizada por un valor
relativamente alto de r1 seguido
por unos pocos valores positivos,
que tienden a decrecer, y luego
se hacen aproximadamente cero.
Un caso es la serie para la cual un
valor por encima de la media es
seguido por uno o más también
por encima de la media, y
análogamente para valores por
debajo de la media.
Ej: temperatura del
aire en la escala de días, o la TSM
en la escala de meses.
3) Series alternadas
Si la serie tiende a presentar
valores alternativamente por
encima y por debajo de la
media, entonces el correlograma
también tiende a alternar los
signos.
r1 será naturalmente negativo,
pero r2 será positivo porque los
valores con lag 2 tenderán a estar
del mismo lado de la media, etc.
4) Series que presentan tendencia
En este caso, los valores
de rk no bajan a 0 sino
para grandes valores del lag,
porque una observación de
un lado de la media tenderá
a estar seguida por varios
valores del mismo lado de la
media.
En este caso, el correlograma
es poco informativo, ya que
la tendencia domina a las
demás características. Si estas
interesan, hay que remover
la trend
¿Cómo sería el correlograma si la trend de la serie fuera
decreciente?
5) Series estacionales
Si la serie contiene una variación estacional, el correlograma también
presentará una oscilación con la misma frecuencia.
En particular, ya vimos que si xt = a cos (ωt), entonces rk ~ cos (ωk)
para N grande.
Temp mensual en Recife 1953-1962
Correlogramas para los datos originales y para la serie a la que se
removió la variación estacional (restando el ciclo anual).
¿Qué se puede deducir de este último?
6) Presencia de outliers
Los outliers pueden afectar seriamente al correlograma, por lo que
deben ser ajustados de alguna manera antes de calcular el
correlograma.
P. ej., si hay un outlier en el instante t0, aparecerán 2 outliers en el
Scatter de xt vs xt+k (en los puntos (xt0-k,xt0) y (xto,xto+k), lo cual hará
que el valor de rk disminuya en valor absoluto.
Este efecto se puede intensificar si hay más de un outlier.

Weitere ähnliche Inhalte

Ähnlich wie SeriesTemporales1.pdf

4.2 modelos estacionarios
4.2 modelos estacionarios4.2 modelos estacionarios
4.2 modelos estacionariossergio fonseca
 
Ensayo ent # 2 densidades probabilisticas
Ensayo ent # 2   densidades probabilisticasEnsayo ent # 2   densidades probabilisticas
Ensayo ent # 2 densidades probabilisticasGERENCIA MTTO 3ER CORTE
 
01 presentación winfred assibey - geoestadistica spanish
01 presentación   winfred assibey - geoestadistica spanish01 presentación   winfred assibey - geoestadistica spanish
01 presentación winfred assibey - geoestadistica spanishHernanCarmona
 
01 presentación winfred assibey - geoestadistica spanish
01 presentación   winfred assibey - geoestadistica spanish01 presentación   winfred assibey - geoestadistica spanish
01 presentación winfred assibey - geoestadistica spanishHernanCarmona
 
Metodo cualitativo de_analisis_graficos
Metodo cualitativo de_analisis_graficosMetodo cualitativo de_analisis_graficos
Metodo cualitativo de_analisis_graficosWilliam Bahoque
 
Ejercicios resueltos-de-estadistica-descriptiva
Ejercicios resueltos-de-estadistica-descriptivaEjercicios resueltos-de-estadistica-descriptiva
Ejercicios resueltos-de-estadistica-descriptivapaulminiguano
 
Ejercicios estadistica descriptiva
Ejercicios estadistica descriptivaEjercicios estadistica descriptiva
Ejercicios estadistica descriptivaPedro Miguel
 
Cc trabajo tema 1
Cc trabajo tema 1Cc trabajo tema 1
Cc trabajo tema 1fepo1964
 
Medidas de dispercion
Medidas de dispercionMedidas de dispercion
Medidas de dispercionGeorgy21
 
Series de tiempo pp
Series de tiempo ppSeries de tiempo pp
Series de tiempo ppEQUIPO7
 

Ähnlich wie SeriesTemporales1.pdf (20)

02_LaDistribucionNormal_.pdf
02_LaDistribucionNormal_.pdf02_LaDistribucionNormal_.pdf
02_LaDistribucionNormal_.pdf
 
Distribuciones
DistribucionesDistribuciones
Distribuciones
 
Estadística Descriptiva - 2da parte
Estadística Descriptiva - 2da parteEstadística Descriptiva - 2da parte
Estadística Descriptiva - 2da parte
 
4.2 modelos estacionarios
4.2 modelos estacionarios4.2 modelos estacionarios
4.2 modelos estacionarios
 
Ensayo ent # 2 densidades probabilisticas
Ensayo ent # 2   densidades probabilisticasEnsayo ent # 2   densidades probabilisticas
Ensayo ent # 2 densidades probabilisticas
 
distribuciones
distribuciones distribuciones
distribuciones
 
Métodos en prospectiva 5-modelo estadistico
Métodos en prospectiva 5-modelo estadisticoMétodos en prospectiva 5-modelo estadistico
Métodos en prospectiva 5-modelo estadistico
 
Biometria clase 3
Biometria clase 3Biometria clase 3
Biometria clase 3
 
Biometria clase 3
Biometria clase 3Biometria clase 3
Biometria clase 3
 
01 presentación winfred assibey - geoestadistica spanish
01 presentación   winfred assibey - geoestadistica spanish01 presentación   winfred assibey - geoestadistica spanish
01 presentación winfred assibey - geoestadistica spanish
 
01 presentación winfred assibey - geoestadistica spanish
01 presentación   winfred assibey - geoestadistica spanish01 presentación   winfred assibey - geoestadistica spanish
01 presentación winfred assibey - geoestadistica spanish
 
Metodo cualitativo de_analisis_graficos
Metodo cualitativo de_analisis_graficosMetodo cualitativo de_analisis_graficos
Metodo cualitativo de_analisis_graficos
 
Ejercicios resueltos-de-estadistica-descriptiva
Ejercicios resueltos-de-estadistica-descriptivaEjercicios resueltos-de-estadistica-descriptiva
Ejercicios resueltos-de-estadistica-descriptiva
 
Ejercicios estadistica descriptiva
Ejercicios estadistica descriptivaEjercicios estadistica descriptiva
Ejercicios estadistica descriptiva
 
Cc trabajo tema 1
Cc trabajo tema 1Cc trabajo tema 1
Cc trabajo tema 1
 
Medidas de dispercion
Medidas de dispercionMedidas de dispercion
Medidas de dispercion
 
Incertidumbre
IncertidumbreIncertidumbre
Incertidumbre
 
Estadistica 5
Estadistica 5Estadistica 5
Estadistica 5
 
Series de tiempo pp
Series de tiempo ppSeries de tiempo pp
Series de tiempo pp
 
Tratamiento de datos
Tratamiento de datosTratamiento de datos
Tratamiento de datos
 

Kürzlich hochgeladen

HISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAHISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAJesus Gonzalez Losada
 
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfFichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfssuser50d1252
 
PRIMER GRADO SOY LECTOR PART1- MD EDUCATIVO.pdf
PRIMER GRADO SOY LECTOR PART1- MD  EDUCATIVO.pdfPRIMER GRADO SOY LECTOR PART1- MD  EDUCATIVO.pdf
PRIMER GRADO SOY LECTOR PART1- MD EDUCATIVO.pdfGabrieldeJesusLopezG
 
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADOPLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADOMARIBEL DIAZ
 
SIMULACROS Y SIMULACIONES DE SISMO 2024.docx
SIMULACROS Y SIMULACIONES DE SISMO 2024.docxSIMULACROS Y SIMULACIONES DE SISMO 2024.docx
SIMULACROS Y SIMULACIONES DE SISMO 2024.docxLudy Ventocilla Napanga
 
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxMODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxRAMON EUSTAQUIO CARO BAYONA
 
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2Eliseo Delgado
 
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxSecuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxNataliaGonzalez619348
 
libro para colorear de Peppa pig, ideal para educación inicial
libro para colorear de Peppa pig, ideal para educación iniciallibro para colorear de Peppa pig, ideal para educación inicial
libro para colorear de Peppa pig, ideal para educación inicialLorenaSanchez350426
 
SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...
SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...
SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...GIANCARLOORDINOLAORD
 
libro grafismo fonético guía de uso para el lenguaje
libro grafismo fonético guía de uso para el lenguajelibro grafismo fonético guía de uso para el lenguaje
libro grafismo fonético guía de uso para el lenguajeKattyMoran3
 
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJODIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJOLeninCariMogrovejo
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Angélica Soledad Vega Ramírez
 
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfFichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfssuser50d1252
 
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...MagalyDacostaPea
 
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdf
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdfFichas de MatemáticA QUINTO DE SECUNDARIA).pdf
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdfssuser50d1252
 

Kürzlich hochgeladen (20)

HISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAHISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICA
 
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfFichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
 
PRIMER GRADO SOY LECTOR PART1- MD EDUCATIVO.pdf
PRIMER GRADO SOY LECTOR PART1- MD  EDUCATIVO.pdfPRIMER GRADO SOY LECTOR PART1- MD  EDUCATIVO.pdf
PRIMER GRADO SOY LECTOR PART1- MD EDUCATIVO.pdf
 
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADOPLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
 
SIMULACROS Y SIMULACIONES DE SISMO 2024.docx
SIMULACROS Y SIMULACIONES DE SISMO 2024.docxSIMULACROS Y SIMULACIONES DE SISMO 2024.docx
SIMULACROS Y SIMULACIONES DE SISMO 2024.docx
 
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxMODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
 
DIA INTERNACIONAL DAS FLORESTAS .
DIA INTERNACIONAL DAS FLORESTAS         .DIA INTERNACIONAL DAS FLORESTAS         .
DIA INTERNACIONAL DAS FLORESTAS .
 
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
 
Aedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptxAedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptx
 
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxSecuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
 
libro para colorear de Peppa pig, ideal para educación inicial
libro para colorear de Peppa pig, ideal para educación iniciallibro para colorear de Peppa pig, ideal para educación inicial
libro para colorear de Peppa pig, ideal para educación inicial
 
SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...
SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...
SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...
 
Aedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptxAedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptx
 
libro grafismo fonético guía de uso para el lenguaje
libro grafismo fonético guía de uso para el lenguajelibro grafismo fonético guía de uso para el lenguaje
libro grafismo fonético guía de uso para el lenguaje
 
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJODIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...
 
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfFichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
 
Sesión La luz brilla en la oscuridad.pdf
Sesión  La luz brilla en la oscuridad.pdfSesión  La luz brilla en la oscuridad.pdf
Sesión La luz brilla en la oscuridad.pdf
 
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...
 
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdf
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdfFichas de MatemáticA QUINTO DE SECUNDARIA).pdf
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdf
 

SeriesTemporales1.pdf

  • 1. Análisis Estadístico de Datos Climáticos SERIES TEMPORALES I 2015
  • 2. Ya hemos visto series temporales o cronológicas. Ahora nos va a interesar mucho el orden en que aparecen los datos. Ese orden será típicamente cronológico, pero puede ser otro orden más o menos arbitrario. Ej. se ordenan estaciones meteorológicas, numerándolas con algún criterio (espacial u otro), lo cual induce un ordenamiento en los datos. Observar que la media, desv std, cuantiles, histograma, una dist. de ajuste, son independientes del orden de los datos. Recíprocamente, ninguno de esos (media….., dist. de ajuste…) nos informarán sobre si la serie presenta periodicidades, o trends, etc… Caudales en nov en SG (1909-2007) Permutación aleatoria de los datos
  • 3. Las series pueden ser continuas o discretas (veremos estas últimas, en general con datos equi-espaciados). También hay series univariadas o multivariadas. Nos va a interesar especialmente si los datos de una serie presentan una estructura temporal más bien aleatoria, o si hay alguna dependencia entre datos en la serie. Ya vimos y volveremos a ver la función de autocorrelación, o correlograma 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 -0.2 0 0.2 0.4 0.6 0.8 Lag Sample Autocorrelation Sample Autocorrelation Function Módulo Viento Horas La existencia de autocorrelaciones positivas significativas durante varios de los primeros lags, indica la presencia de persistencia de valores por encima (o por debajo) de la media durante algunas horas.
  • 4. Series determinísticas y series estocásticas La característica especial del análisis de las series de tiempo es el hecho de que las observaciones sucesivas habitualmente no son independientes y que el análisis debe tomar en cuenta el orden temporal de las observaciones. Cuando las observaciones sucesivas son dependientes, hay cierta capacidad de predecir valores futuros en función de los pasados. Si ua serie temporal puede ser predicha exactamente, se dice que es determinística. Sin embargo, la mayoría de las series son estocásticas (o aleatorias) porque el futuro es sólo parcialmente determinado por los valores pasados, de modo que las predicciones exactas son imposibles y deben ser reemplazadas por la idea de que los valores futuros tienen una distribuciónn de probabilidades, que está condicionada por el conocimiento de valores pasados.
  • 5. Algunos patrones que pueden aparecer cuando no hay independencia son: ciclos, pseudo-ciclos, tendencias, o “saltos” en la serie. La detección de patrones temporales que presenten alguna regularidad puede tener consecuencias para el pronóstico.
  • 6. En particular, algunas variables meteorológicas o climáticas suelen presentar un ciclo diario o ciclo anual más o menos definido, que son de origen astronómico. Se suele llamar variabilidad estacional a la asociada al ciclo anual. Temperaturas medias mensuales 0.0 5.0 10.0 15.0 20.0 25.0 ENE MAR MAY JUL SET NOV ENE MAR MAY JUL SET NOV Ciclo u oscilación diaria Ciclo u oscilación anual Las componentes de variabilidad estacional pueden ser estimadas si son de interés, o pueden ser removidas si no lo son.
  • 7. Para la descripción de la serie lo primero es hacer una gráfica (con el tiempo en abscisas). Es bien posible que muchas características esenciales de la serie se puedan percibir por el análisis visual. Adicionalmente se pueden detectar outliers. Notar las diferencias en la presentación de ambas figuras Temperatura media mensual en Recife entre 1953 y 1962
  • 8. A veces se hacen transformaciones a las series, con distintos propósitos: •estabilizar la varianza •hacer constante una variabilidad estacional cuando esta no lo es •obtener datos que sigan una distribución gausiana •otros Es más fácil ajustar algunos modelos estadísticos a las series así transformadas.
  • 9. Una “definición” informal de tendencia (trend) es: “un cambio de largo plazo en el nivel medio”. Tiene la dificultad de que no es claro qué significa “largo plazo”, lo cual suele depender de la cantidad de datos disponibles. P. ej., si tenemos una variable climática con una variación cíclica de unos 50 años, pero sólo tenemos 20 años de datos, la variación puede parecer una tendencia. (Si tuviéramos varios centenares de años de datos, la variación cíclica sería visible.) Si sólo se conocen los datos de los primeros 20 años (en rojo) y nada más, puede ser bien Razonable considerar, para el corto plazo, que se está en presencia de una trend.
  • 10. Tests de aleatoriedad y de tendencia Hay varios tests de aleatoriedad cuya hipótesis nula es que los datos de la serie en cuestión son iid, y puede haber varias hipótesis alternativas. Uno de esos tests es el de “rachas hacia arriba y hacia abajo” (“runs up and down”, no confundir con otros tests con runs, o rachas). Dada la serie con n datos, se toma el segundo elemento y se compara con el anterior (el primero), anotando “+” si es mayor y “–” si es menor, y así se procede hasta el último de la serie, comparando cada término con el anterior, obteniendo una sucesión de n-1 “+” y “-” (suponiendo que no hay empates). Ej: +---+--+++-----+ El estadístico es el número total de rachas R, que en el caso anterior es: R=7, (con n=17).
  • 11. Suponiendo que el nivel de significancia de la prueba es α, la idea intuitiva es que: •si la hipótesis alternativa HA es simplemente “no aleatoriedad” la región de rechazo es: la unión de R ≤ rα/2 y R ≥ r’α/2 •si HA es que los + y – tiendan a agruparse por separado, sólo rechazaremos H0 cuando haya muy pocas rachas, o sea sólo para R ≤ rα (en este caso, según predominen los + o los -, si eso ocurre, interpretaremos que existe una trend creciente o decreciente) •si HA es que los + y – tiendan a mezclarse, sólo rechazaremos H0 cuando haya demasiadas rachas (R ≥ r’α) e interpretaremos que hay variaciones cíclicas. Hay tablas para ambos extremos para n ≤ 25. Si n >25, se puede aplicar una aproximación normal y las regiones de rechazo de un extremo son:
  • 12. Hay otros tests de aleatoriedad, varios basados en rachas, el test de Spearman, etc Y hay tests para trends (Kendall-Mann, Spearman). Una vez determinada la existencia de una tendencia, puede ser estimada o removida, según lo que se quiera. Hay métodos para estimar y/o remover trends, en particular en presencia de variabilidad estacional. En el caso de que se quiten la trend y las variaciones cíclicas de una serie, se puede intentar ajustar algún modelo apropiado a la serie residual. Por otra parte, si no se rechaza la hipótesis de aleatoriedad, luego se puede hacer, p.ej., un test de Kolmogorov-Smirnov para la hipótesis de que los datos provengan de una cierta distribución (normal, uniforme, etc)
  • 13. Series estacionarias Veremos más adelante una definición de modelo de serie de tiempo estacionaria. Ahora damos una idea intuitiva del concepto de estacionariedad. Decimos que una serie temporal es estacionaria si no hay un cambio sistemático en la media (o sea no hay tendencia), si no hay un cambio sistemático en la varianza y si las variaciones estrictamente periódicas han sido removidas. En otras palabras, las propiedades de una sección de los datos son muy parecidas a las de cualquier otra sección. Hablando estrictamente, no hay tal cosa como una “serie temporal estacionaria”, ya que la propiedad de estacionariedad se define para un modelo, (que probablemente tenga componentes aleatorias). Sin embargo, la expresión se usa a menudo para datos de series temporales, indicando que muestran características que sugieren que se les puede razonablemente ajustar un modelo estacionario.
  • 14. Series estacionarias Gran parte de la teoría de la probabilidad para series temporales se aplica a series estacionarias; por eso, a menudo es necesario transformar una serie no estacionaria en otra serie estacionaria para poder usar los resultados de la teoría. Por ejemplo, puede ser de interés quitar la trend y la variación estacional de un conjunto de datos y luego tratar modelar la variación de los residuos por medio de un proceso estocástico estacionario. Sin embargo, hay que destacar que las componentes no estacionarias, como la trend, puede ser de más interés que los residuos estacionarios.
  • 15. Interpretación del correlograma El correlograma (o función de autocorrelación muestral) es útil en el análisis de series temporales, pero no siempre es de fácil interpretación. El correlograma en general se construye con un número de lags mucho menor que la longitud de la serie (el default de Matlab es el mínimo entre 20 y la longitud de la serie). 0 6 12 18 24 30 36 42 48 -0.2 0 0.2 0.4 0.6 0.8 Lag Sample Autocorrelation Sample Autocorrelation Function
  • 16. Cada rk tiene asociado un diagrama de dispersión (scatter) asociado. Ejemplo: A continuación veremos varios casos de correlogramas.
  • 17. 1)Serie aleatoria (o sea iid) Esperamos que, para grandes valores de N, rk ~ 0 para todo k>0. De hecho, se demuestra que, para una serie aleatoria de longitud N, rk se distribuye aproximadamente N(0,1/N), para todo k>0. Por lo tanto, si una serie es aleatoria, podemos esperar en un 95% de los casos (o sea para 19 de 20 casos) que los valores de rk estén entre ± 1.96/sqrt(N). Por eso, es práctica común considerar valores fuera de este rango como “significativos” (al 5%). En 20 valores, es esperable tener uno (en promedio) “significativo” por azar, o sea que debe examinarse si ese valor tiene un significado físico
  • 18. La conclusión es que si tenemos una serie real con un correlograma de ese tipo, podemos razonablemente suponer que estamos en presencia de una serie aleatoria. Tenemos así otro test de aleatoriedad. Es claro que si aparece un solo valor fuera de los límites de significancia, y es un valor muy alto, corresponderá estudiar si era esperable o no, etc..
  • 19. 2) Correlación de “corto plazo” Las series estacionarias a menudo muestran auto- correlación de corto plazo, caracterizada por un valor relativamente alto de r1 seguido por unos pocos valores positivos, que tienden a decrecer, y luego se hacen aproximadamente cero. Un caso es la serie para la cual un valor por encima de la media es seguido por uno o más también por encima de la media, y análogamente para valores por debajo de la media. Ej: temperatura del aire en la escala de días, o la TSM en la escala de meses.
  • 20. 3) Series alternadas Si la serie tiende a presentar valores alternativamente por encima y por debajo de la media, entonces el correlograma también tiende a alternar los signos. r1 será naturalmente negativo, pero r2 será positivo porque los valores con lag 2 tenderán a estar del mismo lado de la media, etc.
  • 21. 4) Series que presentan tendencia En este caso, los valores de rk no bajan a 0 sino para grandes valores del lag, porque una observación de un lado de la media tenderá a estar seguida por varios valores del mismo lado de la media. En este caso, el correlograma es poco informativo, ya que la tendencia domina a las demás características. Si estas interesan, hay que remover la trend ¿Cómo sería el correlograma si la trend de la serie fuera decreciente?
  • 22. 5) Series estacionales Si la serie contiene una variación estacional, el correlograma también presentará una oscilación con la misma frecuencia. En particular, ya vimos que si xt = a cos (ωt), entonces rk ~ cos (ωk) para N grande. Temp mensual en Recife 1953-1962 Correlogramas para los datos originales y para la serie a la que se removió la variación estacional (restando el ciclo anual). ¿Qué se puede deducir de este último?
  • 23. 6) Presencia de outliers Los outliers pueden afectar seriamente al correlograma, por lo que deben ser ajustados de alguna manera antes de calcular el correlograma. P. ej., si hay un outlier en el instante t0, aparecerán 2 outliers en el Scatter de xt vs xt+k (en los puntos (xt0-k,xt0) y (xto,xto+k), lo cual hará que el valor de rk disminuya en valor absoluto. Este efecto se puede intensificar si hay más de un outlier.