Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Pembahasan osn matematika smp 2015 tingkat kabupaten (bagian b isian singkat)

14.131 Aufrufe

Veröffentlicht am

Pembahasan osn matematika smp 2015 tingkat kabupaten (bagian b isian singkat)

Veröffentlicht in: Bildung
  • Try Out dan Pembahasan UN Matematika SMP / MTs 2016 (ONLINE) silahkan klik : https://play.google.com/store/apps/details?id=com.kbmmobile.kbm.user.tryoutdanpembahasanunmatematikasmplite
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier

Pembahasan osn matematika smp 2015 tingkat kabupaten (bagian b isian singkat)

  1. 1. www.siap-osn.blogspot.com @ Maret 2015 Sosuke D. Aizen 2 SMPN 1 Tambelangan Pembahasan OSN Matematika SMP 2015 / Page 1 Download Soal dan Pembahasan OSN Matematika SMP Lainnya di “ www.siap-osn.blogspot.com ” PEMBAHASAN OSN MATEMATIKA SMP 2015 TINGKAT KABUPATEN BAGIAN B : ISIAN SINGKAT BAGIAN B : ISIAN SINGKAT 1. Jawaban : 𝑥 = −4, −1 Pembahasan : 𝑥 𝑎𝑑𝑎𝑙𝑎𝑕 𝑏𝑖𝑙𝑎𝑛𝑔𝑎𝑛 𝑏𝑢𝑙𝑎𝑡 𝑥2 + 5𝑥 + 6 𝑎𝑑𝑎𝑙𝑎𝑕 𝑏𝑖𝑙𝑎𝑛𝑔𝑎𝑛 𝑝𝑟𝑖𝑚𝑎 𝑥2 + 5𝑥 + 6 = 𝑥 + 2 . (𝑥 + 3) 𝐾𝑎𝑟𝑒𝑛𝑎 𝑥 + 2 < 𝑥 + 3 𝑚𝑎𝑘𝑎 𝑢𝑛𝑡𝑢𝑘 𝑏𝑖𝑙𝑎𝑛𝑔𝑎𝑛 𝑝𝑟𝑖𝑚𝑎 = 2, 3, 5, 7, 11, … 𝑏𝑒𝑟𝑙𝑎𝑘𝑢 ∶ 𝑈𝑛𝑡𝑢𝑘 𝑏𝑖𝑙𝑎𝑛𝑔𝑎𝑛 𝑝𝑟𝑖𝑚𝑎 = 2 𝑥2 + 5𝑥 + 6 = 𝑥 + 2 . 𝑥 + 3 = 2 = 1 .2 = −2 . −1 𝐼𝑛𝑖 𝑚𝑒𝑛𝑢𝑛𝑗𝑢𝑘𝑘𝑎𝑛 𝑏𝑎𝑕𝑤𝑎 ∶ 𝑈𝑛𝑡𝑢𝑘 ∶ 𝑥 + 2 . 𝑥 + 3 = 1 .2 𝑥 + 2 = 1 𝑑𝑎𝑛 𝑥 + 3 = 2 𝑥 = 1 − 2 𝑑𝑎𝑛 𝑥 = 2 − 3 𝑥 = −1 𝑑𝑎𝑛 𝑥 = −1 (𝑚𝑒𝑚𝑒𝑛𝑢𝑕𝑖 𝑘𝑎𝑟𝑒𝑛𝑎 𝑛𝑖𝑙𝑎𝑖 𝑥 𝑠𝑎𝑚𝑎) 𝑈𝑛𝑡𝑢𝑘 ∶ 𝑥 + 2 . 𝑥 + 3 = −2 . −1 𝑥 + 2 = −2 𝑑𝑎𝑛 𝑥 + 3 = −1 𝑥 = −2 − 2 𝑑𝑎𝑛 𝑥 = −1 − 3 𝑥 = −4 𝑑𝑎𝑛 𝑥 = −4 (𝑚𝑒𝑚𝑒𝑛𝑢𝑕𝑖 𝑘𝑎𝑟𝑒𝑛𝑎 𝑛𝑖𝑙𝑎𝑖 𝑥 𝑠𝑎𝑚𝑎) 𝑈𝑛𝑡𝑢𝑘 𝑏𝑖𝑙𝑎𝑛𝑔𝑎𝑛 𝑝𝑟𝑖𝑚𝑎 = 3 𝑥2 + 5𝑥 + 6 = 𝑥 + 2 . 𝑥 + 3 = 3 = 1 .3 = −3 . −1 𝐼𝑛𝑖 𝑚𝑒𝑛𝑢𝑛𝑗𝑢𝑘𝑘𝑎𝑛 𝑏𝑎𝑕𝑤𝑎 ∶ 𝑈𝑛𝑡𝑢𝑘 ∶ 𝑥 + 2 . 𝑥 + 3 = 1 .3 𝑥 + 2 = 1 𝑑𝑎𝑛 𝑥 + 3 = 3 𝑥 = 1 − 2 𝑑𝑎𝑛 𝑥 = 3 − 3 𝑥 = −1 𝑑𝑎𝑛 𝑥 = 0 (𝑡𝑖𝑑𝑎𝑘 𝑚𝑒𝑚𝑒𝑛𝑢𝑕𝑖 𝑘𝑎𝑟𝑒𝑛𝑎 𝑛𝑖𝑙𝑎𝑖 𝑥 𝑡𝑖𝑑𝑎𝑘 𝑠𝑎𝑚𝑎) 𝑈𝑛𝑡𝑢𝑘 ∶ 𝑥 + 2 . 𝑥 + 3 = −3 . −1 𝑥 + 2 = −3 𝑑𝑎𝑛 𝑥 + 3 = −1 𝑥 = −3 − 2 𝑑𝑎𝑛 𝑥 = −1 − 3 𝑥 = −5 𝑑𝑎𝑛 𝑥 = −4 (𝑡𝑖𝑑𝑎𝑘 𝑚𝑒𝑚𝑒𝑛𝑢𝑕𝑖 𝑘𝑎𝑟𝑒𝑛𝑎 𝑛𝑖𝑙𝑎𝑖 𝑥 𝑡𝑖𝑑𝑎𝑘 𝑠𝑎𝑚𝑎) 𝑈𝑛𝑡𝑢𝑘 𝑏𝑖𝑙𝑎𝑛𝑔𝑎𝑛 𝑝𝑟𝑖𝑚𝑎 = 5 𝑥2 + 5𝑥 + 6 = 𝑥 + 2 . 𝑥 + 3 = 5 = 1 .5 = −5 . −1 𝐼𝑛𝑖 𝑚𝑒𝑛𝑢𝑛𝑗𝑢𝑘𝑘𝑎𝑛 𝑏𝑎𝑕𝑤𝑎 ∶ 𝑈𝑛𝑡𝑢𝑘 ∶ 𝑥 + 2 . 𝑥 + 3 = 1 .5
  2. 2. www.siap-osn.blogspot.com @ Maret 2015 Sosuke D. Aizen 2 SMPN 1 Tambelangan Pembahasan OSN Matematika SMP 2015 / Page 2 Download Soal dan Pembahasan OSN Matematika SMP Lainnya di “ www.siap-osn.blogspot.com ” 𝑥 + 2 = 1 𝑑𝑎𝑛 𝑥 + 3 = 5 𝑥 = 1 − 2 𝑑𝑎𝑛 𝑥 = 5 − 3 𝑥 = −1 𝑑𝑎𝑛 𝑥 = 2 (𝑡𝑖𝑑𝑎𝑘 𝑚𝑒𝑚𝑒𝑛𝑢𝑕𝑖 𝑘𝑎𝑟𝑒𝑛𝑎 𝑛𝑖𝑙𝑎𝑖 𝑥 𝑡𝑖𝑑𝑎𝑘 𝑠𝑎𝑚𝑎) 𝑈𝑛𝑡𝑢𝑘 ∶ 𝑥 + 2 . 𝑥 + 3 = −5 . −1 𝑥 + 2 = −5 𝑑𝑎𝑛 𝑥 + 3 = −1 𝑥 = −5 − 2 𝑑𝑎𝑛 𝑥 = −1 − 3 𝑥 = −7 𝑑𝑎𝑛 𝑥 = −4 (𝑡𝑖𝑑𝑎𝑘 𝑚𝑒𝑚𝑒𝑛𝑢𝑕𝑖 𝑘𝑎𝑟𝑒𝑛𝑎 𝑛𝑖𝑙𝑎𝑖 𝑥 𝑡𝑖𝑑𝑎𝑘 𝑠𝑎𝑚𝑎) 𝐷𝑎𝑟𝑖 𝑝𝑒𝑟𝑕𝑖𝑡𝑢𝑛𝑔𝑎𝑛 𝑑𝑖𝑎𝑡𝑎𝑠 𝑚𝑒𝑛𝑢𝑛𝑗𝑢𝑘𝑘𝑎𝑛 𝑝𝑜𝑙𝑎 𝑏𝑎𝑕𝑤𝑎 𝑢𝑛𝑡𝑢𝑘 𝑏𝑖𝑙𝑎𝑛𝑔𝑎𝑛 𝑝𝑟𝑖𝑚𝑎 ≥ 3 𝑡𝑖𝑑𝑎𝑘 𝑚𝑒𝑚𝑒𝑛𝑢𝑕𝑖 𝑘𝑎𝑟𝑒𝑛𝑎 𝑑𝑖𝑝𝑒𝑟𝑜𝑙𝑒𝑕 𝑛𝑖𝑙𝑎𝑖 𝑥 𝑦𝑎𝑛𝑔 𝑡𝑖𝑑𝑎𝑘 𝑠𝑎𝑚𝑎 𝐽𝑎𝑑𝑖 𝑛𝑖𝑙𝑎𝑖 𝑥 = −4, −1 2. Jawaban : 12 Pembahasan : 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑚𝑒𝑙𝑎𝑙𝑢𝑖 𝑡𝑖𝑡𝑖𝑘 (−2, 6) 𝑠𝑢𝑚𝑏𝑢 𝑠𝑖𝑚𝑒𝑡𝑟𝑖𝑛𝑦𝑎 𝑥 = −1 𝑎, 𝑏, 𝑑𝑎𝑛 𝑐 𝑚𝑒𝑟𝑢𝑝𝑎𝑘𝑎𝑛 𝑏𝑖𝑙𝑎𝑛𝑔𝑎𝑛 𝑔𝑒𝑛𝑎𝑝 𝑝𝑜𝑠𝑖𝑡𝑖𝑓 𝑏𝑒𝑟𝑢𝑟𝑢𝑡𝑎𝑛 −2 𝑥 , 6 𝑦 → 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 6 = 𝑎 . −2 2 + 𝑏 . −2 + 𝑐 6 = 4𝑎 − 2𝑏 + 𝑐 4𝑎 − 2𝑏 + 𝑐 = 6 … 1 𝑆𝑢𝑚𝑏𝑢 𝑠𝑖𝑚𝑒𝑡𝑟𝑖 𝑥 = −1 → 𝑥 = − 𝑏 2𝑎 −1 = − 𝑏 2𝑎 −2𝑎 = −𝑏 𝑏 = 2𝑎 … 2 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑠𝑖𝑘𝑎𝑛 𝑝𝑒𝑟𝑠𝑎𝑚𝑎𝑎𝑛 2 𝑘𝑒 1 ∶ 4𝑎 − 2𝑏 + 𝑐 = 6 4𝑎 − 2 . 2𝑎 + 𝑐 = 6 4𝑎 − 4𝑎 + 𝑐 = 6 𝑐 = 6 𝐷𝑖𝑝𝑒𝑟𝑜𝑙𝑎𝑕 𝑐 = 6 , 𝑏 = 2𝑎 𝑑𝑎𝑛 𝑘𝑎𝑟𝑒𝑛𝑎 𝑎, 𝑏, 𝑑𝑎𝑛 𝑐 𝑚𝑒𝑟𝑢𝑝𝑎𝑘𝑎𝑛 𝑏𝑖𝑙𝑎𝑛𝑔𝑎𝑛 𝑔𝑒𝑛𝑎𝑝 𝑝𝑜𝑠𝑖𝑡𝑖𝑓 𝑏𝑒𝑟𝑢𝑟𝑢𝑡𝑎𝑛 𝑚𝑎𝑘𝑎 𝑏𝑒𝑟𝑙𝑎𝑘𝑢 ∶ 2 𝑎 , 4 𝑏=2𝑎 , 6 𝐽𝑎𝑑𝑖 𝑎 + 𝑏 + 𝑐 = 2 + 4 + 6 = 12
  3. 3. www.siap-osn.blogspot.com @ Maret 2015 Sosuke D. Aizen 2 SMPN 1 Tambelangan Pembahasan OSN Matematika SMP 2015 / Page 3 Download Soal dan Pembahasan OSN Matematika SMP Lainnya di “ www.siap-osn.blogspot.com ” 3. Jawaban : 7 3 + 12 𝑐𝑚2 Pembahasan : 𝑃𝑒𝑟𝑕𝑎𝑡𝑖𝑘𝑎𝑛 𝑔𝑎𝑚𝑏𝑎𝑟 𝑏𝑒𝑟𝑖𝑘𝑢𝑡 ∶ 𝑃, 𝑄 𝑑𝑎𝑛 𝑅 𝑎𝑑𝑎𝑙𝑎𝑕 𝑡𝑖𝑡𝑖𝑘 𝑠𝑖𝑛𝑔𝑔𝑢𝑛𝑔 𝑙𝑖𝑛𝑔𝑘𝑎𝑟𝑎𝑛 𝑝𝑎𝑑𝑎 𝑠𝑖𝑠𝑖 − 𝑠𝑖𝑠𝑖 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝐴𝐶𝐷, 𝑠𝑒𝑕𝑖𝑛𝑔𝑔𝑎 ∶ ∠𝐴𝑃𝐷 = ∠𝐶𝑃𝐷 = ∠𝐷𝑅𝑆 = ∠𝐶𝑅𝑆 = ∠𝐴𝑄𝑆 = ∠𝐷𝑄𝑆 = 90 𝑜 𝑆𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝐴𝐵𝐶 𝑎𝑑𝑎𝑙𝑎𝑕 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑎𝑚𝑎 𝑘𝑎𝑘𝑖 → 𝐴𝐵 = 𝐴𝐶 𝑆𝑅 = 𝑆𝑄 = 𝑃𝑆 = 1 𝑅𝐷 = 3 3 𝑐𝑚 ∠𝑆𝐷𝑅 = 60 𝑜 𝑃𝑒𝑟𝑕𝑎𝑡𝑖𝑘𝑎𝑛 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑖𝑘𝑢 − 𝑠𝑖𝑘𝑢 𝐷𝑅𝑆 ∶ ∠𝐷𝑆𝑅 = 180 𝑜 − 90 𝑜 − 60 𝑜 = 30 𝑜 𝑃𝑒𝑟𝑕𝑎𝑡𝑖𝑘𝑎𝑛 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑖𝑘𝑢 − 𝑠𝑖𝑘𝑢 𝐷𝑅𝑆 𝑑𝑎𝑛 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑖𝑘𝑢 − 𝑠𝑖𝑘𝑢 𝐷𝑄𝑆 𝑦𝑎𝑛𝑔 𝑘𝑜𝑛𝑔𝑟𝑢𝑒𝑛 ∶ ∠𝑄𝐷𝑆 = ∠𝑆𝐷𝑅 = 60 𝑜 𝑃𝑒𝑟𝑕𝑎𝑡𝑖𝑘𝑎𝑛 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑖𝑘𝑢 − 𝑠𝑖𝑘𝑢 𝐶𝑃𝐷 ∶ ∠𝐷𝐶𝑃 = 180 𝑜 − 90 𝑜 − 60 𝑜 = 30 𝑜
  4. 4. www.siap-osn.blogspot.com @ Maret 2015 Sosuke D. Aizen 2 SMPN 1 Tambelangan Pembahasan OSN Matematika SMP 2015 / Page 4 Download Soal dan Pembahasan OSN Matematika SMP Lainnya di “ www.siap-osn.blogspot.com ” 𝑃𝑒𝑟𝑕𝑎𝑡𝑖𝑘𝑎𝑛 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑖𝑘𝑢 − 𝑠𝑖𝑘𝑢 𝐴𝑃𝐷 ∶ ∠𝐷𝐴𝑃 = 180 𝑜 − 90 𝑜 − 60 𝑜 = 30 𝑜 𝑃𝑒𝑟𝑕𝑎𝑡𝑖𝑘𝑎𝑛 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑎𝑚𝑎 𝑘𝑎𝑘𝑖 𝐴𝐵𝐶 ∶ ∠𝐴𝐵𝐶 = ∠𝐴𝐶𝐵 = 30 𝑜 𝑃𝑒𝑟𝑕𝑎𝑡𝑖𝑘𝑎𝑛 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝐴𝐵𝐷 ∶ ∠𝐴𝐷𝐵 = 180 𝑜 − 60 𝑜 − 60 𝑜 = 60 𝑜 ∠𝐵𝐴𝐷 = 180 𝑜 − 60 𝑜 − 30 𝑜 = 90 𝑜 𝑃𝑒𝑟𝑕𝑎𝑡𝑖𝑘𝑎𝑛 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑖𝑘𝑢 − 𝑠𝑖𝑘𝑢 𝐷𝑅𝑆 ∶ 𝐷𝑆 = 𝑅𝐷2 + 𝑆𝑅2 = 3 3 2 + 12 = 3 9 + 1 = 3 9 + 9 9 = 12 9 = 12 9 = 4 .3 9 = 2 3 3 𝐷𝑃 = 𝑃𝑆 + 𝐷𝑆 = 1 + 2 3 3 𝑃𝑒𝑟𝑕𝑎𝑡𝑖𝑘𝑎𝑛 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑖𝑘𝑢 − 𝑠𝑖𝑘𝑢 𝐶𝑃𝐷 𝑑𝑎𝑛 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑖𝑘𝑢 − 𝑠𝑖𝑘𝑢 𝐷𝑅𝑆 𝑦𝑎𝑛𝑔 𝑠𝑒𝑏𝑎𝑛𝑔𝑢𝑛 ∶ 𝐶𝑃 𝑆𝑅 = 𝐷𝑃 𝑅𝐷 𝐶𝑃 1 = 1+ 2 3 3 3 3 𝐶𝑃 = 1 + 2 3 3 . 3 3 𝐶𝑃 = 3 3 + 2 𝐶𝑃 = 3 3 . 3 3 + 2 𝐶𝑃 = 3 + 2 𝑃𝑒𝑟𝑕𝑎𝑡𝑖𝑘𝑎𝑛 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑖𝑘𝑢 − 𝑠𝑖𝑘𝑢 𝐶𝑃𝐷 𝑑𝑎𝑛 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑖𝑘𝑢 − 𝑠𝑖𝑘𝑢 𝐴𝑃𝐷 𝑦𝑎𝑛𝑔 𝑘𝑜𝑛𝑔𝑟𝑢𝑒𝑛 ∶ 𝐴𝑃 = 𝐶𝑃 = 3 + 2 𝑃𝑒𝑟𝑕𝑎𝑡𝑖𝑘𝑎𝑛 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑎𝑚𝑎 𝑘𝑎𝑘𝑖 𝐴𝐵𝐶 ∶ 𝐴𝐵 = 𝐴𝐶 = 𝐴𝑃 + 𝐶𝑃 = 3 + 2 + 3 + 2 = 2 3 + 4 𝑃𝑒𝑟𝑕𝑎𝑡𝑖𝑘𝑎𝑛 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑖𝑘𝑢 − 𝑠𝑖𝑘𝑢 𝐵𝐴𝐷 𝑑𝑎𝑛 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑖𝑘𝑢 − 𝑠𝑖𝑘𝑢 𝐷𝑅𝑆 𝑦𝑎𝑛𝑔 𝑠𝑒𝑏𝑎𝑛𝑔𝑢𝑛 ∶ 𝐴𝐷 𝑅𝐷 = 𝐴𝐵 𝑆𝑅 𝐴𝐷 3 3 = 2 3+4 1 𝐴𝐷 = 2 3 + 4 . 3 3 𝐴𝐷 = 2 + 4 3 3
  5. 5. www.siap-osn.blogspot.com @ Maret 2015 Sosuke D. Aizen 2 SMPN 1 Tambelangan Pembahasan OSN Matematika SMP 2015 / Page 5 Download Soal dan Pembahasan OSN Matematika SMP Lainnya di “ www.siap-osn.blogspot.com ” 𝑃𝑒𝑟𝑕𝑎𝑡𝑖𝑘𝑎𝑛 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑖𝑘𝑢 − 𝑠𝑖𝑘𝑢 𝐶𝑃𝐷 ∶ 𝐿 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑖𝑘𝑢 −𝑠𝑖𝑘𝑢 𝐶𝑃𝐷 = 1 2 . 𝐷𝑃 . 𝐶𝑃 = 1 2 . 1 + 2 3 3 . 3 + 2 = 1 2 . 3 + 2 + 2 + 4 3 3 = 1 2 . 3 3 3 + 4 + 4 3 3 = 1 2 . 7 3 3 + 4 = 7 3 6 + 2 𝑃𝑒𝑟𝑕𝑎𝑡𝑖𝑘𝑎𝑛 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑖𝑘𝑢 − 𝑠𝑖𝑘𝑢 𝐶𝑃𝐷 𝑑𝑎𝑛 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑖𝑘𝑢 − 𝑠𝑖𝑘𝑢 𝐴𝑃𝐷 𝑦𝑎𝑛𝑔 𝑘𝑜𝑛𝑔𝑟𝑢𝑒𝑛 ∶ 𝐿 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑖𝑘𝑢 −𝑠𝑖𝑘𝑢 𝐴𝑃𝐷 = 𝐿 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑖𝑘𝑢 −𝑠𝑖𝑘𝑢 𝐶𝑃𝐷 = 7 3 6 + 2 𝑃𝑒𝑟𝑕𝑎𝑡𝑖𝑘𝑎𝑛 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑖𝑘𝑢 − 𝑠𝑖𝑘𝑢 𝐵𝐴𝐷 ∶ 𝐿 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑖𝑘𝑢 −𝑠𝑖𝑘𝑢 𝐵𝐴𝐷 = 1 2 . 𝐴𝐵 . 𝐴𝐷 = 1 2 . 2 3 + 4 . 2 + 4 3 3 = 1 2 . 4 3 + 8 + 8 + 16 3 3 = 1 2 . 12 3 3 + 16 + 16 3 3 = 1 2 . 28 3 3 + 16 = 14 3 3 + 8 𝑃𝑒𝑟𝑕𝑎𝑡𝑖𝑘𝑎𝑛 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑎𝑚𝑎 𝑘𝑎𝑘𝑖 𝐴𝐵𝐶 ∶ 𝐿 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑎𝑚𝑎 𝑘𝑎𝑘𝑖 𝐴𝐵𝐶 = 𝐿 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑖𝑘𝑢 −𝑠𝑖𝑘𝑢 𝐴𝑃𝐷 + 𝐿 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑖𝑘𝑢 −𝑠𝑖𝑘𝑢 𝐶𝑃𝐷 + 𝐿 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑖𝑘𝑢 −𝑠𝑖𝑘𝑢 𝐵𝐴𝐷 = 7 3 6 + 2 + 7 3 6 + 2 + 14 3 3 + 8 = 14 3 6 + 12 + 14 3 3 = 7 3 3 + 12 + 14 3 3 = 21 3 3 + 12 = 7 3 + 12 𝐽𝑎𝑑𝑖 𝑙𝑢𝑎𝑠 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝑠𝑎𝑚𝑎 𝑘𝑎𝑘𝑖 𝐴𝐵𝐶 𝑎𝑑𝑎𝑙𝑎𝑕 7 3 + 12 𝑐𝑚2 4. Jawaban : 55 ∶ 153 Pembahasan : 𝐵𝑜𝑡𝑜𝑙 𝐼 → 𝐺𝐼 ∶ 𝐴𝐼 = 2 ∶ 11 𝐵𝑜𝑡𝑜𝑙 𝐼𝐼 → 𝐺𝐼𝐼 ∶ 𝐴𝐼𝐼 = 3 ∶ 5 𝑀𝑖𝑠𝑎𝑙𝑘𝑎𝑛 ∶ 𝑉𝑏𝑜𝑡𝑜𝑙 = 𝑉
  6. 6. www.siap-osn.blogspot.com @ Maret 2015 Sosuke D. Aizen 2 SMPN 1 Tambelangan Pembahasan OSN Matematika SMP 2015 / Page 6 Download Soal dan Pembahasan OSN Matematika SMP Lainnya di “ www.siap-osn.blogspot.com ” 𝑉𝑜𝑙𝑢𝑚𝑒 𝐺𝑢𝑙𝑎 𝑑𝑎𝑛 𝐴𝑖𝑟 𝑑𝑎𝑙𝑎𝑚 𝑏𝑜𝑡𝑜𝑙 𝐼 𝑑𝑎𝑛 𝑏𝑜𝑡𝑜𝑙 𝐼𝐼 𝑠𝑒𝑏𝑒𝑙𝑢𝑚 𝑑𝑖𝑐𝑎𝑚𝑝𝑢𝑟 ∶ 𝐺𝐼 = 2 2+11 . 𝑉 = 2𝑉 13 𝐴𝐼 = 11 2+11 . 𝑉 = 11𝑉 13 𝐺𝐼𝐼 = 3 3+5 . 𝑉 = 3𝑉 8 𝐴𝐼𝐼 = 5 3+5 . 𝑉 = 5𝑉 8 𝑉𝑜𝑙𝑢𝑚𝑒 𝐺𝑢𝑙𝑎 𝑑𝑎𝑛 𝐴𝑖𝑟 𝑠𝑒𝑡𝑒𝑙𝑎𝑕 𝑏𝑜𝑡𝑜𝑙 𝐼 𝑑𝑎𝑛 𝑏𝑜𝑡𝑜𝑙 𝐼𝐼 𝑑𝑖𝑐𝑎𝑚𝑝𝑢𝑟 ∶ 𝐺𝐼+𝐼𝐼 = 𝐺𝐼 + 𝐺𝐼𝐼 = 2𝑉 13 + 3𝑉 8 = 16𝑉 104 + 39𝑉 104 = 55𝑉 104 𝐴𝐼+𝐼𝐼 = 𝐴𝐼 + 𝐴𝐼𝐼 = 11𝑉 13 + 5𝑉 8 = 88𝑉 104 + 65𝑉 104 = 153𝑉 104 𝐺𝐼+𝐼𝐼 ∶ 𝐴𝐼+𝐼𝐼 = 𝐺𝐼+𝐼𝐼 𝐴 𝐼+𝐼𝐼 = 55𝑉 104 153 𝑉 104 = 55𝑉 104 . 104 153𝑉 = 55 153 = 55 ∶ 153 𝐽𝑎𝑑𝑖 𝑟𝑎𝑠𝑖𝑜 𝑘𝑎𝑛𝑑𝑢𝑛𝑔𝑎𝑛 𝑔𝑢𝑙𝑎 𝑑𝑎𝑛 𝑎𝑖𝑟 𝑕𝑎𝑠𝑖𝑙 𝑐𝑎𝑚𝑝𝑢𝑟𝑎𝑛𝑛𝑦𝑎 𝑎𝑑𝑎𝑙𝑎𝑕 55 ∶ 153 5. Jawaban : 19 Pembahasan : 𝑓 𝑥 = 209 − 𝑥2 𝑓 𝑎𝑏 = 𝑓 𝑎 + 2𝑏 − 𝑓 𝑎 − 2𝑏 𝑑𝑖𝑚𝑎𝑛𝑎 ∶ 𝑎 , 𝑏 𝑎𝑑𝑎𝑙𝑎𝑕 𝑏𝑖𝑙𝑎𝑛𝑔𝑎𝑛 𝑏𝑢𝑙𝑎𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑓 𝑑𝑎𝑛 𝑎 < 𝑏 𝑓 𝑎𝑏 = 𝑓 𝑎 + 2𝑏 − 𝑓 𝑎 − 2𝑏 209 − 𝑎𝑏 2 = 209 − 𝑎 + 2𝑏 2 − 209 − 𝑎 − 2𝑏 2 209 − 𝑎2 𝑏2 = 209 − 𝑎2 + 4𝑎𝑏 + 4𝑏2 − 209 − 𝑎2 − 4𝑎𝑏 + 4𝑏2 209 − 𝑎2 𝑏2 = 209 − 𝑎2 − 4𝑎𝑏 − 4𝑏2 − 209 − 𝑎2 + 4𝑎𝑏 − 4𝑏2 209 − 𝑎2 𝑏2 = 209 − 𝑎2 − 4𝑎𝑏 − 4𝑏2 − 209 + 𝑎2 − 4𝑎𝑏 + 4𝑏2 209 − 𝑎2 𝑏2 = −8𝑎𝑏 209 = 𝑎2 𝑏2 − 8𝑎𝑏 19 .11 = 𝑎𝑏 . 𝑎𝑏 − 8 → 𝑎𝑏 = 19 𝑎𝑏 − 8 = 11 𝐷𝑖𝑝𝑒𝑟𝑜𝑙𝑎𝑕 𝑎𝑏 = 19 𝑦𝑎𝑛𝑔 𝑚𝑒𝑟𝑢𝑝𝑎𝑘𝑎𝑛 𝑏𝑖𝑙𝑎𝑛𝑔𝑎𝑛 𝑝𝑟𝑖𝑚𝑎 , 𝑑𝑎𝑛 𝑘𝑎𝑟𝑒𝑛𝑎 𝑎 < 𝑏 𝑚𝑎𝑘𝑎 𝑏𝑒𝑟𝑙𝑎𝑘𝑢 ∶ 𝑎𝑏 = 19 𝑎𝑏 = 1 . 19 → 𝑎 = 1 𝑏 = 19 𝐽𝑎𝑑𝑖 𝑛𝑖𝑙𝑎𝑖 𝑏 𝑎 = 19 1 = 19
  7. 7. www.siap-osn.blogspot.com @ Maret 2015 Sosuke D. Aizen 2 SMPN 1 Tambelangan Pembahasan OSN Matematika SMP 2015 / Page 7 Download Soal dan Pembahasan OSN Matematika SMP Lainnya di “ www.siap-osn.blogspot.com ” 6. Jawaban : 10080 Pembahasan : 𝑈1 + 𝑈2 + 𝑈3 + 𝑈4 = 70 → 𝑆4 = 70 𝑈5 + 𝑈6 + ⋯ + 𝑈16 = 690 𝑈1 + 𝑈2 + ⋯ + 𝑈16 = 760 𝑆16 = 760 𝑆 𝑛 = 𝑛 2 . 2𝑎 + 𝑛 − 1 . 𝑏 𝑆4 = 4 2 . 2𝑎 + 4 − 1 . 𝑏 = 70 2 . 2𝑎 + 3𝑏 = 70 2𝑎 + 3𝑏 = 70 2 2𝑎 + 3𝑏 = 35 … (1) 𝑆 𝑛 = 𝑛 2 . 2𝑎 + 𝑛 − 1 . 𝑏 𝑆16 = 16 2 . 2𝑎 + 16 − 1 . 𝑏 = 760 8 . 2𝑎 + 15𝑏 = 760 2𝑎 + 15𝑏 = 760 8 2𝑎 + 15𝑏 = 95 … (2) 𝐸𝑙𝑖𝑚𝑖𝑛𝑎𝑠𝑖 𝑝𝑒𝑟𝑠𝑎𝑚𝑎𝑎𝑛 2 𝑑𝑎𝑛 (1): 2𝑎 + 15𝑏 = 95 2𝑎 + 3𝑏 = 35 12𝑏 = 60 𝑏 = 60 12 𝑏 = 5 → 1 : 2𝑎 + 3𝑏 = 35 2𝑎 + 3 . 5 = 35 2𝑎 + 15 = 35 2𝑎 = 35 − 15 2𝑎 = 20 𝑎 = 20 2 𝑎 = 10 𝑈𝑛 = 𝑎 + 𝑛 − 1 . 𝑏 𝑈2015 = 10 + 2015 − 1 .5 = 10 + 2014 .5 = 10 + 10070 = 10080 𝐽𝑎𝑑𝑖 𝑠𝑢𝑘𝑢 𝑘𝑒 − 2015 𝑏𝑎𝑟𝑖𝑠𝑎𝑛 𝑡𝑒𝑟𝑠𝑒𝑏𝑢𝑡 𝑎𝑑𝑎𝑙𝑎𝑕 10080
  8. 8. www.siap-osn.blogspot.com @ Maret 2015 Sosuke D. Aizen 2 SMPN 1 Tambelangan Pembahasan OSN Matematika SMP 2015 / Page 8 Download Soal dan Pembahasan OSN Matematika SMP Lainnya di “ www.siap-osn.blogspot.com ” 7. Jawaban : 1 ∶ 2 Pembahasan : 𝑃𝑒𝑟𝑕𝑎𝑡𝑖𝑘𝑎𝑛 𝑔𝑎𝑚𝑏𝑎𝑟 𝑏𝑒𝑟𝑖𝑘𝑢𝑡 ∶ 𝐴𝐵 𝑠𝑒𝑗𝑎𝑗𝑎𝑟 𝐸𝐹 𝐴𝐸 = 𝐵𝐹 𝐴𝐵 = 2 . 𝐸𝐹 𝐴𝑃 = 𝑃𝐵 = 𝐷𝑄 = 𝑄𝐶 = 𝐸𝐹 𝐴𝐷 ⊥ 𝐴𝐵 𝑑𝑎𝑛 𝐸𝐻 ⊥ 𝐸𝐹 𝑀𝑖𝑠𝑎𝑙𝑘𝑎𝑛 ∶ 𝑡𝑡𝑟𝑎𝑝𝑒𝑠𝑖𝑢𝑚 𝐴𝐵𝐹𝐸 = 𝑡 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝐴𝑃𝐸 = 𝑡𝑗𝑎𝑗𝑎𝑟 𝑔𝑒𝑛𝑗𝑎𝑛𝑔 𝑃𝐵𝐹𝐸 = 𝐸𝑅 𝑉𝑝𝑟𝑖𝑠𝑚𝑎 𝐴𝑃𝐸.𝐷𝑄𝐻 ∶ 𝑉𝑝𝑟𝑖𝑠𝑚𝑎 𝑃𝐵𝐹𝐸.𝑄𝐶𝐺𝐻 = 𝑉 𝑝𝑟𝑖𝑠𝑚𝑎 𝐴𝑃𝐸 .𝐷𝑄𝐻 𝑉 𝑝𝑟𝑖𝑠𝑚𝑎 𝑃𝐵𝐹𝐸 .𝑄𝐶𝐺𝐻 = 𝐿 𝑠𝑒𝑔𝑖𝑡𝑖𝑔𝑎 𝐴𝑃𝐸 . 𝑡 𝑝𝑟𝑖𝑠𝑚𝑎 𝐴𝑃𝐸 .𝐷𝑄𝐻 𝐿 𝑗𝑎𝑗𝑎𝑟 𝑔𝑒𝑛𝑗𝑎𝑛𝑔 𝑃𝐵𝐹𝐸 . 𝑡 𝑝𝑟𝑖𝑠𝑚𝑎 𝑃𝐵𝐹𝐸 .𝑄𝐶𝐺𝐻 = 1 2 . 𝐴𝑃 . 𝐸𝑅 . 𝐸𝐻 𝑃𝐵 . 𝐸𝑅 . 𝐸𝐻 = 1 2 . 𝐸𝐹 . 𝐸𝑅 . 𝐸𝐻 𝐸𝐹 . 𝐸𝑅 . 𝐸𝐻 = 1 2 = 1 ∶ 2 𝐽𝑎𝑑𝑖 𝑝𝑒𝑟𝑏𝑎𝑛𝑑𝑖𝑛𝑔𝑎𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 𝑝𝑟𝑖𝑠𝑚𝑎 𝐴𝑃𝐸. 𝐷𝑄𝐻 𝑑𝑎𝑛 𝑝𝑟𝑖𝑠𝑚𝑎 𝑃𝐵𝐹𝐸. 𝑄𝐶𝐺𝐻 𝑎𝑑𝑎𝑙𝑎𝑕 1 ∶ 2 8. Jawaban : 28 Pembahasan : 𝑀𝑎𝑡𝑒𝑚𝑎𝑡𝑖𝑘𝑎 → 𝐴 , 𝐵 , 𝐶 , 𝐷 𝐼𝑃𝐴 → 𝐴 , 𝐵 , 𝐶 , 𝐸 𝐼𝑃𝑆 → 𝐴 , 𝐷 , 𝐸 , 𝐹 𝐴 𝑑𝑎𝑛 𝐵 𝑏𝑒𝑟𝑠𝑎𝑢𝑑𝑎𝑟𝑎 , 𝑗𝑎𝑑𝑖 𝑗𝑖𝑘𝑎 𝐴 𝑡𝑒𝑟𝑝𝑖𝑙𝑖𝑕 𝑚𝑎𝑘𝑎 𝐵 𝑡𝑖𝑑𝑎𝑘 𝑡𝑒𝑟𝑝𝑖𝑙𝑖𝑕, 𝑏𝑒𝑔𝑖𝑡𝑢 𝑝𝑢𝑙𝑎 𝑠𝑒𝑏𝑎𝑙𝑖𝑘𝑛𝑦𝑎 𝑃𝑒𝑟𝑕𝑎𝑡𝑖𝑘𝑎𝑛 𝑡𝑎𝑏𝑒𝑙 𝑏𝑒𝑟𝑖𝑘𝑢𝑡 ∶ 𝐾𝑒𝑚𝑢𝑛𝑔𝑘𝑖𝑛𝑎𝑛 𝑝𝑒𝑚𝑖𝑙𝑖𝑕𝑎𝑛 𝐵𝑎𝑛𝑦𝑎𝑘 𝑐𝑎𝑟𝑎 𝑝𝑒𝑛𝑦𝑢𝑠𝑢𝑛𝑎𝑛𝑀𝑎𝑡𝑒𝑚𝑎𝑡𝑖𝑘𝑎 𝐴 , 𝐵 , 𝐶 , 𝐷 𝐼𝑃𝐴 𝐴 , 𝐵 , 𝐶 , 𝐸 𝐼𝑃𝑆 𝐴 , 𝐷 , 𝐸 , 𝐹 𝐴 𝐶 𝐷 , 𝐸 , 𝐹 3 𝐸 𝐷 , 𝐹 2
  9. 9. www.siap-osn.blogspot.com @ Maret 2015 Sosuke D. Aizen 2 SMPN 1 Tambelangan Pembahasan OSN Matematika SMP 2015 / Page 9 Download Soal dan Pembahasan OSN Matematika SMP Lainnya di “ www.siap-osn.blogspot.com ” 𝐵 𝐶 𝐷 , 𝐸 , 𝐹 3 𝐸 𝐷 , 𝐹 2 𝐶 𝐴 𝐷 , 𝐸 , 𝐹 3 𝐵 𝐷 , 𝐸 , 𝐹 3 𝐸 𝐴 , 𝐷 , 𝐹 3 𝐷 𝐴 𝐸 , 𝐹 2 𝐵 𝐸 , 𝐹 2 𝐶 𝐴 , 𝐸 , 𝐹 3 𝐸 𝐴 , 𝐹 2 𝑇𝑜𝑡𝑎𝑙 𝑏𝑎𝑛𝑦𝑎𝑘 𝑐𝑎𝑟𝑎 𝑝𝑒𝑛𝑦𝑢𝑠𝑢𝑛𝑎𝑛 28 𝐽𝑎𝑑𝑖 𝑐𝑎𝑟𝑎 𝑦𝑎𝑛𝑔 𝑚𝑢𝑛𝑔𝑘𝑖𝑛 𝑢𝑛𝑡𝑢𝑘 𝑚𝑒𝑚𝑖𝑙𝑖𝑕 𝑤𝑎𝑘𝑖𝑙 𝑠𝑒𝑘𝑜𝑙𝑎𝑕 𝑡𝑒𝑟𝑠𝑒𝑏𝑢𝑡 𝑘𝑒 𝑂𝑆𝑁 𝑆𝑀𝑃 𝑡𝑎𝑕𝑢𝑛 𝑖𝑛𝑖 𝑎𝑑𝑎 𝑠𝑒𝑏𝑎𝑛𝑦𝑎𝑘 28 9. Jawaban : 𝐴 −8, 6 , 𝐵 −8, 10 , 𝐶 −4, 6 Pembahasan : ∆𝐴𝐵𝐶 𝑑𝑖𝑐𝑒𝑟𝑚𝑖𝑛𝑘𝑎𝑛 𝑡𝑒𝑟𝑕𝑎𝑑𝑎𝑝 𝑠𝑢𝑚𝑏𝑢 𝑌, 𝑘𝑒𝑚𝑢𝑑𝑖𝑎𝑛 𝑑𝑖𝑐𝑒𝑟𝑚𝑖𝑛𝑘𝑎𝑛 𝑙𝑎𝑔𝑖 𝑡𝑒𝑟𝑕𝑎𝑑𝑎𝑝 𝑔𝑎𝑟𝑖𝑠 𝑦 = 3 , 𝑠𝑒𝑕𝑖𝑛𝑔𝑔𝑎 𝑕𝑎𝑠𝑖𝑙 𝑝𝑒𝑛𝑐𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑛𝑦𝑎 𝑎𝑑𝑎𝑙𝑎𝑕 ∆𝐴′ 𝐵′ 𝐶′ , 𝑦𝑎𝑖𝑡𝑢 𝐴′ 8, 0 , 𝐵′ 8, −4 , 𝐶′ 4, 0 𝐷𝑒𝑛𝑔𝑎𝑛 𝑑𝑒𝑚𝑖𝑘𝑖𝑎𝑛 𝑢𝑛𝑡𝑢𝑘 𝑚𝑒𝑛𝑑𝑎𝑝𝑎𝑡𝑘𝑎𝑛 𝑘𝑒𝑚𝑏𝑎𝑙𝑖 ∆𝐴𝐵𝐶, 𝑙𝑎𝑘𝑢𝑘𝑎𝑛 𝑙𝑎𝑛𝑔𝑘𝑎𝑕 𝑚𝑢𝑛𝑑𝑢𝑟 𝑦𝑎𝑖𝑡𝑢 ∶ ∆𝐴′ 𝐵′ 𝐶′ 𝑕𝑎𝑟𝑢𝑠 𝑑𝑖𝑐𝑒𝑟𝑚𝑖𝑛𝑘𝑎𝑛 𝑡𝑒𝑟𝑕𝑎𝑑𝑎𝑝 𝑔𝑎𝑟𝑖𝑠 𝑦 = 3 , 𝑘𝑒𝑚𝑢𝑑𝑖𝑎𝑛 𝑑𝑖𝑐𝑒𝑟𝑚𝑖𝑛𝑘𝑎𝑛 𝑡𝑒𝑟𝑕𝑎𝑑𝑎𝑝 𝑠𝑢𝑚𝑏𝑢 𝑌 𝐽𝑎𝑑𝑖 𝑘𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡 𝑡𝑖𝑡𝑖𝑘 − 𝑡𝑖𝑡𝑖𝑘 ∆𝐴𝐵𝐶 𝑎𝑑𝑎𝑙𝑎𝑕 𝐴 −8, 6 , 𝐵 −8, 10 , 𝐶 −4, 6
  10. 10. www.siap-osn.blogspot.com @ Maret 2015 Sosuke D. Aizen 2 SMPN 1 Tambelangan Pembahasan OSN Matematika SMP 2015 / Page 10 Download Soal dan Pembahasan OSN Matematika SMP Lainnya di “ www.siap-osn.blogspot.com ” 10. Jawaban : 61600 Pembahasan : 𝑃𝑢𝑡𝑖𝑕 = 3 𝑀𝑒𝑟𝑎𝑕 = 3 𝐾𝑢𝑛𝑖𝑛𝑔 = 3 𝐻𝑖𝑗𝑎𝑢 = 3 𝐵𝑖𝑟𝑢 = 3 𝐽𝑢𝑚𝑙𝑎𝑕 = 12 𝑀𝑎𝑛𝑖𝑘 − 𝑚𝑎𝑛𝑖𝑘 𝑝𝑎𝑑𝑎 𝑔𝑒𝑙𝑎𝑛𝑔 𝑑𝑖𝑠𝑢𝑠𝑢𝑛 𝑑𝑒𝑛𝑔𝑎𝑛 𝑎𝑡𝑢𝑟𝑎𝑛 𝑑𝑖𝑎𝑛𝑡𝑎𝑟𝑎 2 𝑚𝑎𝑛𝑖𝑘 − 𝑚𝑎𝑛𝑖𝑘 𝑏𝑒𝑟𝑤𝑎𝑟𝑛𝑎 𝑝𝑢𝑡𝑖𝑕 𝑠𝑒𝑙𝑎𝑙𝑢 𝑡𝑒𝑟𝑑𝑎𝑝𝑎𝑡 4 𝑚𝑎𝑛𝑖𝑘 − 𝑚𝑎𝑛𝑖𝑘 𝑏𝑒𝑟𝑤𝑎𝑟𝑛𝑎 𝑠𝑒𝑙𝑎𝑖𝑛 𝑝𝑢𝑡𝑖𝑕 𝐾𝑎𝑟𝑒𝑛𝑎 𝑀𝑎𝑛𝑖𝑘 − 𝑚𝑎𝑛𝑖𝑘 𝑑𝑖𝑠𝑢𝑠𝑢𝑛 𝑑𝑒𝑛𝑔𝑎𝑛 𝑎𝑡𝑢𝑟𝑎𝑛 𝑑𝑖𝑎𝑛𝑡𝑎𝑟𝑎 2 𝑚𝑎𝑛𝑖𝑘 − 𝑚𝑎𝑛𝑖𝑘 𝑏𝑒𝑟𝑤𝑎𝑟𝑛𝑎 𝑝𝑢𝑡𝑖𝑕 𝑠𝑒𝑙𝑎𝑙𝑢 𝑡𝑒𝑟𝑑𝑎𝑝𝑎𝑡 4 𝑚𝑎𝑛𝑖𝑘 − 𝑚𝑎𝑛𝑖𝑘 𝑏𝑒𝑟𝑤𝑎𝑟𝑛𝑎 𝑠𝑒𝑙𝑎𝑖𝑛 𝑝𝑢𝑡𝑖𝑕, 𝑚𝑎𝑘𝑎 𝑚𝑎𝑛𝑖𝑘 − 𝑚𝑎𝑛𝑖𝑘 𝑡𝑒𝑟𝑠𝑒𝑏𝑢𝑡 𝑏𝑒𝑟𝑝𝑜𝑙𝑎 ∶ 𝐷𝑒𝑛𝑔𝑎𝑛 𝑑𝑒𝑚𝑖𝑘𝑖𝑎𝑛 𝑝𝑜𝑠𝑖𝑠𝑖 𝑚𝑎𝑛𝑖𝑘 − 𝑚𝑎𝑛𝑖𝑘 𝑝𝑢𝑡𝑖𝑕 𝑡𝑒𝑡𝑎𝑝, 𝑡𝑒𝑡𝑎𝑝𝑖 𝑢𝑛𝑡𝑢𝑘 𝑚𝑎𝑛𝑖𝑘 − 𝑚𝑎𝑛𝑖𝑘 𝑚𝑒𝑟𝑎𝑕, 𝑘𝑢𝑛𝑖𝑛𝑔, 𝑕𝑖𝑗𝑎𝑢 𝑑𝑎𝑛 𝑏𝑖𝑟𝑢 𝑑𝑎𝑝𝑎𝑡 𝑑𝑖𝑠𝑢𝑠𝑢𝑛 𝑚𝑒𝑛𝑔𝑔𝑢𝑛𝑎𝑘𝑎𝑛 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑠𝑖 𝑑𝑎𝑟𝑖 𝑢𝑛𝑠𝑢𝑟 𝑦𝑎𝑛𝑔 𝑠𝑎𝑚𝑎 ∶ 𝐵𝑎𝑛𝑦𝑎𝑘 𝑝𝑒𝑛𝑦𝑢𝑠𝑢𝑛𝑎𝑛 𝑚𝑎𝑛𝑖𝑘 − 𝑚𝑎𝑛𝑖𝑘 𝑚𝑒𝑟𝑎𝑕, 𝑏𝑖𝑟𝑢, 𝑘𝑢𝑛𝑖𝑛𝑔 𝑑𝑎𝑛 𝑕𝑖𝑗𝑎𝑢 = 12! 3! .3! .3! .3! 𝑇𝑒𝑡𝑎𝑝𝑖 , 𝑠𝑒𝑏𝑢𝑎𝑕 𝑔𝑒𝑙𝑎𝑛𝑔 𝑏𝑖𝑠𝑎 𝑑𝑖 𝑝𝑢𝑡𝑎𝑟 𝑑𝑎𝑛 𝑑𝑖𝑏𝑎𝑙𝑖𝑘 𝑘𝑎𝑛𝑎𝑛 𝑘𝑖𝑟𝑖𝑛𝑦𝑎 (𝑦𝑎𝑛𝑔 𝑘𝑎𝑛𝑎𝑛 𝑏𝑖𝑠𝑎 𝑗𝑎𝑑𝑖 𝑘𝑖𝑟𝑖, 𝑏𝑒𝑔𝑖𝑡𝑢 𝑗𝑢𝑔𝑎 𝑠𝑒𝑏𝑎𝑙𝑖𝑘𝑛𝑦𝑎) , 𝑠𝑒𝑕𝑖𝑛𝑔𝑔𝑎 𝑢𝑛𝑡𝑢𝑘 𝑚𝑒𝑚𝑝𝑒𝑟𝑚𝑢𝑑𝑎𝑕 𝑝𝑒𝑟𝑕𝑖𝑡𝑢𝑛𝑔𝑎𝑛, 𝑔𝑒𝑙𝑎𝑛𝑔 𝑑𝑖𝑘𝑒𝑙𝑜𝑚𝑝𝑜𝑘𝑘𝑎𝑛 𝑗𝑎𝑑𝑖 3 𝑏𝑎𝑔𝑖𝑎𝑛 𝑑𝑒𝑛𝑔𝑎𝑛 𝑎𝑐𝑢𝑎𝑛 𝑚𝑎𝑛𝑖𝑘 − 𝑚𝑎𝑛𝑖𝑘 𝑝𝑢𝑡𝑖𝑕, 𝑠𝑒𝑏𝑎𝑔𝑎𝑖 𝑏𝑒𝑟𝑖𝑘𝑢𝑡 ∶ 𝐵𝑎𝑛𝑦𝑎𝑘 𝑘𝑒𝑚𝑢𝑛𝑔𝑘𝑖𝑛𝑎𝑛 𝑔𝑒𝑙𝑎𝑛𝑔 𝑑𝑖𝑝𝑢𝑡𝑎𝑟 𝑎𝑡𝑎𝑢 𝑑𝑖𝑏𝑜𝑙𝑎𝑘 − 𝑏𝑎𝑙𝑖𝑘 = 3! 𝐴𝑔𝑎𝑟 𝑔𝑒𝑙𝑎𝑛𝑔 𝑦𝑎𝑛𝑔 𝑑𝑖𝑠𝑢𝑠𝑢𝑛 𝑡𝑖𝑑𝑎𝑘 𝑎𝑑𝑎 𝑦𝑎𝑛𝑔 𝑙𝑒𝑏𝑖𝑕 𝑑𝑎𝑟𝑖 𝑠𝑎𝑡𝑢 𝑝𝑜𝑙𝑎 𝑔𝑒𝑙𝑎𝑛𝑔 (𝑎𝑘𝑖𝑏𝑎𝑡 𝑝𝑒𝑚𝑢𝑡𝑎𝑟𝑎𝑛 𝑎𝑡𝑎𝑢 𝑑𝑖𝑏𝑜𝑙𝑎𝑘 − 𝑏𝑎𝑙𝑖𝑘) 𝑚𝑎𝑘𝑎 𝑕𝑎𝑟𝑢𝑠 𝑑𝑖𝑙𝑎𝑘𝑢𝑘𝑎𝑛 𝑝𝑒𝑟𝑕𝑖𝑡𝑢𝑛𝑔𝑎𝑛 𝑠𝑒𝑏𝑎𝑔𝑎𝑖 𝑏𝑒𝑟𝑖𝑘𝑢𝑡 ∶ 𝐵𝑎𝑛𝑦𝑎𝑘𝑛𝑦𝑎 𝑠𝑢𝑠𝑢𝑛𝑎𝑛 𝑔𝑒𝑙𝑎𝑛𝑔 𝑦𝑎𝑛𝑔 𝑚𝑢𝑛𝑔𝑘𝑖𝑛 𝑑𝑖𝑏𝑢𝑎𝑡 = 12! 3! .3! .3! .3! . 3! 𝑏𝑎𝑛𝑦𝑎𝑘 𝑝𝑒𝑚𝑢𝑡𝑎𝑟𝑎𝑛 / 𝑏𝑎𝑙𝑖𝑘𝑎𝑛 = 61600

×