통계 기초 용어1

Seong-Bok Lee
Seong-Bok LeeHP Korea um HP
통계 기초 용어1
통계 기초 용어1
통계 기초 용어1
통계학은 데이터를 생산하고 이해하는 논리와 방법들을 제공하는 학문
통계 기초 용어1
통계 기초 용어1
데이터
질적 데이터
양적 데이터
비례척도
척도
명목척도
순서척도
간격척도
<데이터의 분류>
비정형
데이터
정형 데이터
연속 데이터
이산 데이터
1차 데이터 2차 데이터
수집
방법
속성
대상
데이터
편차값
표준화
표준편차
분산
중앙값
최빈값
정규분포
값
대표값
평균값
기타
산술평
균
기하평
균
조화평
균
편차
편차제곱합
변수의
변환
산포도 범위 사분위수
상자수염
그림
구성
최대값최소값
요소변수(변량)
표두 표측
크로스집계표
공분산표준편차
상관계수
<데이터>
가중평균, 절단평균, 사분평균…
분포
도수
일변량
다변량
통계 기초 용어1
이름 점수
홍길동 90
이순신 80
박지성 90
손흥민 100
변수명
변량(변수)
요소요소명
통계 기초 용어1
히스토그램 상자수염그림
줄기잎그림
No 점수
1 90
2 80
3 90
4 100
5 75
No 점수
6 35
7 80
8 55
9 70
10 60
No 점수
11 95
12 20
13 65
14 50
15 85
No 점수
16 70
17 50
18 60
19 30
20 15
계급(점수) 계급값
도수
(명)
0~20미만 10 1
20~40 30 3
40~60 50 3
60~80 70 6
80~100 90 7
합계 20
<자료 : 시험성적> <도수분포표>
계급 계급값 도수 상대도수
150~160 155 1 0.05
160~170 165 8 0.40
170~180 175 10 0.50
180~190 185 1 0.05
190~200 195 0 0.00
계 20 1
0.00
0.10
0.20
0.30
0.40
0.50
0.60
155 165 175 185 195
상대도수 히스토그램
계급 계급값 도수 상대도수 누적도수
누적상대
도수
150~160 155 1 0.05 1 0.05
160~170 165 8 0.40 9 0.45
170~180 175 10 0.50 19 0.95
180~190 185 1 0.05 20 1.00
190~200 195 0 0.00 20 1.00
계 20 1
cumulative frequency distribution
0
2
4
6
8
10
12
14
16
18
20
150 160 170 180 190 200
누적도수분포표
평균값(mean, average) 중앙값(median) 최빈값(mode)
의미 • 데이터의 크기 합을 데이터
개수로 나눈 값
• 변량의 값을 크기 순으로
늘어놓았을 때 꼭 중앙에
오는 값
• 도수(빈도)가 가장 많은 값
특징 • 일부 이상치에 크게 영향
받음
• 수학적인 연산에 의해
계산되므로 수학적 조작
가능
• 서열자료의 경우 중앙값
사용
• 이상치 영향 없음
• 명목자료에서는 최빈값이
대표값
• 이상치 영향 없음
예 • 연간 평균 강우량
• 기말고사 평균점수
• 학교 석차 100명 중 50등 • 유행하는 가방
• 인기투표
산술평균
기하평균
조화평균
가중평균
산술평균
기하평균
조화평균
가중평균
이름 물가지수 전년대비
2000 100 -0.500%
2001 99.5 -0.302%
2002 99.2 2.218%
2003 101.4 8.383%
2004 109.9 -0.500%
• 평균 변동률 = 2.4%
산술평균
기하평균
조화평균
가중평균
H =
2𝐴
𝐴
4
+
𝐴
6
=
2
1
4
+
1
6
= 4.8(km/h) 갈 때 걸리는 시간 =
𝐴
4
, 올 때 걸리는 시간 =
𝐴
6
왕복(2A)하는데 걸린 시간 =
𝐴
4
+
𝐴
6
산술평균
기하평균
조화평균
가중평균
평균 =
(1000 𝑥 50)+(2000𝑥100)
50+100
= 1,666.7 = 16,667,000원
통계 기초 용어1
이름 득점(x) 편차(x-x) 편차제곱(x-x)2
가 9 2 4
나 4 -3 9
다 10 3 9
라 5 -2 4
마 7 0 0
분산 = 편차제곱합(26) / 데이터 수(5)
= 5.2
합계 26이 편차제곱 합
통계 기초 용어1
No 소득
가 100
나 110
다 150
라 200
마 160
<월평균 소득>
No 소득
바 190
사 230
아 210
자 180
차 300
• 평균 = 183
• 분산 = 3423.3
• 표준편차 = 58.5
183
183 − 58.5 183 + 58.5
No 체중
가 51
나 49
다 50
라 57
마 43
<체중자료>
• 최대값 = 57
• 최소값 = 43
• R = 57 – 43 = 14
“이 집단의 체중은 14kg안에 다 모여 있다.”
통계 기초 용어1
표준화
No x
가 61
나 59
다 60
라 67
마 53
평균값 60
표준편차 4.47
No z
가 0.22
나 -0.22
다 0.00
라 1.57
마 -1.57
평균값 0
표준편차 1.00
표준화
“평균이 60이고 표준편차가 4.47인 정규분포를 표준화”
13.6% 13.6%2.1% 2.1
%
0.1
%
0.1
%
평균값
기대값 ± 표본오차
기대값 ±2 ×표본오차
기대값 ± 3 × 표본오차
통계 기초 용어1
상황 그래프
비율을 나타내는 그래프 띠 그래프, 원 그래프, 복합 그래프
관계를 나타내는 그래프 산포토, 레이더 차트
분산을 나타내는 그래프 도수분포표, 히스토그램, 상사수염그림, 줄기잎 그림, 꺾은선 그래프
누적도수분포를 나타내는
그래프
꺾은선 그래프
<출처 : ‘R분석과 프로그래밍' (http://rfriend.tistory.com)>
통계 기초 용어1
확률
사건
표본공간
확률변수
리스크
사람(의 경험, 지식, 태도, 성격 등)에 따라 다르게 일어날 확률
경우의 수
확률분포
성
공
실
패
독
립
사
건
종
속
사
건
배
타
적
사
건
주관적
확률
객관적
확률
논리적
확률
경험적
확률
대수의
법칙
상대도수
어떤 상황이
발생할 가능성
기대값 분산
유형
유형
조사
전수조사 표본조사
모집단 표본
시행
곱
의
법
칙
합
의
법
칙 순열
조합
모수 통계량
표본추출 표본오차
<확률>
가설
검정
수
락
역
기
각
역
귀무가설( 𝐻0 )
대립가설
(𝐻1)
표본
검정동계량
(표본통계량)
유
의
수
준
확률밀도
함수
확률변수
연속
형
확률
변수
이산
형
확률
변수틀릴 가능성
판단 근거
확률분포
이산형
확률분포
이산균등분
포 등
베르누이
시행
초기하 분포
이항분포 포아송분포
종속
시행
독립
시행
다항
분포
기하
분포
정규분포
(가우스분포)
균등분포
지수분포
평균
표준편차
표준점수
표준
정규분포
T = 50+10(
𝑋− 𝑋
𝑆
)
편차
평균제곱
합
제곱합
연속형
확률분포
(p>0)
채택
<가설검정과 확률분포>
통계 기초 용어1
모집단
(모수)
표본
(통계량)
평균 𝜇 𝑋
표준편차 𝜎 S
분산 𝜎2
𝑆2
상관계수 𝜌
회귀계수 𝛽 𝑏
통계 기초 용어1
통계 기초 용어1
통계 기초 용어1
통계 기초 용어1
확률
확률
P
통계학
평균값
𝜇, 𝑋
분산
𝜎2
, 𝑆2
표본오차
𝜎, S
확률변수
𝑋
확률통계
이산형(discrete) 연속형(continuous)
• 비연속 수치
• 셀 수 있는 경우
• 연속 수치
• 확률변수가 갖는 값을 셀 수 없는 경우 = 무한
히 쪼개질 수 있음
• 주사위 던지기 등 • 체중, 키 등
통계 기초 용어1
동전 앞면 횟
수
0 1 2 3
확률 1/8 3/8 3/8 1/8
<동전을 3회 던졌을 때 앞면이 나올 확률>
X 확률
𝑥1 𝑝1
𝑥2 𝑝2
𝑥3 𝑝3
𝑥4 𝑝4
… …
계 1
이산형
확률분포
이산균등분포
등
베르누이
시행
초기하 분포
이항분포 포아송분포
종속
시행
독
립
시
행
다항분
포
기하분
포
정규분포
(가우스분포)
기타
지수분포
연속형
확률분포
(p>0)
변수의 값이
연속적이며 그 수도
무한대
변수의 값이
명확하고 그 수도
한정적
확률변수가
가질 수 있는
값들의
개수와
명확성
T 분포
𝑥2
분포
F 분포
부의
이항분
포
균등분포, 베타분포, 감마분포 등
(n>∞)
“통계학” 68쪽 내용 추가
X 1 2 3 4 5 6 계
확률 p 1
6
1
6
1
6
1
6
1
6
1
6
1
<확률변수 X의 확률분포> <변량 x의 도수분포>
X 1 2 3 4 5 6 계
도수 f 𝑁
6
𝑁
6
𝑁
6
𝑁
6
𝑁
6
𝑁
6
N
N회 반복
1
6
1
6
1
6
1
6
1
𝑁
𝑁
6
𝑁
6
𝑁
6
𝑁
6
이 면적 = 확률
확률변수 X가 두 수 a와 b 사이에 놓일 확률
= f( 𝑥)의 아래 a와 b 사이의 면적
통계 기초 용어1
통계 기초 용어1
X 1
0
5𝐶0
1
6
0
1 −
1
6
5
1
5𝐶1
1
6
1
1 −
1
6
4
2
5𝐶2
1
6
2
1 −
1
6
3
3
5𝐶3
1
6
3
1 −
1
6
2
4
5𝐶4
1
6
4
1 −
1
6
5
5𝐶5
1
6
5
예) 주사위를 5번 던져서 ‘1’이
X회 나올 X의 확률분포
통계 기초 용어1
통계 기초 용어1
신뢰구간 양측검정
단측검정
(또는 상위검정)
68.3%의
신뢰구간
기대값( 𝜇) ± 표본
오차
95%의
신뢰구간
기대값( 𝜇) ±
1.96 x 표본오차
기대값( 𝜇) + 1.64
x 표본오차
99%의
신뢰구간
기대값( 𝜇) ±
2.58 x표본오차
기대값( 𝜇) + 2.33
x 표본오차
표본의 크기가 클 때 정규분포 형태에 가까워짐
그림통계학 73p 주사위 던지기 추가
통계 기초 용어1
1. 기획  모집단/모수, 표본크기, 통계량
2. 조사(실험)
3. 자료 처리
4. 자료 분석
5. 집단(현상) 설명, 정책집행
평가
6. 예측, 정책 도출
 표본, 조사방법
 개체, 변수, 자료, 이상치, MDIS 활용…
 요약, 그래프, 관계
 표본점수, 확률분포 모형, 표집분포, 표본오차, 신뢰구간, 가설검정
Paired
T-test
연속형 종속변
수
독립변수
의 갯수
독립변수
종속변수독립변수독립변수
범주형 연속형
연속형 or
변수 2개 이상1개 2개 이상
범주형
범주형 연속
형
수준
짝
2 3이상
Covariat
e
혼합
Yes N
o
이분
명목,서열
(2수준)
명목
(3수준
이상)
Yes
No
2-sample
T-test
단순회귀분
석
One-way
ANOVA
ANOVA
(GLM)
다중회귀분
석
이분형
Logistic회
귀
카이제곱분
석
다중명목
Logistic회
귀
순서형
Logistic회
귀
정규성 정규성 정규성
Yes No Yes No Yes
No
GLM
(Covariate)
회귀분석
(dummy)
Wilcoxon
Mann-
Whitney
Kruskal-
Wallis
서열
(3수준
이상)
범주형
추정
대립가설 검정
표본
대상
모비율 추정
모평균 추정
P값
모집단
방법
단측검정
양측검정
귀무가설
검정통계량
유의수준
비교
<추정과 검정>
실험, 관찰,
시행…
대상
모비율 검정
모평균 검정
표본추출
기각역
통계 기초 용어1
통계 기초 용어1
통계 기초 용어1
통계 기초 용어1
통계 기초 용어1
통계 기초 용어1
귀무가설 채택 귀무가설 탈락
 표본오차
= 오차한계
= 임계값 x
𝑠
𝑛
(또는
𝛿
𝑛
)
 표본크기
= 신뢰계수
2
x 0.52 /
허용오차
2
검정결과
𝐻0의 실제 상태
𝐻0 = 참 𝐻0 = 거짓
𝐻0 채택 ○ 제2종 오류( 𝛽)
𝐻0 기각 제1종 오류( 𝛼) ○
𝛽𝛼
𝐻0 𝐻1
추정
점 구간
표본
불편성
최소 분산 효율성
추정량모집단
신뢰구간
상충관계
추정구간의
크기
추정정보의
효과
모수
허용오차
90%
95%
99%
표본분포
평균 분산
확률변수
중심극한
정리
정규분포
모집단의 분포모양과는
상관없이 일정한 모양
통계 기초 용어1
예) 4명의 학생들에게 자신이 좋아하는 학생 1명을 선택하라고 할 때, 자유롭게 선택할 수 있는 대상은 나를
제외한 3명
df = 4 - 1
= 3
 자유도 = n -1
번호
그룹
A B C
1 49 56 51
2 47 54 55
3 46 61 57
4 50 57 53
그룹 평균 48 57 54
번호
그룹
A B C
1 1 -1 -3
2 -1 -3 1
3 -2 4 3
4 2 0 -1
합 0 0 0
제약조건 k = 3 (3개 그룹)
df = 12 – 3 = 9
X − 𝑋 2
= 12
+ (−1)2
+
(−2)2
+ 22
+ (−1)2
+ (−3)2
+ 42
+
02
+ (−3)2
+ 12
32
+ (−1)2
= 56
불편분산 𝒔 𝟐
= 56/9
조건1
<표본> <그룹내 편차>
조건2 조건3
통계 기초 용어1
통계 기초 용어1
귀무가설을 세운다1
‘내용량은 500ml이다’
• 모평균 𝜇 = 500
대립가설을 세운다2
‘내용량은 500ml가 아니다’
• 모평균 𝜇 ≠ 500
유의수준을 정한다3
• 유의수준 = 0.05 (5%)
검정통계랑이 따르는
분포를 확인한다
4
모집단분포가 정규분포이므로 검정통계량 T는
자유도 8의 t분포에 따른다.(앞의 t분포 참조)
• T =
561−500
1.80
9
= 1.67
기각역을 설정한다5
대립가설이 모평균 𝜇 ≠ 500이므로
양측검정시 기각역 ±5%부분은
‘기대값( 𝜇) ± 1.94 x 표본오차’이므로
• 기각역 = -2.31 > T, 2.31 < T
검정통계량의 값이
기각역에 있는지 확인한다
6
관측한 T값은 1.67은 기각역에 들어있지
않다.
• 관측값 T = 1.67
• 귀무가설은 기각할 수 없다.
• 즉, ‘내용량은 500ml이다’고 볼 수 있다.
귀무가설을 세운다1
‘신제품을 먹어본 사람의 비율은 21%다’
• 모비율 R = 0.21
대립가설을 세운다2
‘신제품을 먹어본 사람의 비율은
21%보다 늘었다’
• 모비율 R > 0.21
유의수준을 정한다3
• 유의수준 = 0.05 (5%)
검정통계랑이 따르는
분포를 확인한다
4
검정통계량인 ‘먹어보았다‘는 인원수 X는 다음
정규분포를 따른다.
• 기대값 nR = 100 x 0.21 = 21
• 분산 nR(1-R) = 100 x 0.21(1-0.21) =
16.59
• 표본오차 = 16.59 = 4.07
기각역을 설정한다5
대립가설이 R>0.21이므로 단측검정시
기각역 5%부분은 ‘기대값( 𝜇) + 1.64 x
표본오차’이므로
• 기각역 = 27.7 < X
검정통계량의 값이
기각역에 있는지 확인한다
6
관측값 X는 29이므로 기각역에 들어있지
않다.
• 관측값 X = 29
• 귀무가설은 기각된다.
• 즉, ‘제품을 먹어본 사람의 비율은 21%보다 늘었다’고 볼 수
있다.
통계 기초 용어1
데이터 값 = 전체 평균 + 그룹간 편차 + 그룹 내 편차
구획 비료A 비료B 비료C
1 49 56 51
2 47 54 55
3 46 61 57
4 50 57 53
그룹평균 48 57 54
구획 A B C
1 -5 4 1
2 -5 4 1
3 -5 4 1
4 -5 4 1
<그룹간 편차
= 그룹평균 - 전체평균>
구획 A B C
1 1 -1 -3
2 -1 -3 1
3 -2 4 3
4 2 0 -1
<그룹 내 편차
= 개별 데이터 값 - 그룹평균>
통계 기초 용어1
1 von 80

Recomendados

ベイズモデリングによる第2種信号検出モデルの表現 von
ベイズモデリングによる第2種信号検出モデルの表現ベイズモデリングによる第2種信号検出モデルの表現
ベイズモデリングによる第2種信号検出モデルの表現Takashi Yamane
4K views22 Folien
20160713 srws第六回@メタ・アナリシス前半 von
20160713 srws第六回@メタ・アナリシス前半20160713 srws第六回@メタ・アナリシス前半
20160713 srws第六回@メタ・アナリシス前半SR WS
3.9K views62 Folien
データベース時代の疫学研究デザイン von
データベース時代の疫学研究デザインデータベース時代の疫学研究デザイン
データベース時代の疫学研究デザインKoichiro Gibo
6.6K views26 Folien
201707srws第六回その1メタ・アナリシスと存在、発生、効果の指標 von
201707srws第六回その1メタ・アナリシスと存在、発生、効果の指標201707srws第六回その1メタ・アナリシスと存在、発生、効果の指標
201707srws第六回その1メタ・アナリシスと存在、発生、効果の指標SR WS
1.3K views48 Folien
ネットワークメタ分析入門 von
ネットワークメタ分析入門ネットワークメタ分析入門
ネットワークメタ分析入門Senshu University
10.8K views42 Folien
ロジスティック回帰分析の書き方 von
ロジスティック回帰分析の書き方ロジスティック回帰分析の書き方
ロジスティック回帰分析の書き方Sayuri Shimizu
182.9K views68 Folien

Más contenido relacionado

Was ist angesagt?

介入研究の質のアセスメント von
介入研究の質のアセスメント介入研究の質のアセスメント
介入研究の質のアセスメントSenshu University
10.2K views36 Folien
効果測定入門 Rによる傾向スコア解析 von
効果測定入門  Rによる傾向スコア解析効果測定入門  Rによる傾向スコア解析
効果測定入門 Rによる傾向スコア解析aa_aa_aa
10.2K views64 Folien
多重代入法の書き方 公開用 von
多重代入法の書き方 公開用 多重代入法の書き方 公開用
多重代入法の書き方 公開用 Koichiro Gibo
22.4K views56 Folien
20170112 srws第六回メタ・アナリシス von
20170112 srws第六回メタ・アナリシス20170112 srws第六回メタ・アナリシス
20170112 srws第六回メタ・アナリシスSR WS
3.4K views66 Folien
マルコフ連鎖モンテカルロ法と多重代入法 von
マルコフ連鎖モンテカルロ法と多重代入法マルコフ連鎖モンテカルロ法と多重代入法
マルコフ連鎖モンテカルロ法と多重代入法Koichiro Gibo
12.6K views51 Folien
STATISTIC ESTIMATION von
STATISTIC ESTIMATIONSTATISTIC ESTIMATION
STATISTIC ESTIMATIONSmruti Ranjan Parida
981 views28 Folien

Was ist angesagt?(20)

介入研究の質のアセスメント von Senshu University
介入研究の質のアセスメント介入研究の質のアセスメント
介入研究の質のアセスメント
Senshu University10.2K views
効果測定入門 Rによる傾向スコア解析 von aa_aa_aa
効果測定入門  Rによる傾向スコア解析効果測定入門  Rによる傾向スコア解析
効果測定入門 Rによる傾向スコア解析
aa_aa_aa10.2K views
多重代入法の書き方 公開用 von Koichiro Gibo
多重代入法の書き方 公開用 多重代入法の書き方 公開用
多重代入法の書き方 公開用
Koichiro Gibo22.4K views
20170112 srws第六回メタ・アナリシス von SR WS
20170112 srws第六回メタ・アナリシス20170112 srws第六回メタ・アナリシス
20170112 srws第六回メタ・アナリシス
SR WS3.4K views
マルコフ連鎖モンテカルロ法と多重代入法 von Koichiro Gibo
マルコフ連鎖モンテカルロ法と多重代入法マルコフ連鎖モンテカルロ法と多重代入法
マルコフ連鎖モンテカルロ法と多重代入法
Koichiro Gibo12.6K views
診断研究のメタアナリシスをやってみる(みたい)。 von Takashi Fujiwara
診断研究のメタアナリシスをやってみる(みたい)。診断研究のメタアナリシスをやってみる(みたい)。
診断研究のメタアナリシスをやってみる(みたい)。
Takashi Fujiwara5.2K views
GRADEの基礎:概要と問題設定 von Yuko Masuzawa
GRADEの基礎:概要と問題設定GRADEの基礎:概要と問題設定
GRADEの基礎:概要と問題設定
Yuko Masuzawa1.7K views
バリデーション研究の入門 von Yasuyuki Okumura
バリデーション研究の入門バリデーション研究の入門
バリデーション研究の入門
Yasuyuki Okumura7.2K views
2 5 2.一般化線形モデル色々_ロジスティック回帰 von logics-of-blue
2 5 2.一般化線形モデル色々_ロジスティック回帰2 5 2.一般化線形モデル色々_ロジスティック回帰
2 5 2.一般化線形モデル色々_ロジスティック回帰
logics-of-blue58.8K views
20161222 srws第五回 Risk of Bias 2.0 toolを用いた文献評価 von SR WS
20161222 srws第五回 Risk of Bias 2.0 toolを用いた文献評価20161222 srws第五回 Risk of Bias 2.0 toolを用いた文献評価
20161222 srws第五回 Risk of Bias 2.0 toolを用いた文献評価
SR WS5.8K views
臨床試験における欠測発生の予防法 von Senshu University
臨床試験における欠測発生の予防法臨床試験における欠測発生の予防法
臨床試験における欠測発生の予防法
Senshu University10.8K views
20171112予測指標の作り方セミナー事前学習 von SR WS
20171112予測指標の作り方セミナー事前学習20171112予測指標の作り方セミナー事前学習
20171112予測指標の作り方セミナー事前学習
SR WS2.4K views
GLMM in interventional study at Require 23, 20151219 von Shuhei Ichikawa
GLMM in interventional study at Require 23, 20151219GLMM in interventional study at Require 23, 20151219
GLMM in interventional study at Require 23, 20151219
Shuhei Ichikawa1.8K views
Heteroskedastisitas von Rezzy Caraka
HeteroskedastisitasHeteroskedastisitas
Heteroskedastisitas
Rezzy Caraka1.1K views
20170202 srws第七回統合、層別・感度分析、欠測への対処 von SR WS
20170202 srws第七回統合、層別・感度分析、欠測への対処20170202 srws第七回統合、層別・感度分析、欠測への対処
20170202 srws第七回統合、層別・感度分析、欠測への対処
SR WS2.3K views
研究室内PRML勉強会 11章2-4節 von Koji Matsuda
研究室内PRML勉強会 11章2-4節研究室内PRML勉強会 11章2-4節
研究室内PRML勉強会 11章2-4節
Koji Matsuda3.3K views

Similar a 통계 기초 용어1

Probability with MLE, MAP von
Probability with MLE, MAPProbability with MLE, MAP
Probability with MLE, MAPJunho Lee
256 views40 Folien
Hfs ch11 von
Hfs ch11Hfs ch11
Hfs ch11Kyungryul KIM
911 views56 Folien
[확률통계]04모수추정 von
[확률통계]04모수추정[확률통계]04모수추정
[확률통계]04모수추정jaypi Ko
2.7K views61 Folien
08.추정 von
08.추정08.추정
08.추정Yoonwhan Lee
4.2K views25 Folien
연구학교 데이터분석 von
연구학교 데이터분석 연구학교 데이터분석
연구학교 데이터분석 성훈 김
3.5K views46 Folien
3.neural networks von
3.neural networks3.neural networks
3.neural networksHaesun Park
1K views62 Folien

Similar a 통계 기초 용어1(13)

Probability with MLE, MAP von Junho Lee
Probability with MLE, MAPProbability with MLE, MAP
Probability with MLE, MAP
Junho Lee256 views
[확률통계]04모수추정 von jaypi Ko
[확률통계]04모수추정[확률통계]04모수추정
[확률통계]04모수추정
jaypi Ko2.7K views
연구학교 데이터분석 von 성훈 김
연구학교 데이터분석 연구학교 데이터분석
연구학교 데이터분석
성훈 김3.5K views
확통 회귀분석 von jaypi Ko
확통 회귀분석확통 회귀분석
확통 회귀분석
jaypi Ko626 views
확률변수와 분포함수 von Yoonwhan Lee
확률변수와 분포함수확률변수와 분포함수
확률변수와 분포함수
Yoonwhan Lee5.1K views
0228 2 sample_distribution von Jeonghun Yoon
0228 2 sample_distribution0228 2 sample_distribution
0228 2 sample_distribution
Jeonghun Yoon1.3K views
표집 von sundol75
표집표집
표집
sundol753.3K views
2.linear regression and logistic regression von Haesun Park
2.linear regression and logistic regression2.linear regression and logistic regression
2.linear regression and logistic regression
Haesun Park2.7K views

Más de Seong-Bok Lee

소화설비_수원과 소화약제량.pdf von
소화설비_수원과 소화약제량.pdf소화설비_수원과 소화약제량.pdf
소화설비_수원과 소화약제량.pdfSeong-Bok Lee
261 views34 Folien
소화설비_작동순서.pdf von
소화설비_작동순서.pdf소화설비_작동순서.pdf
소화설비_작동순서.pdfSeong-Bok Lee
106 views10 Folien
소화설비_계통도.pdf von
소화설비_계통도.pdf소화설비_계통도.pdf
소화설비_계통도.pdfSeong-Bok Lee
910 views36 Folien
정보공학(IE) 방법론.pptx von
정보공학(IE) 방법론.pptx정보공학(IE) 방법론.pptx
정보공학(IE) 방법론.pptxSeong-Bok Lee
132 views14 Folien
CBD 개발방법론.pptx von
CBD 개발방법론.pptxCBD 개발방법론.pptx
CBD 개발방법론.pptxSeong-Bok Lee
277 views19 Folien
Mapping 절차와 방법.pptx von
Mapping 절차와 방법.pptxMapping 절차와 방법.pptx
Mapping 절차와 방법.pptxSeong-Bok Lee
30 views11 Folien

Más de Seong-Bok Lee(19)

소화설비_수원과 소화약제량.pdf von Seong-Bok Lee
소화설비_수원과 소화약제량.pdf소화설비_수원과 소화약제량.pdf
소화설비_수원과 소화약제량.pdf
Seong-Bok Lee261 views
소화설비_작동순서.pdf von Seong-Bok Lee
소화설비_작동순서.pdf소화설비_작동순서.pdf
소화설비_작동순서.pdf
Seong-Bok Lee106 views
소화설비_계통도.pdf von Seong-Bok Lee
소화설비_계통도.pdf소화설비_계통도.pdf
소화설비_계통도.pdf
Seong-Bok Lee910 views
정보공학(IE) 방법론.pptx von Seong-Bok Lee
정보공학(IE) 방법론.pptx정보공학(IE) 방법론.pptx
정보공학(IE) 방법론.pptx
Seong-Bok Lee132 views
Mapping 절차와 방법.pptx von Seong-Bok Lee
Mapping 절차와 방법.pptxMapping 절차와 방법.pptx
Mapping 절차와 방법.pptx
Seong-Bok Lee30 views
To-Be 설계 절차와 방법.pptx von Seong-Bok Lee
To-Be 설계 절차와 방법.pptxTo-Be 설계 절차와 방법.pptx
To-Be 설계 절차와 방법.pptx
Seong-Bok Lee44 views
As-Is 분석 절차와 방법.pptx von Seong-Bok Lee
As-Is 분석 절차와 방법.pptxAs-Is 분석 절차와 방법.pptx
As-Is 분석 절차와 방법.pptx
Seong-Bok Lee89 views
ERP프로젝트 중요산출물 ERD.pptx von Seong-Bok Lee
ERP프로젝트 중요산출물 ERD.pptxERP프로젝트 중요산출물 ERD.pptx
ERP프로젝트 중요산출물 ERD.pptx
Seong-Bok Lee75 views
ERP 프로젝트 수행방법론-SAP_v1.2.pptx von Seong-Bok Lee
ERP 프로젝트 수행방법론-SAP_v1.2.pptxERP 프로젝트 수행방법론-SAP_v1.2.pptx
ERP 프로젝트 수행방법론-SAP_v1.2.pptx
Seong-Bok Lee670 views
금융It시스템의 이해 2편 von Seong-Bok Lee
금융It시스템의 이해 2편금융It시스템의 이해 2편
금융It시스템의 이해 2편
Seong-Bok Lee3.6K views
금융It시스템의 이해 1편 202201 von Seong-Bok Lee
금융It시스템의 이해 1편 202201금융It시스템의 이해 1편 202201
금융It시스템의 이해 1편 202201
Seong-Bok Lee1.2K views
비트코인으로 이해하는 블록체인 기술 von Seong-Bok Lee
비트코인으로 이해하는 블록체인 기술비트코인으로 이해하는 블록체인 기술
비트코인으로 이해하는 블록체인 기술
Seong-Bok Lee2.2K views
블록체인적용사례-해운물류 von Seong-Bok Lee
블록체인적용사례-해운물류블록체인적용사례-해운물류
블록체인적용사례-해운물류
Seong-Bok Lee1.5K views
HR Analytics - 퇴직가능성예측모델 von Seong-Bok Lee
HR Analytics - 퇴직가능성예측모델HR Analytics - 퇴직가능성예측모델
HR Analytics - 퇴직가능성예측모델
Seong-Bok Lee6.7K views
Intro to hpe helion stackato_paa_s von Seong-Bok Lee
Intro to hpe helion stackato_paa_sIntro to hpe helion stackato_paa_s
Intro to hpe helion stackato_paa_s
Seong-Bok Lee786 views
Cloud migration pattern[한글] von Seong-Bok Lee
Cloud migration pattern[한글]Cloud migration pattern[한글]
Cloud migration pattern[한글]
Seong-Bok Lee236 views
Cloud migration pattern using microservices von Seong-Bok Lee
Cloud migration pattern using microservicesCloud migration pattern using microservices
Cloud migration pattern using microservices
Seong-Bok Lee362 views

통계 기초 용어1

Hinweis der Redaktion

  1. 확률변수 : 일정한 확률을 가지고 발생하는 사건에 수치를 부여한 것
  2. 확률변수 : 일정한 확률을 가지고 발생하는 사건에 수치를 부여한 것
  3. 확률변수 : 일정한 확률을 가지고 발생하는 사건에 수치를 부여한 것
  4. 확률변수 : 일정한 확률을 가지고 발생하는 사건에 수치를 부여한 것
  5. 확률변수 : 일정한 확률을 가지고 발생하는 사건에 수치를 부여한 것
  6. 확률변수 X의 사례 : 동전의 앞면이 나오는 경우, A의 키 등
  7. 상대도수(relative frequency) a/n = 우리가 관심을 갖는 사건의 확률 어떤 사건이 나타날 확률은 실험을 무한에 가깝게 계속적으로 반복했을 때, 전체 시행횟수에서 그 사건이 나타나는 빈도수를 상대적으로 나타낸 것 (=대수의 법칙) 대수의 법칙 표본크기가 커질수록 표본평균의 분산은 작아짐. 즉, 확률밀도가 모평균으로 높아짐 모집단의 특성을 잘 알려면 가능한 큰 표본 추출 동전의 앞뒤면이 각각 나올 이론적인 확률 = 1:1 그러나 몇 번 던져서는 1:1이 안나옴  하지만 많이 던지면 던질수록 1:1로 수렴
  8. 확률변수 : 일정한 확률을 가지고 발생하는 사건에 수치를 부여한 것 신뢰구간 : P(점 추정치-허용오차=<모수=>점 추정치+허용오차) = 1-𝛼
  9. 점 추정(point estimation) 하나의 값으로 모수를 추정하는 과정 미지의 모수 𝜃를 추정하기 위한 추정량 T함수 구간 추정(interval estimation) 모수를 추정하기 위해 사용하는 값의 범위 또는 구간 신뢰구간(L, U) : L은 하한, U는 상한
  10. 확률변수 : 일정한 확률을 가지고 발생하는 사건에 수치를 부여한 것 신뢰구간 : P(점 추정치-허용오차=<모수=>점 추정치+허용오차) = 1-𝛼