SlideShare a Scribd company logo
1 of 51
Download to read offline
ВСЕ О ТРИОНАХ


    Trions at low electron density limit
•      1. Charged exciton-electron complexes (trions)
•      2. Singlet and triplet trion states
•      3. Modulation doped QWs
•      4. Trions in optical spectra
•      5. Action of magnetic fields on the trions
    Trions at high electron density limit
•      6. Combined exciton cyclotron resonance
•      7. Combined trion cyclotron resonance
•      8. Combined exciton electron processes in PL spectra
•      9. Trion Zeeman splitting
LOW 2DEG DENSITY

Two electrons+one hole states
       •Trions at weak magnetic fields
       •Trions at high magnetic fields
       •Excited states of trion
Charged exciton – electron complex (trion)
  Negatively charged Trion X-         Positively charged Trion X+
   similar to ion H-                  Similar to ionized molecule H+

            −
                         −
                X +                        +              +
                                  -
                  −
                 X

electrons
                                                       holes
                                electron
                      hole
Singlet and Triplet trion states
Wavefunction for two electrons in the trion
                                                                   Sz = +1
            ϕ (1,2) = U (1,2) χ (1,2)                               Sz = 0                triplet
                                                                   Sz = -1
   Spatial part of the wavefunction


    U nlm =
      0        1
                2
                   [ ( ) ( ) ( ) ( )]
                  u1 r1 unlm r2 ± u1 r2 unlm r1                     Sz = 0               singlet

                                                        
                                                  −α ( r1 + r2 )
 Singlet state +         Sz = 0         ∝e
Triplet state -        Sz = ±1,0


Unlm ≠ 0 , if l ≠ 0 one electron is in 1S and the second is in 2P state – dark triplet


Or if n ≠   1 one electron is in 1S, and the second is in а 2S state bright triplet
Experimental studies of trions
Modulation doped structures
                    100Å 100Å

                            QW                   2DEG
                I
                      e1
                                        1.8eV
                                         3.0eV
                            1.6eV
                            2.8eV
                    hh1
                    lh1



      CdMgTe           CdTe         CdMgTe
      ZnMgSSe              ZnSe     ZnMgSSe

2DEG density varied from ne=5*109 см-2 to 9*1011 см-2
Optical processes with the trion participation

                                                                                        B=0, T=1.6K

 Trion formation time in                                    undoped                            doped, ne=5 10 cm
                                                                                                                10    -2


 ZnSe structures is of the
                                                                                                      4.8 meV
 order of 2 –4 psec




                                Signal intensity (a. u.)
                                                                                        Ref.                         Ref.


                                                           Excited by UV-lines
  ε      electron       trion                                                                         −
                                                           Pexc=60 mW
                                                                                                    X
                                                                      −
                                                                    X              X
photon   exciton                                                                                                X
                                                           PL                                  PL
                                                 0                                                                          0
                                                             2,81                2,82          2,81         2,82

                                                                 Energy (eV)                        Energy (eV)
Изменение концентрации при подсветке
Зависимость энергии связи триона от ширины ямы

                                            ZnSe-based QWs
                              10
                                                       PL ZnSe/ZnBeMgSe
                                                       Refl. ZnSe/ZnBeMgSe
                                                       ZnSe/ZnMgSSe
     X binding energy (meV)    8
                                                       ZnSe/ZnMgSSe



                               6


                               4
    -




                                                 +
                               2             X

                               0
                                   0   50        100         150         200
                                              QW width (Å)
Сила осциллятора экситона
приходящаяся на элементарную
ячейку равна силе осциллятора
триона на один электрон, также
Как для связанных экситонов




        Γ  T
          = Cne
          0
        Γ 0
           X
Singlet and Triplet
Trion states in magnetic fields
Singlet trion in magnetic fields
                                                                                                                                     +
                                                                                                                                 σ
                            0       1         2         3     4     5       6     7                                     −                                   B=7.5T, T=1.6K
                                                                                                                    σ
                          1.0
                                                                                                                                                                     ZnSe
                                         10       -2
                                 ne=6x10 cm
                                                                            ge=+1.15
                          0.5
                                                        ν=1
 Degree of polarization




                          0.0                                                                                                                           −
                                                                                                                                                       X lh




                                                                                       Reflectivity (a. u.)
                          1.0            10       -2
                                 ne=9x10 cm
                          0.5
                                                              ν=1                                                                                                       Xlh
                          0.0
                                                                                                                                                              4.4 meV
                          1.0 n =1.5x1011 cm-2                                                                               −
                               e
                                                                                                                            X hh
                          0.5                                                   ν=1
                                                            ν=2                                                                              Xhh
                                        ν=3
                          0.0                                                                                               5.5 meV                                     10    -2
                             0      1         2         3     4     5       6     7                                                                 doped, ne=5 10 cm
                                                       Magnetic field (T)                              0
                                                                                                                   2,81                      2,82             2,83            2,84

                                                                                                                                              Energy (eV)
The circular polarization of the trion                                                                         −                         −
absorption (reflectivity line ) in magnetic fields                                                            X hh and X lh resonances appear
can be used to determine electron                                                                             in opposite circular polarizations
concentration by pure optical method
Triplet trion in high magnetic fields

                                                                    30T             Tt
                                                                                         d     X-1
                    σ-                  Tt
                                          d          X
                                                                                   Ts
Photoluminescence




                                                         45T


                                                                                        d
                                                                    29.5T          Tt         X-1
                                                                                Ts




                                                                                     d
                                                                                   Tt        X-1
                                                                        25T
                                                                              Ts

                            Ts
                                                         0T
                     1610        1620         1630        1640   1600              1620              1640
                                 Energy                                       energy, meV
Singlet and Triplet in high fields

              1635 T=1.6K
                            10 -2
                    ne=3*10 cm                                     Ts
                                                                        +

                          σ-
              1630
                          σ+
                                                                             Etripbind = 3 meV
Energy, meV




              1625                                                      d-
                                                                   TT
                                 X+1          X-1
                                                                   b-
                                                              TT
              1620
                                                          -
                                                     Ts
              1615


              1610
                     0      10           20          30       40
                                       Magnetic field, Т
EXCITON-ELECTRON
            SCATTERING
(excited states of a trion in magnetic
                 fields)
Exciton – electron scattering
      Exciton – electron scattering
                                                                             -
                                                                                  T=1.6K
  ε          electron                                        detected at σ
                                                                                                ExCR1
                                                                   X (1s,hh)




                                                                                         Lg I
                                                                                                           ExCR2
                                                                                 0T
photon          exciton




                                              PL intensity
                                                                                 5T
                                                                                                                        B=5T
                                                                                                    1,64           1,66

                                                                       ExCR1
                                                                                                            X (1s,lh)
      In magnetic fields in QWs the
      exciton electron scattering leads
                                                                                      ExCR2
      to the electron transitions                                                                                         PLE
      between Landau levels - ExCR                                                                   ne=8x10 cm
                                                                                                                   10     -2


                                                        1,63           1,64              1,65               1,66               1,67
                                                                                      Energy (eV)

      The scattering leads to high energy tail of the exciton absorption line. In magnetic
      fields it splits into separate lines because the electron spectrum becomes discrete =
      excited states of trions in magnetic fields.
We can neglect the trion binding energy because Eex >> ωc >> ETr
                                                 b             b




       e + ph ⇒ Ex + e*

   1                   3 c
     ω e + ω = Eexc + ω e
        c

   2                   2


    The intensity of the ExCR
    absorption line is comparable
    with the intensity of the exciton
    line
Combined exciton –cyclotron resonance ExCR




The ExCR line shifts LINEARLY from the
exciton resonance to high energies with
increase of magnetic fields
                              me
      ω ExCR = Nω ec (1 +      )
                              M
Combined processes in
    Dense 2DEG

Three electrons+one
    hole states
In the dense 2DEG two-electron processes emerge in the spectra
                                              TrCR

  There are two electrons in the initial
  state; an incident photon creates an
  exciton which binds with one of the
  electrons forming a trion; and the second
  electron excites on the second Landau
  level


       e + e + ph ⇒ Tr + e*
1        1                  3
  ω ec + ω ec + ω = Etr + ω ec
2        2                  2
                  1
        ω = Etr + ω ec
                  2
Trion Cyclotron Resonance

                     1,618                                             10   -2
                                 open symbol - σ
                                                       −       ne=8x10 cm
                                                 +
                                 solid symbol - σ
                     1,616
Line position (eV)



                     1,614             ExCR2                           ExCR1
                                                                       1.00 meV/T
                     1,612
                                                                             X

                     1,610
                                                               TrCR1
                                                               0.64 meV/T
                     1,608                                                       −
                                                                             X

                     1,606             3       2               1
                             0     1       2       3       4       5   6    7        8

                                               Magnetic field (T)
Line of the TrCR is observable at filling factors > 1.
The intensity of the TrCR line is proportional to the second
               power of the 2DEG density

                                                                      TrCR                     (a)
                                        11       -2
                                     1×10 cm                                            ExCR
                  Reflectivity




                                        10       -2
                                 8×10 cm




                                                                                                       Intensity of TrCR-line
                                        10       -2
                                     6×10 cm



                                                                         −
                                             +
                                             σ                       X           X                                                   0   20   40   60   80   100   120
                                             −
                                                                                            T=1.6K                                             2   20   -4
                                             σ                                              B=2.5T                                            ne (10 cm )
                            0
                                         1,605                               1,610
                                                                     Energy (eV)

                                                                                               (b)
                                                      11        -2
                                         1×10 cm
                                                                                                                                                                         T=1.6K
   Intensity of TrCR-line




                                                                                                                                0
                                             10
                                       8×10 cm
                                                           -2
                                                                                                                                 0     2     4      6       8      10
                                                                                                                                                                10   -2
                                                                                                                                 Electron concenctration, ne (10 cm )
                                        10
                                     6×10 cm
                                                 -2                  ν =1        ν =1
                                                                                            ν =1
                            0
                                 0           1                       2       3          4          5
                                                                Magnetic field (T)
Surprising Trion stability against free
          electron screening
Экситон исчезает из спектра при относительно малых
                       концентрациях электронов, а трион остается

                                                                                              ZnSe/ZnMgSSe 80A
                      CdTe/CdMgTe 80A

                                   −                   11    -2                            ZnSe/ZnMgSSe
                               X               1.2x10 cm
                                                                                                   −
                           −
                                                                                                 X                    X
                                                                                                                                    11
                                                                                                                               1.2x10 cm
                                                                                                                                          -2


                           X               X       8x10 cm
                                                            10    -2


                                                                                                       −                           10    -2
                                                                                                   X                            6x10 cm
Reflectivity




                                                                       Reflectivity
                               −                            10    -2
                           X                       4x10 cm                                                        X
               0
                                       X
                                                                                       0                   −                       10
                                                                                                                                3x10 cm
                                                                                                                                          -2
                                                            10
                                                       <10 cm
                                                                  -2                                    X
                                                                                                                   X
               0                                                                                                                    9
                                                                                                                                4x10 cm
                                                                                                                                          -2
                                                                                       0

               0
                                                        T=1.6K                         0
                                       X                B=0T                                                                      T=1.6K
                                                                                                                          X       B=0T
               0
                   1.620   1.625               1.630                                   0
                                                                                      2.810            2.815           2.820             2.825
                               Energy (eV)
                                                                                                            Energy (eV)
Сила осциллятора экситона не зависит от плотности 2DEG




Затухание экситона
растет с ростом
плотности
Спектры поглощения (PLE) как функция концентрации
2.0
     Absorption (arbit.un.)




                              1.5               a

                              1.0

                              0.5

                               0
                               1605   1610    1615   1620

                                      Energy (meV)

                              1.5
Absorption (arbit.un.)




                                                b

                              1.0


                              0.5


                               0
                               1605   1610   1615    1620

                                      Energy (meV)
Trion Zeeman splitting as a function
       of the electron density
The value of the exciton and trion Zeeman splitting?
                  einit + ph → Tr = ( Ex + e fin )
Because the initial and the final state of the electron are
the same (the same spin and the same Landau level)
we should see only the exciton Zeeman splitting on exciton
and on trion line


            ε            electron               trion




         photon          exciton
Photoluminescence
                         In PL the exciton and trion
                         Zeeman splitting are equal                                   1,626




                                                                                      1,625
                             H=0T




                                                                         Energy, eV
                                                                                                                      10        -2
                                                                                      1,624               ne=4x10 cm
PL Intensity, a.u.




                                                                                      1,623




                                                                                      1,622
                     1,615          1,620                1,625   1,630
                                            Energy, eV                                        0   1   2    3    4     5     6        7   8
                                                                                                          Magnetic Field (T)
Exciton and trion Zeeman splitting at high electron concentrations
                                    1,630

                                    1,629

                                    1,628                                           Exc
                                    1,627



               Energy (eV)
                                    1,626

                                    1,625

                                    1,624

                                    1,623
                                                                                          T
                                    1,622

                                    1,621
                                            0    1   2        3     4     5     6    7        8

                                      0,8

                                      0,6                                           Exc
                                      0,4
                  Splitting (meV)




                                      0,2

                                      0,0

                                     -0,2

                                     -0,4

                                     -0,6
                                                      10
                                                ne=8x10 cm
                                                              -2                      T
                                     -0,8
                                            0    1   2        3     4     5     6    7        8

                                                           Magnetic field (T)
This is possible only in the case if the initial and
         final spin state of the electron are not the same –
                          we need spin-flip


         For spin-flip we need spin-orbital interaction.
        This can be the triplet-singlet splitting of the trion


  In the initial state the photon creates virtual state of the triplet
trion. Because of very fast spin-flip of one of the electrons in the
        final state we have the singlet trion (already real).
              This is the process reversal to the ExCR
An incident photon creates a virtual trion in the triplet state. This trion
produces a spin-flip with one of the electrons on the first Landau level.
As a result, in the final state, we get a trion in the singlet state plus an
electron on the second Landau level with opposite spin.



                            This reaction looks


           ↑       ↑                             ↑                    ↓
         e + e + ph → Tr + e → Tr + e
           1       2
                                         t
                                                 1
                                                              s
                                                                      2
Фотолюминесценция трионов
Спектры ФЛ в зависимости от концентрации электронов


                                         Ebex >>EF

                                         Ebtr ~EF
In heavily doped QW in zero magnetic fields the PL line
is shifted to the low energies from its position in low
doped structure. The value of this shift is of the order of
Fermi energy

                     1635
                                PL
                     1630
                                                                                         Tt

                     1625                                                       Tt
       energy, meV




                                          X
                     1620
                                                          Ts

                     1615                         Ts            −
                                                               σ 3.7x1 0 cm
                                                                          11        -2

                                                                +
                                                               σ
                     1610                                       −
                                                               σ 3x1 0 cm
                                                                     10        -2

                                      SU                       σ
                                                                +


                     1605
                            0        10          20       30               40

                                          Magnetic field, T
В магнитном поле линии триона и экситона «возрождаются»

                                 X




                   Τ




   1600   1610     1620         1630   1640
                 энергия, мэВ
Combined processes in PL
              1650                                                                    1635        T=1,6K                                                  11
                                                                                                                                                   ne=3.7x10 cm
                                                                                                                                                                    -2
                                                      T=1.6K
                                                          11  -2
                                                 ne=3.7x10 cm
                                                                                      1630       CCR 2ω c
              1640                                                                                                   ω c
                            ССR
                                                         X                            1625                                        (1/2)ω c                    Tt
                                                                                                                             FL




                                                                        energy, meV
energy, meV




              1630
                                                                                      1620
                                                                                                                                              Ts
              1620                                            Ts                      1615                                                                     −
                                                                                                                                                           σ
                                                                                                            ν =2                                           σ
                                                                                                                                                               +


                                                                                      1610               ν =3
              1610                                                                                              SU
                                                                                                  ν =4

                     0         10      20        30      40        50                        0              10                20              30           40
                                                                                                                            magnetic field, T
                                     Magnetic field, T

                         Comparison of PL and reflectivity                                                                  PL and SU
Shake-up

Shake up процессы SU                                           11
                                                        ne=2x10 cm
                                                                      -2
                                                                             1/2hωc
                                                                                                   T=1.6 K
                                                        B=7.5T

                                                                           3/2hωc
     Tr ⇒ ph + e


                                PL Intensity, arb. u.
                   *

                                                                    5/2hωc
                  1
  Etr = ω + ( N + )ω ec
                  2
                  1
 ω = Etr − ( N + )ω ec
                  2                                      B=0
                                                                                       EF
                                                                                                   ETr

                                             1,596        1,598      1,600     1,602   1,604   1,606   1,608   1,610

                                                                              Energy, eV
In Emission the initial state is: trion in a ground or excited
states;                                                ∗
                                      Τr → ph + e
the final state is: an electron above Fermi level

The energy of the transition is      ω = ETr − E ∗ ≤ ETr − EF
Linear shift of the trion line in magnetic fields


 In the final state after the trion
  recombination a free electron
  remains. It can appears in the                             ν =3
                                                      ν =4
  unoccupied states above Fermi




                                       Fermi energy
  level
Etr = ω + E F ⇒ ω = Etr − E F
                                                                                   ν =1
 In magnetic fields the Fermi energy                         LL2             LL1
  decreases as                                                                      ne=const
                                                                                         T=1.6K
                                                                      ν =2
              1                                                                          T=0 K
                ω ec
              2                                                     Magnetic field
Theory
          ±
       ω ph = Ω c (n ) − E tr ± ∆( B ) − E F ( B ) + αB + βB 2 + E G


 Figure gives the energy positions of
 maxima of emitted bands which are
 described by equation

  The shape of the states in presented by                     1625
  the Gaussian form


                              [             ] [          ]
            eB /( 4π)                                        1615
                        exp − E − ω ± ( n ) / 2Γn ( B ) 
  ±                                          2    2
ρ n (E) =                            ph                  
                2
             2πΓn ( B )                                  


                                                              1605
                                                                     10   30
Conclusions
In 2D structures containing electron gas the
scattering effects are enhanced.

In the presence of magnetic fields the electron
energy spectrum becomes discreet and the
scattering processes revel as combined exciton-
electron processes.

In such processes we can see directly only the
exciton transition but the state of the additional
electron, which we can not see, reveals only in the
final result.
17.04.2012 seminar trions_kochereshko
17.04.2012 seminar trions_kochereshko
17.04.2012 seminar trions_kochereshko
17.04.2012 seminar trions_kochereshko
17.04.2012 seminar trions_kochereshko
17.04.2012 seminar trions_kochereshko
17.04.2012 seminar trions_kochereshko

More Related Content

What's hot

Simulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch ApplicationsSimulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch Applicationsvvk0
 
Solar Cells Lecture 1: Introduction to Photovoltaics
Solar Cells Lecture 1: Introduction to PhotovoltaicsSolar Cells Lecture 1: Introduction to Photovoltaics
Solar Cells Lecture 1: Introduction to PhotovoltaicsTuong Do
 
TU3.T10.2.pdf
TU3.T10.2.pdfTU3.T10.2.pdf
TU3.T10.2.pdfgrssieee
 
Solar Cells Lecture 2: Physics of Crystalline Solar Cells
Solar Cells Lecture 2: Physics of Crystalline Solar CellsSolar Cells Lecture 2: Physics of Crystalline Solar Cells
Solar Cells Lecture 2: Physics of Crystalline Solar CellsTuong Do
 
Gauge systems and functions, hermitian operators and clocks as conjugate func...
Gauge systems and functions, hermitian operators and clocks as conjugate func...Gauge systems and functions, hermitian operators and clocks as conjugate func...
Gauge systems and functions, hermitian operators and clocks as conjugate func...vcuesta
 
Atomic processes in photoionized gaseous nebulae
Atomic processes in photoionized gaseous nebulaeAtomic processes in photoionized gaseous nebulae
Atomic processes in photoionized gaseous nebulaeAstroAtom
 
Computing Loops
Computing LoopsComputing Loops
Computing LoopsAntonini
 
Computer Science and Information Science 3rd semester (2012-December) Questio...
Computer Science and Information Science 3rd semester (2012-December) Questio...Computer Science and Information Science 3rd semester (2012-December) Questio...
Computer Science and Information Science 3rd semester (2012-December) Questio...B G S Institute of Technolgy
 
Nuclearchemistrypowerpoint Slideshare
Nuclearchemistrypowerpoint SlideshareNuclearchemistrypowerpoint Slideshare
Nuclearchemistrypowerpoint Slidesharedwthom
 
LHC Jets and MET
LHC Jets and METLHC Jets and MET
LHC Jets and METJay Wacker
 
Balanced homodyne detection
Balanced homodyne detectionBalanced homodyne detection
Balanced homodyne detectionwtyru1989
 
L. Perivolaropoulos, Topological Quintessence
L. Perivolaropoulos, Topological QuintessenceL. Perivolaropoulos, Topological Quintessence
L. Perivolaropoulos, Topological QuintessenceSEENET-MTP
 
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...dishii
 
Poster Partial And Complete Observables
Poster Partial And Complete ObservablesPoster Partial And Complete Observables
Poster Partial And Complete Observablesguest9fa195
 

What's hot (19)

Simulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch ApplicationsSimulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch Applications
 
Solar Cells Lecture 1: Introduction to Photovoltaics
Solar Cells Lecture 1: Introduction to PhotovoltaicsSolar Cells Lecture 1: Introduction to Photovoltaics
Solar Cells Lecture 1: Introduction to Photovoltaics
 
TU3.T10.2.pdf
TU3.T10.2.pdfTU3.T10.2.pdf
TU3.T10.2.pdf
 
Solar Cells Lecture 2: Physics of Crystalline Solar Cells
Solar Cells Lecture 2: Physics of Crystalline Solar CellsSolar Cells Lecture 2: Physics of Crystalline Solar Cells
Solar Cells Lecture 2: Physics of Crystalline Solar Cells
 
Gauge systems and functions, hermitian operators and clocks as conjugate func...
Gauge systems and functions, hermitian operators and clocks as conjugate func...Gauge systems and functions, hermitian operators and clocks as conjugate func...
Gauge systems and functions, hermitian operators and clocks as conjugate func...
 
Smith Chart
Smith ChartSmith Chart
Smith Chart
 
Atomic processes in photoionized gaseous nebulae
Atomic processes in photoionized gaseous nebulaeAtomic processes in photoionized gaseous nebulae
Atomic processes in photoionized gaseous nebulae
 
Computing Loops
Computing LoopsComputing Loops
Computing Loops
 
Dy071030
Dy071030Dy071030
Dy071030
 
Nanotechnology
NanotechnologyNanotechnology
Nanotechnology
 
Computer Science and Information Science 3rd semester (2012-December) Questio...
Computer Science and Information Science 3rd semester (2012-December) Questio...Computer Science and Information Science 3rd semester (2012-December) Questio...
Computer Science and Information Science 3rd semester (2012-December) Questio...
 
Nuclearchemistrypowerpoint Slideshare
Nuclearchemistrypowerpoint SlideshareNuclearchemistrypowerpoint Slideshare
Nuclearchemistrypowerpoint Slideshare
 
LHC Jets and MET
LHC Jets and METLHC Jets and MET
LHC Jets and MET
 
662 magnetrons
662 magnetrons662 magnetrons
662 magnetrons
 
Balanced homodyne detection
Balanced homodyne detectionBalanced homodyne detection
Balanced homodyne detection
 
L. Perivolaropoulos, Topological Quintessence
L. Perivolaropoulos, Topological QuintessenceL. Perivolaropoulos, Topological Quintessence
L. Perivolaropoulos, Topological Quintessence
 
Fusion 2012
Fusion 2012Fusion 2012
Fusion 2012
 
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
 
Poster Partial And Complete Observables
Poster Partial And Complete ObservablesPoster Partial And Complete Observables
Poster Partial And Complete Observables
 

Similar to 17.04.2012 seminar trions_kochereshko

Spectroscopic ellipsometry
Spectroscopic ellipsometrySpectroscopic ellipsometry
Spectroscopic ellipsometrynirupam12
 
Science Cafe Discovers a New Form of Alternative Energy
Science Cafe Discovers a New Form of Alternative EnergyScience Cafe Discovers a New Form of Alternative Energy
Science Cafe Discovers a New Form of Alternative EnergyEngenuitySC
 
H. Partouche - Thermal Duality and non-Singular Superstring Cosmology
H. Partouche - Thermal Duality and non-Singular Superstring CosmologyH. Partouche - Thermal Duality and non-Singular Superstring Cosmology
H. Partouche - Thermal Duality and non-Singular Superstring CosmologySEENET-MTP
 
Raman Spectra 2nd ppt.pptx
Raman Spectra 2nd ppt.pptxRaman Spectra 2nd ppt.pptx
Raman Spectra 2nd ppt.pptxoviyaprabhu
 
Nuclear Basics Summer 2010
Nuclear Basics Summer 2010Nuclear Basics Summer 2010
Nuclear Basics Summer 2010Roppon Picha
 
Quntum Theory powerpoint
Quntum Theory powerpointQuntum Theory powerpoint
Quntum Theory powerpointKris Ann Ferrer
 
D:\Edit\Super\For Submission 20100306\12622 0 Merged 1267687011
D:\Edit\Super\For Submission 20100306\12622 0 Merged 1267687011D:\Edit\Super\For Submission 20100306\12622 0 Merged 1267687011
D:\Edit\Super\For Submission 20100306\12622 0 Merged 1267687011Qiang LI
 
Introduction-NMR.pdf
Introduction-NMR.pdfIntroduction-NMR.pdf
Introduction-NMR.pdfAbid Zia
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)oriolespinal
 
Chapter 1 pt 2
Chapter 1 pt 2Chapter 1 pt 2
Chapter 1 pt 2SinYK
 
electron pairing and mechanism of superconductivity in ionic crystals
electron pairing and mechanism of superconductivity in ionic crystals electron pairing and mechanism of superconductivity in ionic crystals
electron pairing and mechanism of superconductivity in ionic crystals Qiang LI
 
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...Lewis Larsen
 
Quantum Nanomagnetism
Quantum  NanomagnetismQuantum  Nanomagnetism
Quantum Nanomagnetismoriolespinal
 
optics chapter_07_solution_manual
optics chapter_07_solution_manualoptics chapter_07_solution_manual
optics chapter_07_solution_manualstudent
 

Similar to 17.04.2012 seminar trions_kochereshko (20)

Spectroscopic ellipsometry
Spectroscopic ellipsometrySpectroscopic ellipsometry
Spectroscopic ellipsometry
 
non linear optics
non linear opticsnon linear optics
non linear optics
 
Jan2010 Triumf2
Jan2010 Triumf2Jan2010 Triumf2
Jan2010 Triumf2
 
Science Cafe Discovers a New Form of Alternative Energy
Science Cafe Discovers a New Form of Alternative EnergyScience Cafe Discovers a New Form of Alternative Energy
Science Cafe Discovers a New Form of Alternative Energy
 
H. Partouche - Thermal Duality and non-Singular Superstring Cosmology
H. Partouche - Thermal Duality and non-Singular Superstring CosmologyH. Partouche - Thermal Duality and non-Singular Superstring Cosmology
H. Partouche - Thermal Duality and non-Singular Superstring Cosmology
 
Gravity tests with neutrons
Gravity tests with neutronsGravity tests with neutrons
Gravity tests with neutrons
 
Raman Spectra 2nd ppt.pptx
Raman Spectra 2nd ppt.pptxRaman Spectra 2nd ppt.pptx
Raman Spectra 2nd ppt.pptx
 
black magic
black magicblack magic
black magic
 
Nuclear Basics Summer 2010
Nuclear Basics Summer 2010Nuclear Basics Summer 2010
Nuclear Basics Summer 2010
 
Quntum Theory powerpoint
Quntum Theory powerpointQuntum Theory powerpoint
Quntum Theory powerpoint
 
D:\Edit\Super\For Submission 20100306\12622 0 Merged 1267687011
D:\Edit\Super\For Submission 20100306\12622 0 Merged 1267687011D:\Edit\Super\For Submission 20100306\12622 0 Merged 1267687011
D:\Edit\Super\For Submission 20100306\12622 0 Merged 1267687011
 
Introduction-NMR.pdf
Introduction-NMR.pdfIntroduction-NMR.pdf
Introduction-NMR.pdf
 
11 Nuclear
11 Nuclear11 Nuclear
11 Nuclear
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)
 
Chapter 1 pt 2
Chapter 1 pt 2Chapter 1 pt 2
Chapter 1 pt 2
 
electron pairing and mechanism of superconductivity in ionic crystals
electron pairing and mechanism of superconductivity in ionic crystals electron pairing and mechanism of superconductivity in ionic crystals
electron pairing and mechanism of superconductivity in ionic crystals
 
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
 
Waveguide
WaveguideWaveguide
Waveguide
 
Quantum Nanomagnetism
Quantum  NanomagnetismQuantum  Nanomagnetism
Quantum Nanomagnetism
 
optics chapter_07_solution_manual
optics chapter_07_solution_manualoptics chapter_07_solution_manual
optics chapter_07_solution_manual
 

Recently uploaded

Zeshan Sattar- Assessing the skill requirements and industry expectations for...
Zeshan Sattar- Assessing the skill requirements and industry expectations for...Zeshan Sattar- Assessing the skill requirements and industry expectations for...
Zeshan Sattar- Assessing the skill requirements and industry expectations for...itnewsafrica
 
2024 April Patch Tuesday
2024 April Patch Tuesday2024 April Patch Tuesday
2024 April Patch TuesdayIvanti
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsNathaniel Shimoni
 
Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Hiroshi SHIBATA
 
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...BookNet Canada
 
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...itnewsafrica
 
JET Technology Labs White Paper for Virtualized Security and Encryption Techn...
JET Technology Labs White Paper for Virtualized Security and Encryption Techn...JET Technology Labs White Paper for Virtualized Security and Encryption Techn...
JET Technology Labs White Paper for Virtualized Security and Encryption Techn...amber724300
 
All These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDFAll These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDFMichael Gough
 
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxGenerative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxfnnc6jmgwh
 
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security ObservabilityGlenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security Observabilityitnewsafrica
 
UiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPathCommunity
 
Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Kaya Weers
 
Top 10 Hubspot Development Companies in 2024
Top 10 Hubspot Development Companies in 2024Top 10 Hubspot Development Companies in 2024
Top 10 Hubspot Development Companies in 2024TopCSSGallery
 
A Glance At The Java Performance Toolbox
A Glance At The Java Performance ToolboxA Glance At The Java Performance Toolbox
A Glance At The Java Performance ToolboxAna-Maria Mihalceanu
 
Generative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfGenerative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfIngrid Airi González
 
Microservices, Docker deploy and Microservices source code in C#
Microservices, Docker deploy and Microservices source code in C#Microservices, Docker deploy and Microservices source code in C#
Microservices, Docker deploy and Microservices source code in C#Karmanjay Verma
 
React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...Karmanjay Verma
 
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfSo einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfpanagenda
 
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Mark Goldstein
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesThousandEyes
 

Recently uploaded (20)

Zeshan Sattar- Assessing the skill requirements and industry expectations for...
Zeshan Sattar- Assessing the skill requirements and industry expectations for...Zeshan Sattar- Assessing the skill requirements and industry expectations for...
Zeshan Sattar- Assessing the skill requirements and industry expectations for...
 
2024 April Patch Tuesday
2024 April Patch Tuesday2024 April Patch Tuesday
2024 April Patch Tuesday
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directions
 
Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024
 
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...
 
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...
 
JET Technology Labs White Paper for Virtualized Security and Encryption Techn...
JET Technology Labs White Paper for Virtualized Security and Encryption Techn...JET Technology Labs White Paper for Virtualized Security and Encryption Techn...
JET Technology Labs White Paper for Virtualized Security and Encryption Techn...
 
All These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDFAll These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDF
 
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxGenerative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
 
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security ObservabilityGlenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
 
UiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to Hero
 
Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)
 
Top 10 Hubspot Development Companies in 2024
Top 10 Hubspot Development Companies in 2024Top 10 Hubspot Development Companies in 2024
Top 10 Hubspot Development Companies in 2024
 
A Glance At The Java Performance Toolbox
A Glance At The Java Performance ToolboxA Glance At The Java Performance Toolbox
A Glance At The Java Performance Toolbox
 
Generative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfGenerative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdf
 
Microservices, Docker deploy and Microservices source code in C#
Microservices, Docker deploy and Microservices source code in C#Microservices, Docker deploy and Microservices source code in C#
Microservices, Docker deploy and Microservices source code in C#
 
React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...
 
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfSo einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
 
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
 

17.04.2012 seminar trions_kochereshko

  • 1. ВСЕ О ТРИОНАХ Trions at low electron density limit • 1. Charged exciton-electron complexes (trions) • 2. Singlet and triplet trion states • 3. Modulation doped QWs • 4. Trions in optical spectra • 5. Action of magnetic fields on the trions Trions at high electron density limit • 6. Combined exciton cyclotron resonance • 7. Combined trion cyclotron resonance • 8. Combined exciton electron processes in PL spectra • 9. Trion Zeeman splitting
  • 2. LOW 2DEG DENSITY Two electrons+one hole states •Trions at weak magnetic fields •Trions at high magnetic fields •Excited states of trion
  • 3. Charged exciton – electron complex (trion) Negatively charged Trion X- Positively charged Trion X+ similar to ion H- Similar to ionized molecule H+ − − X + + + - − X electrons holes electron hole
  • 4. Singlet and Triplet trion states Wavefunction for two electrons in the trion Sz = +1 ϕ (1,2) = U (1,2) χ (1,2) Sz = 0 triplet Sz = -1 Spatial part of the wavefunction U nlm = 0 1 2 [ ( ) ( ) ( ) ( )] u1 r1 unlm r2 ± u1 r2 unlm r1 Sz = 0 singlet   −α ( r1 + r2 ) Singlet state + Sz = 0 ∝e Triplet state - Sz = ±1,0 Unlm ≠ 0 , if l ≠ 0 one electron is in 1S and the second is in 2P state – dark triplet Or if n ≠ 1 one electron is in 1S, and the second is in а 2S state bright triplet
  • 6. Modulation doped structures 100Å 100Å QW 2DEG I e1 1.8eV 3.0eV 1.6eV 2.8eV hh1 lh1 CdMgTe CdTe CdMgTe ZnMgSSe ZnSe ZnMgSSe 2DEG density varied from ne=5*109 см-2 to 9*1011 см-2
  • 7. Optical processes with the trion participation B=0, T=1.6K Trion formation time in undoped doped, ne=5 10 cm 10 -2 ZnSe structures is of the 4.8 meV order of 2 –4 psec Signal intensity (a. u.) Ref. Ref. Excited by UV-lines ε electron trion − Pexc=60 mW X − X X photon exciton X PL PL 0 0 2,81 2,82 2,81 2,82 Energy (eV) Energy (eV)
  • 9. Зависимость энергии связи триона от ширины ямы ZnSe-based QWs 10 PL ZnSe/ZnBeMgSe Refl. ZnSe/ZnBeMgSe ZnSe/ZnMgSSe X binding energy (meV) 8 ZnSe/ZnMgSSe 6 4 - + 2 X 0 0 50 100 150 200 QW width (Å)
  • 10. Сила осциллятора экситона приходящаяся на элементарную ячейку равна силе осциллятора триона на один электрон, также Как для связанных экситонов Γ T = Cne 0 Γ 0 X
  • 11. Singlet and Triplet Trion states in magnetic fields
  • 12. Singlet trion in magnetic fields + σ 0 1 2 3 4 5 6 7 − B=7.5T, T=1.6K σ 1.0 ZnSe 10 -2 ne=6x10 cm ge=+1.15 0.5 ν=1 Degree of polarization 0.0 − X lh Reflectivity (a. u.) 1.0 10 -2 ne=9x10 cm 0.5 ν=1 Xlh 0.0 4.4 meV 1.0 n =1.5x1011 cm-2 − e X hh 0.5 ν=1 ν=2 Xhh ν=3 0.0 5.5 meV 10 -2 0 1 2 3 4 5 6 7 doped, ne=5 10 cm Magnetic field (T) 0 2,81 2,82 2,83 2,84 Energy (eV) The circular polarization of the trion − − absorption (reflectivity line ) in magnetic fields X hh and X lh resonances appear can be used to determine electron in opposite circular polarizations concentration by pure optical method
  • 13. Triplet trion in high magnetic fields 30T Tt d X-1 σ- Tt d X Ts Photoluminescence 45T d 29.5T Tt X-1 Ts d Tt X-1 25T Ts Ts 0T 1610 1620 1630 1640 1600 1620 1640 Energy energy, meV
  • 14.
  • 15. Singlet and Triplet in high fields 1635 T=1.6K 10 -2 ne=3*10 cm Ts + σ- 1630 σ+ Etripbind = 3 meV Energy, meV 1625 d- TT X+1 X-1 b- TT 1620 - Ts 1615 1610 0 10 20 30 40 Magnetic field, Т
  • 16. EXCITON-ELECTRON SCATTERING (excited states of a trion in magnetic fields)
  • 17. Exciton – electron scattering Exciton – electron scattering - T=1.6K ε electron detected at σ ExCR1 X (1s,hh) Lg I ExCR2 0T photon exciton PL intensity 5T B=5T 1,64 1,66 ExCR1 X (1s,lh) In magnetic fields in QWs the exciton electron scattering leads ExCR2 to the electron transitions PLE between Landau levels - ExCR ne=8x10 cm 10 -2 1,63 1,64 1,65 1,66 1,67 Energy (eV) The scattering leads to high energy tail of the exciton absorption line. In magnetic fields it splits into separate lines because the electron spectrum becomes discrete = excited states of trions in magnetic fields.
  • 18. We can neglect the trion binding energy because Eex >> ωc >> ETr b b e + ph ⇒ Ex + e* 1 3 c ω e + ω = Eexc + ω e c 2 2 The intensity of the ExCR absorption line is comparable with the intensity of the exciton line
  • 19. Combined exciton –cyclotron resonance ExCR The ExCR line shifts LINEARLY from the exciton resonance to high energies with increase of magnetic fields me ω ExCR = Nω ec (1 + ) M
  • 20. Combined processes in Dense 2DEG Three electrons+one hole states
  • 21. In the dense 2DEG two-electron processes emerge in the spectra TrCR There are two electrons in the initial state; an incident photon creates an exciton which binds with one of the electrons forming a trion; and the second electron excites on the second Landau level e + e + ph ⇒ Tr + e* 1 1 3 ω ec + ω ec + ω = Etr + ω ec 2 2 2 1 ω = Etr + ω ec 2
  • 22. Trion Cyclotron Resonance 1,618 10 -2 open symbol - σ − ne=8x10 cm + solid symbol - σ 1,616 Line position (eV) 1,614 ExCR2 ExCR1 1.00 meV/T 1,612 X 1,610 TrCR1 0.64 meV/T 1,608 − X 1,606 3 2 1 0 1 2 3 4 5 6 7 8 Magnetic field (T)
  • 23. Line of the TrCR is observable at filling factors > 1. The intensity of the TrCR line is proportional to the second power of the 2DEG density TrCR (a) 11 -2 1×10 cm ExCR Reflectivity 10 -2 8×10 cm Intensity of TrCR-line 10 -2 6×10 cm − + σ X X 0 20 40 60 80 100 120 − T=1.6K 2 20 -4 σ B=2.5T ne (10 cm ) 0 1,605 1,610 Energy (eV) (b) 11 -2 1×10 cm T=1.6K Intensity of TrCR-line 0 10 8×10 cm -2 0 2 4 6 8 10 10 -2 Electron concenctration, ne (10 cm ) 10 6×10 cm -2 ν =1 ν =1 ν =1 0 0 1 2 3 4 5 Magnetic field (T)
  • 24. Surprising Trion stability against free electron screening
  • 25. Экситон исчезает из спектра при относительно малых концентрациях электронов, а трион остается ZnSe/ZnMgSSe 80A CdTe/CdMgTe 80A − 11 -2 ZnSe/ZnMgSSe X 1.2x10 cm − − X X 11 1.2x10 cm -2 X X 8x10 cm 10 -2 − 10 -2 X 6x10 cm Reflectivity Reflectivity − 10 -2 X 4x10 cm X 0 X 0 − 10 3x10 cm -2 10 <10 cm -2 X X 0 9 4x10 cm -2 0 0 T=1.6K 0 X B=0T T=1.6K X B=0T 0 1.620 1.625 1.630 0 2.810 2.815 2.820 2.825 Energy (eV) Energy (eV)
  • 26. Сила осциллятора экситона не зависит от плотности 2DEG Затухание экситона растет с ростом плотности
  • 27. Спектры поглощения (PLE) как функция концентрации
  • 28. 2.0 Absorption (arbit.un.) 1.5 a 1.0 0.5 0 1605 1610 1615 1620 Energy (meV) 1.5 Absorption (arbit.un.) b 1.0 0.5 0 1605 1610 1615 1620 Energy (meV)
  • 29. Trion Zeeman splitting as a function of the electron density
  • 30. The value of the exciton and trion Zeeman splitting? einit + ph → Tr = ( Ex + e fin ) Because the initial and the final state of the electron are the same (the same spin and the same Landau level) we should see only the exciton Zeeman splitting on exciton and on trion line ε electron trion photon exciton
  • 31. Photoluminescence In PL the exciton and trion Zeeman splitting are equal 1,626 1,625 H=0T Energy, eV 10 -2 1,624 ne=4x10 cm PL Intensity, a.u. 1,623 1,622 1,615 1,620 1,625 1,630 Energy, eV 0 1 2 3 4 5 6 7 8 Magnetic Field (T)
  • 32. Exciton and trion Zeeman splitting at high electron concentrations 1,630 1,629 1,628 Exc 1,627 Energy (eV) 1,626 1,625 1,624 1,623 T 1,622 1,621 0 1 2 3 4 5 6 7 8 0,8 0,6 Exc 0,4 Splitting (meV) 0,2 0,0 -0,2 -0,4 -0,6 10 ne=8x10 cm -2 T -0,8 0 1 2 3 4 5 6 7 8 Magnetic field (T)
  • 33. This is possible only in the case if the initial and final spin state of the electron are not the same – we need spin-flip For spin-flip we need spin-orbital interaction. This can be the triplet-singlet splitting of the trion In the initial state the photon creates virtual state of the triplet trion. Because of very fast spin-flip of one of the electrons in the final state we have the singlet trion (already real). This is the process reversal to the ExCR
  • 34. An incident photon creates a virtual trion in the triplet state. This trion produces a spin-flip with one of the electrons on the first Landau level. As a result, in the final state, we get a trion in the singlet state plus an electron on the second Landau level with opposite spin. This reaction looks ↑ ↑ ↑ ↓ e + e + ph → Tr + e → Tr + e 1 2 t 1 s 2
  • 36. Спектры ФЛ в зависимости от концентрации электронов Ebex >>EF Ebtr ~EF
  • 37. In heavily doped QW in zero magnetic fields the PL line is shifted to the low energies from its position in low doped structure. The value of this shift is of the order of Fermi energy 1635 PL 1630 Tt 1625 Tt energy, meV X 1620 Ts 1615 Ts − σ 3.7x1 0 cm 11 -2 + σ 1610 − σ 3x1 0 cm 10 -2 SU σ + 1605 0 10 20 30 40 Magnetic field, T
  • 38. В магнитном поле линии триона и экситона «возрождаются» X Τ 1600 1610 1620 1630 1640 энергия, мэВ
  • 39. Combined processes in PL 1650 1635 T=1,6K 11 ne=3.7x10 cm -2 T=1.6K 11 -2 ne=3.7x10 cm 1630 CCR 2ω c 1640 ω c ССR X 1625 (1/2)ω c Tt FL energy, meV energy, meV 1630 1620 Ts 1620 Ts 1615 − σ ν =2 σ + 1610 ν =3 1610 SU ν =4 0 10 20 30 40 50 0 10 20 30 40 magnetic field, T Magnetic field, T Comparison of PL and reflectivity PL and SU
  • 40. Shake-up Shake up процессы SU 11 ne=2x10 cm -2 1/2hωc T=1.6 K B=7.5T 3/2hωc Tr ⇒ ph + e PL Intensity, arb. u. * 5/2hωc 1 Etr = ω + ( N + )ω ec 2 1 ω = Etr − ( N + )ω ec 2 B=0 EF ETr 1,596 1,598 1,600 1,602 1,604 1,606 1,608 1,610 Energy, eV
  • 41. In Emission the initial state is: trion in a ground or excited states; ∗ Τr → ph + e the final state is: an electron above Fermi level The energy of the transition is ω = ETr − E ∗ ≤ ETr − EF
  • 42. Linear shift of the trion line in magnetic fields In the final state after the trion recombination a free electron remains. It can appears in the ν =3 ν =4 unoccupied states above Fermi Fermi energy level Etr = ω + E F ⇒ ω = Etr − E F ν =1 In magnetic fields the Fermi energy LL2 LL1 decreases as ne=const T=1.6K ν =2 1 T=0 K ω ec 2 Magnetic field
  • 43. Theory ± ω ph = Ω c (n ) − E tr ± ∆( B ) − E F ( B ) + αB + βB 2 + E G Figure gives the energy positions of maxima of emitted bands which are described by equation The shape of the states in presented by 1625 the Gaussian form [ ] [ ] eB /( 4π) 1615 exp − E − ω ± ( n ) / 2Γn ( B )  ± 2 2 ρ n (E) =  ph  2 2πΓn ( B )   1605 10 30
  • 44. Conclusions In 2D structures containing electron gas the scattering effects are enhanced. In the presence of magnetic fields the electron energy spectrum becomes discreet and the scattering processes revel as combined exciton- electron processes. In such processes we can see directly only the exciton transition but the state of the additional electron, which we can not see, reveals only in the final result.