Cartesian coordinates

S
Shri Shankaracharya College, Bhilai,JunwaniShri Shankaracharya College, Bhilai,Junwani
Cartesian coordinates
B.Sc.-I (Physics)
Paper-I, Unit 01
Dr. Krishna Jibon Mondal
Assistant Professor and Head
Department of Physisc and Electronics
Shri Shankaracharya Mahavidyalaya, Bhilai
Part 01
Velocity and Acceleration in Different Co-ordinates system
Outlines
1. Inertial and Non Inertial frame
2. The Cartesian (rectangular)
coordinate system
3. The spherical coordinate system
4. The cylindrical coordinate system
Cartesian coordinates
Inertia and non-inertia of Frames
Cartesian coordinate system
In Cartesian coordinates system, the position of any particle can be represented
by (x,y,z) along the rectangular axis X,Y,Z. If the unit vector along the these axis
are i,j,k respectively then the position vector P will be
Z
X
Y
P(x,y,z)
B
^^^
kzyjixr 

o
c
N
A
k
t
z
j
t
y
i
t
x
v ˆˆˆ









kvjvivv zyx
ˆˆˆ 
t
v
a



)ˆˆˆ( kvjviv
t
a zyx 



)ˆˆˆ k
t
v
j
t
v
i
t
v
a zyx









)ˆˆˆ( kajaiaa zyx 
Spherical coordinate system
In Spherical coordinates system, the position of any particle P can be represented
by (r, , ) where r is radial,  is angular momentum and  is azimuthal position
x
y
z
P(x,y,z)
A


^
r
^

^^^
kzyjixr 

 cossincos rONOAx 
 sinsinsin rONOBy 
cosrOCz 
The position vector of point P is
^^^
cossinsincossin krjrirr  

^^^
cossinsincossin kji
r
r
r  
o
N
B
c

 rrr
^

 rrr
^
ˆ
^

ˆ
Spherical coordinate system
ˆ
^


kˆ
P
The Unit vector along is
)90cos()(cos
^^^
  k
 sinsincoscoscos
^^^^
kji 
 sincos
^^^
ji 
The value of
Then the obtained result will be
• Spherical coordinate system
x
y
jˆ

•Spherical coordinate system
^

The Unit vector along ON is
 sincos
^^^
ji 
iˆ
o
N
B  cossin
^^^
ji 
^


Spherical coordinate system
^
The Unit vector along is
 sinsincoscoscos
^^^^
kji 



cosˆ
ˆ






cosˆsinˆ
ˆ



r
Then the following relation are obtained
^^^
cossinsincossin kji
r
r
r   

ˆsinsincoscoscos
ˆ ^^^



kji
r




sinˆ)cossin(sin
ˆ
cossinsinsin
ˆ
^^
^^






ji
r
ji
r
 cossin
^^^
ji 
rkji ˆcossinsincossin
ˆ ^^^









cosˆcoscossincos
ˆ ^^



ji
Spherical coordinate system
rˆ
ˆ







ˆˆ


r
0
ˆ







sinˆˆ


r



cosˆ
ˆ






cosˆsinˆ
ˆ



r
Then the following relation are obtained
Spherical coordinate system
The position vector at point P is expressed as
),(ˆˆ rrrrr 

Then the velocity of a vector is represent as
r
t
r
t
r
r
t
r
v ˆ
ˆ










 rr
t
r
rv ˆ
ˆ






and
),(ˆˆ rr 
t
r
t
r
t
r













 



ˆˆˆ
Then the above equation transform as


ˆˆ


r


sinˆˆ


r
Putting all the values we get
 


sinˆˆˆ rrrr
t
r
v 



)cos2sin2sin(ˆ
)cossin2(ˆ)(ˆ 2222
sin







rrr
rrrrrrr
t
v
a








 )cosˆsinˆ(
ˆˆ








r
tt



  cosˆˆ
ˆˆ








r
tt
Putting all the values we get acceleration
as
Cylindrical coordinate system
In cylindrical coordinates system, the position of any particle P can be represented
by (r, , z) where r is radial,  is angular momentum and z is vertical position
x
y
z
P(x,y,z)
A


Zˆ
^
r
^

^^^
kzyjixr 

cosrAOx  sinrOBy 
zOCz 
The position vector of point P is
kzjrirOPR ˆˆsinˆcos  

^^
cossinˆ ji  
o
N
B
c
R

r
^
r
22
yxr 
y
x
tan
ji
r
r
r ˆsincos
^^
 
^^
kz 
Cylindrical coordinate system
The and are function of and then
Then the velocity of a vector is represent as
)ˆˆ( kzrr
tt
R
v 








t
z
k
t
r
r
t
r
rv








 ˆˆ
ˆ

Putting all the values we get
zkrrrv 
 ˆˆˆ  
and acceleration
zzrrrrr
t
v
a 


ˆ)2(ˆ)(ˆ 2



 
rˆ ˆ ˆ
zˆ
0
ˆˆ






t
k
t
z
kzrrR ˆˆ 

  cosˆsinˆˆ
ji
t
r



 ˆˆ




t
r
ji
r
r
r ˆsincos
^^
 
But we know that
Then we get
Thank You
1 von 16

Recomendados

Stability of the Equilibrium Position of the Centre of Mass of an Inextensibl... von
Stability of the Equilibrium Position of the Centre of Mass of an Inextensibl...Stability of the Equilibrium Position of the Centre of Mass of an Inextensibl...
Stability of the Equilibrium Position of the Centre of Mass of an Inextensibl...IJMER
382 views3 Folien
Constraints von
ConstraintsConstraints
ConstraintsAmeenSoomro1
1.3K views9 Folien
Rich Mathematical Problems in Astronomy von
Rich Mathematical Problems in AstronomyRich Mathematical Problems in Astronomy
Rich Mathematical Problems in Astronomysmiller5
2.7K views26 Folien
Phys 303 -_cm_ii von
Phys 303 -_cm_iiPhys 303 -_cm_ii
Phys 303 -_cm_iiAwatef Al-anzi
1.7K views100 Folien
Circular and gavitational force von
Circular and gavitational forceCircular and gavitational force
Circular and gavitational forceeshwar360
1.8K views86 Folien
antigravity free energy von
antigravity free energy antigravity free energy
antigravity free energy John Hutchison
404 views6 Folien

Más contenido relacionado

Was ist angesagt?

Motion in two or three dimension von
Motion in two or three dimensionMotion in two or three dimension
Motion in two or three dimensionABDULBASIT78344
243 views6 Folien
The classical mechanics of the special theory of [autosaved] von
The classical mechanics of the special theory of [autosaved]The classical mechanics of the special theory of [autosaved]
The classical mechanics of the special theory of [autosaved]AmeenSoomro1
66 views23 Folien
On the existence properties of a rigid body algebraic integrals von
On the existence properties of a rigid body algebraic integralsOn the existence properties of a rigid body algebraic integrals
On the existence properties of a rigid body algebraic integralsMagedHelal1
36 views18 Folien
The Moon Motion Trajectory Analysis (VII) von
The Moon Motion Trajectory Analysis (VII)The Moon Motion Trajectory Analysis (VII)
The Moon Motion Trajectory Analysis (VII)Gerges francis
15 views13 Folien
Fundamentasl of Physics "CENTER OF MASS AND LINEAR MOMENTUM" von
Fundamentasl of Physics "CENTER OF MASS AND LINEAR MOMENTUM"Fundamentasl of Physics "CENTER OF MASS AND LINEAR MOMENTUM"
Fundamentasl of Physics "CENTER OF MASS AND LINEAR MOMENTUM"Muhammad Faizan Musa
234 views44 Folien
Sistemas de partículas y conservación del momento lineal von
Sistemas de partículas y conservación del momento linealSistemas de partículas y conservación del momento lineal
Sistemas de partículas y conservación del momento linealjolopezpla
947 views62 Folien

Was ist angesagt?(19)

The classical mechanics of the special theory of [autosaved] von AmeenSoomro1
The classical mechanics of the special theory of [autosaved]The classical mechanics of the special theory of [autosaved]
The classical mechanics of the special theory of [autosaved]
AmeenSoomro166 views
On the existence properties of a rigid body algebraic integrals von MagedHelal1
On the existence properties of a rigid body algebraic integralsOn the existence properties of a rigid body algebraic integrals
On the existence properties of a rigid body algebraic integrals
MagedHelal136 views
The Moon Motion Trajectory Analysis (VII) von Gerges francis
The Moon Motion Trajectory Analysis (VII)The Moon Motion Trajectory Analysis (VII)
The Moon Motion Trajectory Analysis (VII)
Gerges francis15 views
Fundamentasl of Physics "CENTER OF MASS AND LINEAR MOMENTUM" von Muhammad Faizan Musa
Fundamentasl of Physics "CENTER OF MASS AND LINEAR MOMENTUM"Fundamentasl of Physics "CENTER OF MASS AND LINEAR MOMENTUM"
Fundamentasl of Physics "CENTER OF MASS AND LINEAR MOMENTUM"
Sistemas de partículas y conservación del momento lineal von jolopezpla
Sistemas de partículas y conservación del momento linealSistemas de partículas y conservación del momento lineal
Sistemas de partículas y conservación del momento lineal
jolopezpla947 views
13. kinematics of rigid bodies von Ekeeda
13. kinematics of rigid bodies13. kinematics of rigid bodies
13. kinematics of rigid bodies
Ekeeda8.8K views
Metric tensor in general relativity von Halo Anwar
Metric tensor in general relativityMetric tensor in general relativity
Metric tensor in general relativity
Halo Anwar3.8K views
Why Mercury Day Period = 4222.6 hours? (II) von Gerges francis
Why Mercury Day Period = 4222.6 hours? (II)Why Mercury Day Period = 4222.6 hours? (II)
Why Mercury Day Period = 4222.6 hours? (II)
Gerges francis35 views
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions von Solo Hermelin
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsRotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Solo Hermelin4.8K views
Fate of Relativity When Something Which Travel Faster Than Light Is Discovered von iosrjce
Fate of Relativity When Something Which Travel Faster Than Light Is DiscoveredFate of Relativity When Something Which Travel Faster Than Light Is Discovered
Fate of Relativity When Something Which Travel Faster Than Light Is Discovered
iosrjce203 views
How to solve center of mass Problems von physicscatalyst
How to solve center of mass ProblemsHow to solve center of mass Problems
How to solve center of mass Problems
physicscatalyst4.5K views

Similar a Cartesian coordinates

DOMV No 12 CONTINUED ADVANCED KINEMATIC ANALYSIS v2.pdf von
DOMV No 12 CONTINUED ADVANCED KINEMATIC ANALYSIS v2.pdfDOMV No 12 CONTINUED ADVANCED KINEMATIC ANALYSIS v2.pdf
DOMV No 12 CONTINUED ADVANCED KINEMATIC ANALYSIS v2.pdfahmedelsharkawy98
6 views14 Folien
Corpo rigido von
Corpo rigidoCorpo rigido
Corpo rigidoelysioruggeri
353 views12 Folien
Derivational Error of Albert Einstein von
Derivational Error of Albert EinsteinDerivational Error of Albert Einstein
Derivational Error of Albert EinsteinIOSR Journals
344 views5 Folien
radially_polarized_piezo_56.pptx von
radially_polarized_piezo_56.pptxradially_polarized_piezo_56.pptx
radially_polarized_piezo_56.pptxMohammedFarag39
3 views13 Folien
Kostadin Trencevski - Noncommutative Coordinates and Applications von
Kostadin Trencevski - Noncommutative Coordinates and ApplicationsKostadin Trencevski - Noncommutative Coordinates and Applications
Kostadin Trencevski - Noncommutative Coordinates and ApplicationsSEENET-MTP
626 views20 Folien
Is ellipse really a section of cone von
Is ellipse really a section of coneIs ellipse really a section of cone
Is ellipse really a section of conenarayana dash
14 views16 Folien

Similar a Cartesian coordinates(20)

DOMV No 12 CONTINUED ADVANCED KINEMATIC ANALYSIS v2.pdf von ahmedelsharkawy98
DOMV No 12 CONTINUED ADVANCED KINEMATIC ANALYSIS v2.pdfDOMV No 12 CONTINUED ADVANCED KINEMATIC ANALYSIS v2.pdf
DOMV No 12 CONTINUED ADVANCED KINEMATIC ANALYSIS v2.pdf
Derivational Error of Albert Einstein von IOSR Journals
Derivational Error of Albert EinsteinDerivational Error of Albert Einstein
Derivational Error of Albert Einstein
IOSR Journals344 views
Kostadin Trencevski - Noncommutative Coordinates and Applications von SEENET-MTP
Kostadin Trencevski - Noncommutative Coordinates and ApplicationsKostadin Trencevski - Noncommutative Coordinates and Applications
Kostadin Trencevski - Noncommutative Coordinates and Applications
SEENET-MTP626 views
Is ellipse really a section of cone von narayana dash
Is ellipse really a section of coneIs ellipse really a section of cone
Is ellipse really a section of cone
narayana dash14 views
Equation of a particle in gravitational field of spherical body von Alexander Decker
Equation of a particle in gravitational field of spherical bodyEquation of a particle in gravitational field of spherical body
Equation of a particle in gravitational field of spherical body
Alexander Decker259 views
Cocentroidal and Isogonal Structures and Their Matricinal Forms, Procedures a... von inventionjournals
Cocentroidal and Isogonal Structures and Their Matricinal Forms, Procedures a...Cocentroidal and Isogonal Structures and Their Matricinal Forms, Procedures a...
Cocentroidal and Isogonal Structures and Their Matricinal Forms, Procedures a...
EMT_2A_cylindrical coordinates.pptx von 5610UmarIqbal
EMT_2A_cylindrical coordinates.pptxEMT_2A_cylindrical coordinates.pptx
EMT_2A_cylindrical coordinates.pptx
5610UmarIqbal17 views
Cylindrical and spherical coordinates shalini von shalini singh
Cylindrical and spherical coordinates shaliniCylindrical and spherical coordinates shalini
Cylindrical and spherical coordinates shalini
shalini singh4.1K views
A New Solution To The Lagrange S Case Of The Three Body Problem von Sophia Diaz
A New Solution To The Lagrange S Case Of The Three Body ProblemA New Solution To The Lagrange S Case Of The Three Body Problem
A New Solution To The Lagrange S Case Of The Three Body Problem
Sophia Diaz2 views
Fundamentals of Physics "MOTION IN TWO AND THREE DIMENSIONS" von Muhammad Faizan Musa
Fundamentals of Physics "MOTION IN TWO AND THREE DIMENSIONS"Fundamentals of Physics "MOTION IN TWO AND THREE DIMENSIONS"
Fundamentals of Physics "MOTION IN TWO AND THREE DIMENSIONS"
7-asystem-of-practicles-and-rotational-motion (1).ppt von UdayaAruna1
7-asystem-of-practicles-and-rotational-motion (1).ppt7-asystem-of-practicles-and-rotational-motion (1).ppt
7-asystem-of-practicles-and-rotational-motion (1).ppt
UdayaAruna167 views
Additional Conservation Laws for Two-Velocity Hydrodynamics Equations with th... von inventy
Additional Conservation Laws for Two-Velocity Hydrodynamics Equations with th...Additional Conservation Laws for Two-Velocity Hydrodynamics Equations with th...
Additional Conservation Laws for Two-Velocity Hydrodynamics Equations with th...
inventy139 views

Más de Shri Shankaracharya College, Bhilai,Junwani

Environment Economics &Ethics invisible hand & Malthusian theory von
Environment Economics &Ethics invisible hand & Malthusian theoryEnvironment Economics &Ethics invisible hand & Malthusian theory
Environment Economics &Ethics invisible hand & Malthusian theoryShri Shankaracharya College, Bhilai,Junwani
642 views29 Folien
Azadi ka amrut mahotsav, Mahilayon ka yogdan swatantrata Sangram mein von
Azadi ka amrut mahotsav, Mahilayon ka yogdan swatantrata Sangram meinAzadi ka amrut mahotsav, Mahilayon ka yogdan swatantrata Sangram mein
Azadi ka amrut mahotsav, Mahilayon ka yogdan swatantrata Sangram meinShri Shankaracharya College, Bhilai,Junwani
1.7K views31 Folien
Aims and objectives of bio. sci. 14 9-20 von
Aims and objectives of bio. sci. 14 9-20Aims and objectives of bio. sci. 14 9-20
Aims and objectives of bio. sci. 14 9-20Shri Shankaracharya College, Bhilai,Junwani
6.5K views40 Folien

Más de Shri Shankaracharya College, Bhilai,Junwani(20)

Último

A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance... von
A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance...A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance...
A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance...InsideScientific
49 views62 Folien
Ecology von
Ecology Ecology
Ecology Abhijith Raj.R
7 views10 Folien
Conventional and non-conventional methods for improvement of cucurbits.pptx von
Conventional and non-conventional methods for improvement of cucurbits.pptxConventional and non-conventional methods for improvement of cucurbits.pptx
Conventional and non-conventional methods for improvement of cucurbits.pptxgandhi976
18 views35 Folien
Open Access Publishing in Astrophysics von
Open Access Publishing in AstrophysicsOpen Access Publishing in Astrophysics
Open Access Publishing in AstrophysicsPeter Coles
808 views26 Folien
journal of engineering and applied science.pdf von
journal of engineering and applied science.pdfjournal of engineering and applied science.pdf
journal of engineering and applied science.pdfKSAravindSrivastava
7 views7 Folien
RemeOs science and clinical evidence von
RemeOs science and clinical evidenceRemeOs science and clinical evidence
RemeOs science and clinical evidencePetrusViitanen1
36 views96 Folien

Último(20)

A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance... von InsideScientific
A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance...A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance...
A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance...
InsideScientific49 views
Conventional and non-conventional methods for improvement of cucurbits.pptx von gandhi976
Conventional and non-conventional methods for improvement of cucurbits.pptxConventional and non-conventional methods for improvement of cucurbits.pptx
Conventional and non-conventional methods for improvement of cucurbits.pptx
gandhi97618 views
Open Access Publishing in Astrophysics von Peter Coles
Open Access Publishing in AstrophysicsOpen Access Publishing in Astrophysics
Open Access Publishing in Astrophysics
Peter Coles808 views
How to be(come) a successful PhD student von Tom Mens
How to be(come) a successful PhD studentHow to be(come) a successful PhD student
How to be(come) a successful PhD student
Tom Mens473 views
A training, certification and marketing scheme for informal dairy vendors in ... von ILRI
A training, certification and marketing scheme for informal dairy vendors in ...A training, certification and marketing scheme for informal dairy vendors in ...
A training, certification and marketing scheme for informal dairy vendors in ...
ILRI13 views
application of genetic engineering 2.pptx von SankSurezz
application of genetic engineering 2.pptxapplication of genetic engineering 2.pptx
application of genetic engineering 2.pptx
SankSurezz9 views
Light Pollution for LVIS students von CWBarthlmew
Light Pollution for LVIS studentsLight Pollution for LVIS students
Light Pollution for LVIS students
CWBarthlmew6 views
별헤는 사람들 2023년 12월호 전명원 교수 자료 von sciencepeople
별헤는 사람들 2023년 12월호 전명원 교수 자료별헤는 사람들 2023년 12월호 전명원 교수 자료
별헤는 사람들 2023년 12월호 전명원 교수 자료
sciencepeople37 views
Pollination By Nagapradheesh.M.pptx von MNAGAPRADHEESH
Pollination By Nagapradheesh.M.pptxPollination By Nagapradheesh.M.pptx
Pollination By Nagapradheesh.M.pptx
MNAGAPRADHEESH16 views
Synthesis and Characterization of Magnetite-Magnesium Sulphate-Sodium Dodecyl... von GIFT KIISI NKIN
Synthesis and Characterization of Magnetite-Magnesium Sulphate-Sodium Dodecyl...Synthesis and Characterization of Magnetite-Magnesium Sulphate-Sodium Dodecyl...
Synthesis and Characterization of Magnetite-Magnesium Sulphate-Sodium Dodecyl...
GIFT KIISI NKIN22 views
Metatheoretical Panda-Samaneh Borji.pdf von samanehborji
Metatheoretical Panda-Samaneh Borji.pdfMetatheoretical Panda-Samaneh Borji.pdf
Metatheoretical Panda-Samaneh Borji.pdf
samanehborji16 views

Cartesian coordinates

  • 2. B.Sc.-I (Physics) Paper-I, Unit 01 Dr. Krishna Jibon Mondal Assistant Professor and Head Department of Physisc and Electronics Shri Shankaracharya Mahavidyalaya, Bhilai Part 01 Velocity and Acceleration in Different Co-ordinates system
  • 3. Outlines 1. Inertial and Non Inertial frame 2. The Cartesian (rectangular) coordinate system 3. The spherical coordinate system 4. The cylindrical coordinate system
  • 6. Cartesian coordinate system In Cartesian coordinates system, the position of any particle can be represented by (x,y,z) along the rectangular axis X,Y,Z. If the unit vector along the these axis are i,j,k respectively then the position vector P will be Z X Y P(x,y,z) B ^^^ kzyjixr   o c N A k t z j t y i t x v ˆˆˆ          kvjvivv zyx ˆˆˆ  t v a    )ˆˆˆ( kvjviv t a zyx     )ˆˆˆ k t v j t v i t v a zyx          )ˆˆˆ( kajaiaa zyx 
  • 7. Spherical coordinate system In Spherical coordinates system, the position of any particle P can be represented by (r, , ) where r is radial,  is angular momentum and  is azimuthal position x y z P(x,y,z) A   ^ r ^  ^^^ kzyjixr    cossincos rONOAx   sinsinsin rONOBy  cosrOCz  The position vector of point P is ^^^ cossinsincossin krjrirr    ^^^ cossinsincossin kji r r r   o N B c   rrr ^   rrr ^ ˆ ^  ˆ
  • 8. Spherical coordinate system ˆ ^   kˆ P The Unit vector along is )90cos()(cos ^^^   k  sinsincoscoscos ^^^^ kji   sincos ^^^ ji  The value of Then the obtained result will be
  • 9. • Spherical coordinate system x y jˆ  •Spherical coordinate system ^  The Unit vector along ON is  sincos ^^^ ji  iˆ o N B  cossin ^^^ ji  ^  
  • 10. Spherical coordinate system ^ The Unit vector along is  sinsincoscoscos ^^^^ kji     cosˆ ˆ       cosˆsinˆ ˆ    r Then the following relation are obtained ^^^ cossinsincossin kji r r r     ˆsinsincoscoscos ˆ ^^^    kji r     sinˆ)cossin(sin ˆ cossinsinsin ˆ ^^ ^^       ji r ji r  cossin ^^^ ji  rkji ˆcossinsincossin ˆ ^^^          cosˆcoscossincos ˆ ^^    ji
  • 12. Spherical coordinate system The position vector at point P is expressed as ),(ˆˆ rrrrr   Then the velocity of a vector is represent as r t r t r r t r v ˆ ˆ            rr t r rv ˆ ˆ       and ),(ˆˆ rr  t r t r t r                   ˆˆˆ Then the above equation transform as   ˆˆ   r   sinˆˆ   r
  • 13. Putting all the values we get     sinˆˆˆ rrrr t r v     )cos2sin2sin(ˆ )cossin2(ˆ)(ˆ 2222 sin        rrr rrrrrrr t v a          )cosˆsinˆ( ˆˆ         r tt      cosˆˆ ˆˆ         r tt Putting all the values we get acceleration as
  • 14. Cylindrical coordinate system In cylindrical coordinates system, the position of any particle P can be represented by (r, , z) where r is radial,  is angular momentum and z is vertical position x y z P(x,y,z) A   Zˆ ^ r ^  ^^^ kzyjixr   cosrAOx  sinrOBy  zOCz  The position vector of point P is kzjrirOPR ˆˆsinˆcos    ^^ cossinˆ ji   o N B c R  r ^ r 22 yxr  y x tan ji r r r ˆsincos ^^   ^^ kz 
  • 15. Cylindrical coordinate system The and are function of and then Then the velocity of a vector is represent as )ˆˆ( kzrr tt R v          t z k t r r t r rv          ˆˆ ˆ  Putting all the values we get zkrrrv   ˆˆˆ   and acceleration zzrrrrr t v a    ˆ)2(ˆ)(ˆ 2      rˆ ˆ ˆ zˆ 0 ˆˆ       t k t z kzrrR ˆˆ     cosˆsinˆˆ ji t r     ˆˆ     t r ji r r r ˆsincos ^^   But we know that Then we get