SlideShare verwendet Cookies, um die Funktionalität und Leistungsfähigkeit der Webseite zu verbessern und Ihnen relevante Werbung bereitzustellen. Wenn Sie diese Webseite weiter besuchen, erklären Sie sich mit der Verwendung von Cookies auf dieser Seite einverstanden. Lesen Sie bitte unsere Nutzervereinbarung und die Datenschutzrichtlinie.
SlideShare verwendet Cookies, um die Funktionalität und Leistungsfähigkeit der Webseite zu verbessern und Ihnen relevante Werbung bereitzustellen. Wenn Sie diese Webseite weiter besuchen, erklären Sie sich mit der Verwendung von Cookies auf dieser Seite einverstanden. Lesen Sie bitte unsere unsere Datenschutzrichtlinie und die Nutzervereinbarung.
Teilen
Herunterladen, um offline zu lesen
Slide of the paper "Exact Matrix Completion via Convex Optimization" of Emmanuel J. Candès and Benjamin Recht. We presented this slide in KAIST CS592 Class, April 2018.
- Code: https://github.com/JoonyoungYi/MCCO-numpy
- Abstract of the paper: We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M. Can we complete the matrix and recover the entries that we have not seen? We show that one can perfectly recover most low-rank matrices from what appears to be an incomplete set of entries. We prove that if the number m of sampled entries obeys
𝑚≥𝐶𝑛1.2𝑟log𝑛
for some positive numerical constant C, then with very high probability, most n×n matrices of rank r can be perfectly recovered by solving a simple convex optimization program. This program finds the matrix with minimum nuclear norm that fits the data. The condition above assumes that the rank is not too large. However, if one replaces the 1.2 exponent with 1.25, then the result holds for all values of the rank. Similar results hold for arbitrary rectangular matrices as well. Our results are connected with the recent literature on compressed sensing, and show that objects other than signals and images can be perfectly reconstructed from very limited information.
Slide of the paper "Exact Matrix Completion via Convex Optimization" of Emmanuel J. Candès and Benjamin Recht. We presented this slide in KAIST CS592 Class, April 2018. - Code: https://github.com/JoonyoungYi/MCCO-numpy - Abstract of the paper: We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M. Can we complete the matrix and recover the entries that we have not seen? We show that one can perfectly recover most low-rank matrices from what appears to be an incomplete set of entries. We prove that if the number m of sampled entries obeys 𝑚≥𝐶𝑛1.2𝑟log𝑛 for some positive numerical constant C, then with very high probability, most n×n matrices of rank r can be perfectly recovered by solving a simple convex optimization program. This program finds the matrix with minimum nuclear norm that fits the data. The condition above assumes that the rank is not too large. However, if one replaces the 1.2 exponent with 1.25, then the result holds for all values of the rank. Similar results hold for arbitrary rectangular matrices as well. Our results are connected with the recent literature on compressed sensing, and show that objects other than signals and images can be perfectly reconstructed from very limited information.
Aufrufe insgesamt
2.858
Auf Slideshare
0
Aus Einbettungen
0
Anzahl der Einbettungen
0
Downloads
99
Geteilt
0
Kommentare
0
Likes
7
Sie haben diese Folie bereits ins Clipboard „“ geclippt.
Die SlideShare-Familie hat sich gerade vergrößert. Sie haben nun unbegrenzten* Zugriff auf Bücher, Hörbücher, Zeitschriften und mehr von Scribd.
Jederzeit kündbar.