Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions

Solo Hermelin
Solo HermelinRetired since 2013
1
NOTES ON
ROTATIONS
SOLO HERMELIN
INITIAL INTERMEDIATE FINAL
Updated: 3.03.07
Run This
http://www.solohermelin.com
2
ROTATIONS
TABLE OF CONTENT
SOLO
Rotation of a Rigid Body
Mathematical Computation of a Rotation
Rotation Matrix
Computation of the Rotation Matrix
Consecutive Rotations
Decomposition of a Vector in Two Different Frames of Coordinates
Differential Equation of the Rotation Matrices
Computation of the Angular Velocity Vector from .AB←ω

( ) ( )nRtC x
B
A
ˆ,33 θ−=
Computation of and as functions of .AB←ω

td
dθ
θ =
td
nd
n
ˆ
ˆ =
•
Quaternions
Computation of the Rotation Matrix
Definition of the Quaternions
Product of Quaternions
Rotation Description Using the Quaternions
3
ROTATIONS
TABLE OF CONTENT (continue – 1)
SOLO
Rotation as a Multiplication of Two Matrices
Relations Between Quaternions and Euler Angles
Description of Successive Rotations Using Quaternions
Differential Equation of the Quaternions
Computation of as a Function of the Quaternion and its Derivatives
( )
( )t
B
AB←ω

Computation of as a Function of , and their Derivatives( )
( )t
B
AB←ω
 θ nˆ
Differential Equation of the Quaternion Between Two Frames A and B
Using the Angular Velocities of a Third Frame I
Euler Angles
The Piogram
Successive Euler Rotations
321 →→ 231 →→ 312 →→ 132 →→ 213 →→ 123 →→
121 →→ 131 →→ 212 →→ 232 →→ 313 →→ 323 →→
4
ROTATIONS
TABLE OF CONTENT (continue – 2)
SOLO
Cayley-Klein (or Euler) Parameters and Related Quantities
Rotation Matrix in Three Dimensional Space
Euler Parameters
Elementary Features of the 2x2 Rotation Matrix
Gibbs Vector
Differential Equation of Gibbs Vector
References
5
ROTATIONS
Rotation of a Rigid Body
SOLO
23r
31r
12r1
3
2
P
P
1
2
331r
23r
12r
A rigid body in mechanics is defined as a system of mass points subject to the
constraint that the distance between all pair of points remains constant through
the motion.
To define a point P in a rigid body it is enough to specify the distance of this point
to three non-collinear points. This means that a rigid body is completely defined
by three of its non-collinear points. Since each point, in a three dimensional space
is defined by three coordinates, those three points are defined by 9 coordinates.
But the three points are constrained by the three distances between them:
313123231212 && constrconstrconstr ===
Therefore a rigid body is completely defined by 9 – 3 = 6 degrees of freedom.
6
ROTATIONS
Rotation of a Rigid Body (continue – 1)
SOLO
We have the following theorems about a rigid body:
Euler’s Theorem (1775)
The most general displacement of a rigid body with one point fixed is equivalent to
a single rotation about some axis through that point.
Chasles’ Theorem (1839)
The most general displacement of a rigid body is a translation plus a rotation.
Leonhard Euler 1707-1783
Michel Chasles 1793-1880
7
ROTATIONS
Rotation of a Rigid Body (continue – 2)
SOLO
Proof of Euler’s Theorem
O – Fixed point in the rigid body
A,B – Two point in the rigid body at equal
distance r from O. 





== rOBOA
__________
A’,B’ – The new position of A,B respectively.
Since the body is rigid rOBOA ==
__________
''
Therefore A,B, A’,B’ are one a sphere
with center O.
α – plane passing through O such that A and A’ are at the same distance from it.
β – plane passing through O such that B and B’ are at the same distance from it.
PP’ – Intersection of the planes andα β
The two spherical triangles APB and A’PB’ are equal.
The arcs AA’ and BB’ are equal. That means that rotation around PP’ that
moves A to A’ will move B to B’.
q.e.d.
8
ROTATIONS
Mathematical Computation of a Rotation
SOLO
A
B
C
O
θ
φφ
nˆ
v

1v

We saw that every rotation is defined by three parameters:
• Direction of the rotation axis , defined by two parameters.nˆ
• The angle of rotation , defines the third parameter.θ
Let rotate the vector around by a large angle , to
obtain the new vector
→
= OAv

nˆ θ→
=OBv1

From the drawing we have:
→→→→
++== CBACOAOBv1

vOA

=
→
( ) ( )θcos1ˆˆ −××=
→
vnnAC
 Since direction of is: ( ) ( ) φν sinˆˆ&ˆˆ =×××× vnnvnn

and it’s length is:
AC
→
( )θφ cos1sin −v
( ) θsinˆ vnCB

×=
→
Since has the direction and the
absolute value
CB
→
vn

׈
θφsinsinv
( ) ( ) ( ) θθ sinˆcos1ˆˆ1 vnvnnvv

×+−××+=
9
ROTATIONS
Computation of the Rotation Matrix
SOLO
We have two frames of coordinates A and B defined
by the orthogonal unit vectors and{ }AAA zyx ˆ,ˆ,ˆ { }BBB zyx ˆ,ˆ,ˆ
The frame B can be reached by rotating the A frame
around some direction by an angle .nˆ θ
We want to find the Rotation Matrix
that describes this rotation from A to B.
( )θ,ˆ33 nRC x
B
A =
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) θθ
θθ
θθ
sinˆˆcos1ˆˆˆˆˆ
sinˆˆcos1ˆˆˆˆˆ
sinˆˆcos1ˆˆˆˆˆ
AAAB
AAAB
AAAB
znznnxz
ynynnxy
xnxnnxx
×+−××+=
×+−××+=
×+−××+=
Let write those equations in matrix form.
( )
[ ]( )
[ ]( )
( ) [ ]( )










×+










−××+










=
0
0
1
sinˆ
0
0
1
cos1ˆˆ
0
0
1
ˆ θθ
AAAA
B nnnx
[ ]( )










−
−
−
=×
0
0
0
ˆ
xy
xz
yz
A
nn
nn
nn
n [ ] 0ˆ =×ntrace
Rotation Matrix
10
ROTATIONS
Computation of the Rotation Matrix (continue – 1)
SOLO
( )
[ ]( )
[ ]( )
( ) [ ]( )










×+










−××+










=
0
0
1
sinˆ
0
0
1
cos1ˆˆ
0
0
1
ˆ θθ
AAAA
B nnnx
( )
[ ]( )
[ ]( )
( ) [ ]( )










×+










−××+










=
0
1
0
sinˆ
0
1
0
cos1ˆˆ
0
1
0
ˆ θθ
AAAA
B nnny
( )
[ ]( )
[ ]( )
( ) [ ]( )










×+










−××+










=
1
0
0
sinˆ
1
0
0
cos1ˆˆ
1
0
0
ˆ θθ
AAAA
B nnnz
( )
[ ] [ ]( )
[ ]( )
( ) [ ]( )
{ } ( )A
A
A
B
AAA
x
A
B xCnnnIx ˆ
0
0
1
sinˆcos1ˆˆˆ 33 =










×+−××+= θθ
( )
[ ] [ ]( )
[ ]( )
( ) [ ]( )
{ } ( )A
A
A
B
AAA
x
A
B yCnnnIy ˆ
0
1
0
sinˆcos1ˆˆˆ 33 =










×+−××+= θθ
( )
[ ] [ ]( )
[ ]( )
( ) [ ]( )
{ } ( )A
A
A
B
AAA
x
A
B zCnnnIz ˆ
1
0
0
sinˆcos1ˆˆˆ 33 =










×+−××+= θθ
Rotation Matrix (continue – 1)
11
ROTATIONS
Computation of the Rotation Matrix (continue – 2)
SOLO
Ax
Az
Ay
Bz
By
Bx

O
nˆ
θ
θ
θ
θ
[ ] [ ]( )
[ ]( )
( ) [ ]( )
{ } ( )θθθ ,ˆsinˆcos1ˆˆ 3333 nRnnnICC x
AAA
x
A
B
A
B
=×+−××+==↑
The matrix has the following properties:[ ]( )A
n׈
[ ]( )
{ } [ ]( )ATA
nn ×−=× ˆˆ
[ ]( )
[ ]( )
=












−−
−−
−−
=










−
−
−










−
−
−
=××
22
22
22
0
0
0
0
0
0
ˆˆ
yxzyzx
zyzxyx
zxyxyz
xy
xz
yz
xy
xz
yz
AA
nnnnnn
nnnnnn
nnnnnn
nn
nn
nn
nn
nn
nn
nn
T
x
zzyzx
zyyyx
zxyxx
nnI
nnnnn
nnnnn
nnnnn
ˆˆ
000
010
001
33
2
2
2
+−=












+










−= [ ]( )
[ ]( )
( ) 213ˆˆ −=+−=××
AA
nntrace
[ ]( )
[ ] [ ] nn
nn
nn
nn
nnnnn
xy
xz
yz
zyx
AT
ˆˆ000
0
0
0
ˆˆ ×==










−
−
−
=×
[ ]( )
[ ]( )
[ ]( )
( )[ ]( )
[ ]( )
[ ]( )
[ ]( )AATAAT
x
AAA
nnnnnnnnInnn ×−=×+×−=×+−=××× ˆˆˆˆˆˆˆˆˆˆˆ 22
[ ]( )
[ ]( )
[ ]( )
[ ]( )
[ ]( )
[ ]( )
( )T
x
AAAAAA
nnInnnnnn ˆˆˆˆˆˆˆˆ 33 +−−=××−=××××
skew-symmetric
Rotation Matrix (continue – 2)
12
ROTATIONS
Computation of the Rotation Matrix (continue – 3)
SOLO
Ax
Az
Ay
Bz
By
Bx

O
nˆ
θ
θ
θ
θ
[ ] [ ] [ ]( )
( ) [ ]( )
( ) ( ) [ ]( )
( ){ }
[ ] [ ]( )
[ ]( )
( ) [ ]( )
{ }
( ) ( ) B
Axx
AAA
x
TATATA
x
TA
B
CnRnR
nnnI
nnnIC
=−=−=
×−−××+=
×+−××+=
θθ
θθ
θθ
,ˆ,ˆ
sinˆcos1ˆˆ
sinˆcos1ˆˆ
3333
33
33
Note
The last term can be writen in matrix form as
Therefore
In the same way
End Note
In fact is the matrix representation of the vector product:[ ][ ]vnn

×× ˆˆ
( ) ( )vInnvvnn x
T 
33ˆˆˆˆ −→−⋅
( ) ( ) ( ) ( ) vvnnnnvvnnvnn

−⋅=⋅−⋅=×× ˆˆˆˆˆˆˆˆ
[ ][ ] T
x nnInn ˆˆˆˆ 33 +−=××
( )[ ] ( )[ ] [ ][ ][ ] [ ]×−=×××→×−=−⋅×=××× nnnnvnvvnnnvnnn ˆˆˆˆˆˆˆˆˆˆˆ

( )[ ]{ } ( ) [ ][ ][ ][ ] [ ][ ]××−=××××→××−=×××× nnnnnnvnnvnnnn ˆˆˆˆˆˆˆˆˆˆˆˆ

Rotation Matrix (continue – 3)
13
ROTATIONS
Computation of the Rotation Matrix (continue – 4)
SOLO
Ax
Az
Ay
Bz
By
Bx

O
nˆ
θ
θ
θ
θ
[ ] [ ]( )
( ) [ ]( )
( ) ( ) [ ]( )
( ){ }
[ ] [ ]( )
[ ]( )
( )( ) [ ]( )
( ) θθ
θθ
θθ
sin0cos123
sinˆcos1ˆˆ
sinˆcos1ˆˆ
33
33
−−−=
=×−−××+=
=×+−××+=
AAA
x
TATATA
x
B
A
ntracenntraceItrace
nnnItracetraceC
Therefore θcos21+=
B
ACtrace
Let compute the trace (sum of the diagonal components
of a matrix) of
B
AC
Also we have
[ ] [ ]( )
( ) [ ]( )
( ) ( ) [ ]( )
( ){ }
[ ] [ ]( )( ) [ ]( )
{ }
[ ] ( ) [ ]( )
{ }=×−−+=
=×−−+−+=
=×+−××+=
θθθ
θθ
θθ
sinˆcos1ˆˆcos
sinˆcos1ˆˆ
sinˆcos1ˆˆ
33
3333
33
AT
x
AT
xx
TATATA
x
B
A
nnnI
nnnII
nnnIC
( ) θθθ sin
0
0
0
cos1cos
000
010
001
2
2
2










−
−
−
−−












+










=
xy
xz
yz
zzyzx
zyyyx
zxyxx
nn
nn
nn
nnnnn
nnnnn
nnnnn
Rotation Matrix (continue – 4)
14
ROTATIONS
Computation of the Rotation Matrix (continue – 5)
SOLO
Ax
Az
Ay
Bz
By
Bx

O
nˆ
θ
θ
θ
θ
Therefore we have
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) 











−+−−+−
+−−+−−
−−+−−+
=
θθθθθθ
θθθθθθ
θθθθθθ
cos1cossincos1sincos1
sincos1cos1cossincos1
sincos1sincos1cos1cos
2
2
2
zxzyyzx
xzyyzyx
yzxzyxx
B
A
nnnnnnn
nnnnnnn
nnnnnnn
C
We get
( )1
2
1
cos −=
B
AtraceCθ two solutions for θ
If ; i.e. we obtain0sin ≠θ πθ ,0≠
( ) ( )[ ] ( )θsin2/2,33,2
B
A
B
Ax CCn −=
( ) ( )[ ] ( )θsin2/3,11,3
B
A
B
Ay CCn −=
( ) ( )[ ] ( )θsin2/1,22,1
B
A
B
Az CCn −=
Rotation Matrix (continue – 5)
15
ROTATIONS
Consecutive Rotations
SOLO
- Perform first a rotation of the vector , according to the Rotation Matrix
to the vector .
v

( )1133 ,ˆ θnR x
1v

- Perform a second a rotation of the vector , according to the Rotation Matrix
to the vector .
1v

( )2233 ,ˆ θnR x
2v

( )vnRv x

11331 ,ˆ θ=
( ) ( ) ( ) ( )vnRvnRnRvnRv xxxx

θθθθ ,ˆ,ˆ,ˆ,ˆ 3311332233122332 ===
The result of those two consecutive rotation is a rotation defined as:
( ) ( ) ( )1133223333 ,ˆ,ˆ,ˆ θθθ nRnRnR xxx =
Let interchange the order of rotations, first according to the Rotation Matrix
and after that according to the Rotation Matrix .
( )2233 ,ˆ θnR x
( )1133 ,ˆ θnR x
The result of those two consecutive rotation is a rotation defined as:
( ) ( )22331133 ,ˆ,ˆ θθ nRnR xx
Since in general, the matrix product is not commutative
( ) ( ) ( ) ( )2233113311332233 ,ˆ,ˆ,ˆ,ˆ θθθθ nRnRnRnR xxxx ≠
Therefore, in general, the consecutive rotations are not commutative.
Rotation Matrix (continue – 6)
16
ROTATIONSSOLO
INITIAL INTERMEDIATE FINAL
Consecutive Rotations of a DiceRotation Matrix (continue – 7)
17
ROTATIONS
Decomposition of a Vector in Two Different Frames of Coordinates
SOLO
We have two frames of coordinate systems A and B, with the same origin O.
We can reach B from A by performing a rotation.
Let describe the vector in both frames.v

BzBByBBxBAzAAyAAxA zvyvxvzvyvxvv

111111 ++=++=
( )










=
zA
yA
xA
A
v
v
v
v
 ( )










=
zB
yB
xB
B
v
v
v
v

&
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) BBABBABBAA
BBABBABBAA
BBABBABBAA
zzzyyzxxzz
zzyyyyxxyy
zzxyyxxxxx
ˆˆˆˆˆˆˆˆˆˆ
ˆˆˆˆˆˆˆˆˆˆ
ˆˆˆˆˆˆˆ1ˆˆ
⋅+⋅+⋅=
⋅+⋅+⋅=
⋅+⋅+⋅=

( ) ( ) ( )[ ]
( ) ( ) ( )[ ]
( ) ( ) ( )[ ] zABBABBABBA
yABBABBABBA
xABBABBABBA
vzzzyyzxxz
vzzyyyyxxy
vzzxyyxxxxv
ˆˆˆˆˆˆˆˆˆ
ˆˆˆˆˆˆˆˆˆ
ˆˆˆˆˆˆˆ1ˆ
⋅+⋅+⋅+
⋅+⋅+⋅+
⋅+⋅+⋅=

from which
Rotation Matrix (continue – 8)
18
ROTATIONS
Decomposition of a Vector in Two Different Frames of Coordinates (continue – 1)
SOLO
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) 



















⋅⋅⋅
⋅⋅⋅
⋅⋅⋅
=










zA
yA
xA
BABABA
BABABA
BABABA
zB
yB
xB
v
v
v
zzzyzx
yzyyyx
xzxyxx
v
v
v
ˆˆˆˆˆˆ
ˆˆˆˆˆˆ
ˆˆˆˆˆˆ
( ) ( )AB
A
B
vCv

=
where is the Transformation Matrix
(or Direction Cosine Matrix – DCM) from
frame A to frame B.
B
AC
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )









⋅⋅⋅
⋅⋅⋅
⋅⋅⋅
==↑
BABABA
BABABA
BABABA
B
A
B
A
zzzyzx
yzyyyx
xzxyxx
CC
ˆˆˆˆˆˆ
ˆˆˆˆˆˆ
ˆˆˆˆˆˆ
:
In the same way ( )
( ) ( ) ( )BA
B
BB
A
A
vCvCv

==
−1
therefore
( ) 1−
=
B
A
A
B CC
Rotation Matrix (continue – 9)
19
ROTATIONS
Decomposition of a Vector in Two Different Frames of Coordinates (continue – 2)
SOLO
( ) ( ) ( )
[ ] ( ) ( )
[ ] ( ) ( ) ( )ATAAB
A
TB
A
TAAB
A
TAB
A
BTB
vvvCCvvCvCvvv

====2
Since the scalar product is independent of the frame of
coordinates, we have
[ ] [ ] [ ] 1−
=→=
B
A
TB
A
B
A
TB
A CCICC
[ ]
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) 









=
























=
100
010
001
3,33,23,1
2,32,22,1
1,31,21,1
3,32,31,3
3,22,21,2
3,12,11,1
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
TB
A
CCC
CCC
CCC
CCC
CCC
CCC
CC
or ( ) ( )



=≠
==
==∑
= 3,2,10
3,2,11
,,
3
1 jji
iji
kjCkiC ij
k
B
A
B
A δ
Those are 9 equations in , but by interchanging i with j we get the same
conditions, therefore we have only 6 independent equations.
( ) 3,2,1,, =jijiC
B
A
We see that the Rotation Matrix is ortho-normal (having real coefficients and the
rows/columns are orthogonal to each other and of unit absolute value.
Rotation Matrix (continue – 10)
This means that the relation between the two coordinate systems is defined by
9 – 6 = 3 independent parameters.
20
ROTATIONS
Differential Equations of the Rotation Matrices
SOLO
We want to develop the differential equation of the Rotation Matrix as a function of
the Angular Velocity of the Rotation.
Let define by:
-the Rotation Matrix that defines a frame of coordinates B at the time t relative
to some frame A.
( )tC
B
A
-the Rotation Matrix that defines the frame of coordinates B at the time t+Δt
relative to some frame A.
( )ttC
B
A ∆+
( )φω ∆−,ˆ33xR -the Rotation Matrix from the frame of coordinates B at the time t to B at time
t+Δt relative to some frame A.
( ) ( ) ( )tCRttC
B
Ax
B
A φω ∆−=∆+ ,ˆ33
and
( ) [ ] [ ] [ ] ( ) [ ]{ }
[ ] [ ] [ ] [ ]











 ∆





 ∆
×−




 ∆
××+=
∆×−∆−××+=∆−
2
cos
2
sinˆ2
2
sinˆˆ2
sinˆcos1ˆˆ,ˆ
2
33
3333
φφ
ω
φ
ωω
φωφωωφω
x
xx
I
IR
Rotation Matrix (continue – 11)
21
ROTATIONS
Differential Equations of the Rotation Matrices (continue – 1)
SOLO
Let differentiate the Rotation Matrix
( ) ( )
( ) ( ) ( ) ( )
( )
( )
( )
( )
( )tC
dt
dIR
tC
t
IR
tC
t
IR
t
tCtCR
t
tCttC
t
C
dt
dC
B
A
xxB
A
xx
t
B
A
xx
t
B
A
B
Ax
t
B
A
B
A
t
B
A
t
B
A
φ
φ
φωφ
φ
φω
φωφω
θ 





∆
−∆−
=





∆
∆
∆
−∆−
=






∆
−∆−
=
∆
−∆−
=
∆
−∆+
=
∆
∆
=
→∆→∆
→∆→∆
→∆→∆
3333
0
3333
0
3333
0
33
0
00
,ˆ
lim
,ˆ
lim
,ˆ
lim
,ˆ
lim
limlim
( ) [ ][ ] [ ] [ ]×−=



















 ∆





 ∆





 ∆
×−




 ∆





 ∆





 ∆
××=
∆
−∆−
→∆→∆
ω
φ
φ
φ
ω
φ
φ
φ
ωω
φ
φω
θθ
ˆ
2
cos
2
2
sin
ˆ
2
2
2
sin
ˆˆlim
,ˆ
lim 2
2
0
3333
0
xx IR
and
Therefore
( ) [ ] ( )tC
dt
d
dt
tdC B
A
B
A φ
ω ×−= ˆ
Rotation Matrix (continue – 12)
22
ROTATIONS
Differential Equations of the Rotation Matrices (continue – 2)
SOLO
The final result of the Rotation Matrix differentiation is:
Since defines the unit vector of rotation and the rotation rate from B at time t
to B at time t+Δt, relative to A, then is the angular velocity vector of the frame
B relative to A, at the time t
ωˆ
dt
dφ
ω
φ
ˆ
dt
d
( )
ω
φ
ω ˆ
dt
dB
AB =←

( )
( )[ ]( )
( )tCt
dt
tdC B
A
B
AB
B
A
×−= ←ω

By changing indixes A and B we obtain
( ) ( )[ ] ( )
( )tCt
dt
tdC A
B
A
BA
A
B
×−= ←ω

Rotation Matrix (continue – 13)
23
ROTATIONS
Differential Equations of the Rotation Matrices (continue – 3)
SOLO
Let find the relation between and[ ]( )B
AB ×←ω

[ ]( )A
AB ×←ω

For any vector let perform the following computationsv

[ ]( ) ( )
[ ]( )
[ ]( )A
AB
B
A
B
AB
BB
AB vCvv

×=×=× ←←← ωωω
[ ]( ) ( )
[ ]( ) ( )
[ ]( ) ( )BA
B
A
AB
B
A
AB
A
A
B
A
AB
B
A
AA
AB
B
A vCCvCCCvC

×=×=×= ←←← ωωω
Since this is true for any vector we havev

[ ]( )
[ ]( ) A
B
A
AB
B
A
B
AB CC ×=× ←← ωω

Pre-multiplying by and post-multiplying by we get:
A
BC
B
AC
[ ]( )
[ ]( ) B
A
B
AB
A
B
A
AB CC ×=× ←← ωω

Rotation Matrix (continue – 14)
24
ROTATIONS
Differential Equations of the Rotation Matrices (continue – 4)
SOLO
Let differentiate the equation 33x
A
B
B
A ICC =
to obtain
[ ] ( )
[ ] ( )
0=+×−=+×−=+ ←←
dt
dC
C
dt
dC
CCC
dt
dC
CC
dt
dC
A
BB
A
B
AB
A
BB
A
A
B
B
A
B
AB
A
BB
A
A
B
B
A
ωω

Post-multiplying by we get
A
BC
[ ] ( )
[ ] ( )
[ ] ( ) A
B
A
AB
A
B
B
A
B
AB
A
B
B
AB
A
B
A
B
CCCCC
dt
dC
×=×=×= ←←← ωωω

We obtained for the differentiation of the Rotation Matrix
( ) ( )[ ] ( )
( ) ( )[ ] ( )
( ) ( ) ( )[ ] ( )B
AB
A
B
A
B
A
AB
A
B
A
BA
A
B
ttCtCttCt
dt
tdC
×=×=×−= ←←← ωωω

Note
We can see that ( )[ ] ( )
( )[ ] ( )
( ) ( )tttt ABBA
A
AB
A
BA ←←←← =−⇒×=×− ωωωω

End Note
Rotation Matrix (continue – 15)
25
ROTATIONS
Differential Equations of the Rotation Matrices (continue – 5)
SOLO
Suppose that we have a third frame of coordinates I (for example inertial) and we
have the angular velocity vectors of frames A and B relative to I.
We have
[ ]( ) B
I
B
IB
B
I
C
dt
dC
×−= ←ω

[ ]( ) A
I
A
IA
A
I
C
dt
dC
×−= ←ω
 A
I
B
A
B
I CCC =
dt
dC
CC
dt
dC
dt
dC
A
IB
A
A
I
B
A
B
I
+=
[ ]( )
[ ]( ) I
A
A
I
A
IA
B
A
I
A
B
I
B
IB
I
A
A
IB
A
I
A
B
I
B
A
CCCCCC
dt
dC
CC
dt
dC
dt
dC
×+×−=−= ←← ωω

or
From which we get:
[ ]( )
[ ]( )A
IA
B
A
B
A
B
IB
B
A
CC
dt
dC
×+×−= ←← ωω

Rotation Matrix (continue – 16)
26
ROTATIONSSOLO
From the equation
Computation of the Angular Velocity Vector from .AB←ω

( ) ( )nRtC x
B
A
ˆ,33 θ−=
( ) ( )[ ]( )
( )tCt
dt
tdC B
A
B
AB
B
A
×−= ←ω

we obtain
( )[ ]( ) ( ) ( )[ ]TB
A
B
AB
AB tC
dt
tdC
t −=×←ω

Since the Rotation Matrix is defined also by and
( ) [ ] ( ) [ ]{ }θθθθ sinˆcos1ˆˆcosˆ, 3333 ×−−+=−= × nnnInRC T
x
B
A
( )tC
B
A nˆθ
we can compute as function of and their derivativesnˆθAB←ω

td
dθ
θ =
td
nd
n
ˆ
ˆ =
•
(this is a long procedure described in the complementary work “Notes on
Rotations”, and a simpler derivation will be given later, we give here the
final result)
[ ] ( ) θθθω sinˆcos1ˆˆˆ
••
← +−×−= nnnnAB

Rotation Matrix (continue – 17)
27
ROTATIONSSOLO
Computation of and as functions of .AB←ω

td
dθ
θ =
td
nd
n
ˆ
ˆ =
•
Let pre-multiply the equation by and use
T
nˆ[ ] ( ) θθθω sinˆcos1ˆˆˆ
••
← +−×−= nnnnAB

[ ] 0ˆˆ,0ˆˆ,1ˆˆ ==×=
•
nnnnnn TTT to obtain
[ ] ( ) AB
TTTT
AB
T
nnnnnnnnn ←
••
← =→+−×−= ωθθθθω

ˆsinˆˆcos1ˆˆˆˆˆˆ
Let pre-multiply the equation by and use[ ]×nˆ[ ] ( ) θθθω sinˆcos1ˆˆˆ
••
← +−×−= nnnnAB

[ ] [ ][ ] ( )
•••
−=−=××=× nnInnnnnnn x
T
ˆˆˆˆˆˆˆ,0ˆˆ 33
to obtain
[ ] [ ] [ ][ ] ( ) [ ] ( ) [ ] θθθθθω sinˆˆcos1ˆsinˆˆcos1ˆˆˆˆˆˆ
••••
← ×+−=×+−××−×=× nnnnnnnnnnn AB

Let pre-multiply the equation by[ ] ( ) [ ] θθω sinˆˆcos1ˆˆ
••
← ×+−=× nnnn AB

[ ]×nˆ
[ ][ ] [ ] ( ) [ ][ ] [ ] ( )θθθθω cos1ˆˆsinˆsinˆˆˆcos1ˆˆˆˆ −×+−=××+−×=××
••••
← nnnnnnnnnn AB

Rotation Matrix (continue – 18)
28
ROTATIONS
Computation of and as functions of (continue – 1)
SOLO
AB←ω

td
dθ
θ =
td
nd
n
ˆ
ˆ =
•
We have two equations:
( ) [ ] [ ] ABnnnn ←
••
×=×+− ωθθ

ˆsinˆˆcos1ˆ
[ ] ( ) [ ][ ] ABnnnnn ←
••
××=−×+− ωθθ

ˆˆcos1ˆˆsinˆ
with two unknowns and
•
nˆ [ ]
•
× nn ˆˆ
From those equations we get:
( )[ ] [ ] ( ) [ ][ ] θωθωθθ sinˆˆcos1ˆsincos1ˆ 22
ABAB nnnn ←←
•
××−−×=+−

or
( ) [ ] ( ) [ ][ ] θωθωθ sinˆˆcos1ˆcos1ˆ2 ABAB nnnn ←←
•
××−−×=−

Finally we obtain:
AB
T
n ←= ωθ
 ˆ
[ ] [ ][ ] ABnnnn ←
•












××−×= ω
θ 
2
cotˆˆˆ
2
1
ˆ
Rotation Matrix (continue – 19)
29
ROTATIONS
Quaternions
SOLO
The quaternions method was introduced by Hamilton in
1843. It is based on Euler Theorem (1775) that states:
The most general displacement of a rigid body with one point fixed is equivalent to
a single rotation about some axis through that point.
Therefore every rotation is defined by three parameters:
• Direction of the rotation axis , defined by two parameters
• The angle of rotation , defines the third parameter
nˆ
θ
William Rowan Hamilton
1805 - 1865
( ) ( ) ( ) θθ sinˆcos1ˆˆ1 vnvnnvv

×+−××+=
The rotation of around by angle is given by:nˆ θv

A
B
C
O
θ
φφ
nˆ
v

1v

that can be writen
( )[ ] ( ) ( ) θθ sinˆcos1ˆˆ1 vnvvnnvv

×+−−⋅+=
or
( ) ( ) ( ) θθθ sinˆcos1ˆˆcos1 vnvnnvv

×+−⋅+=
30
ROTATIONS
Quaternions (continue – 1)
SOLO
Computation of the Rotation Matrix
We found the Rotation Matrix
that describes this rotation from A to B.
( )θ,ˆ33 nRC x
B
A =
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) θθ
θθ
θθ
sinˆˆcos1ˆˆˆˆˆ
sinˆˆcos1ˆˆˆˆˆ
sinˆˆcos1ˆˆˆˆˆ
AAAB
AAAB
AAAB
znznnxz
ynynnxy
xnxnnxx
×+−××+=
×+−××+=
×+−××+=
( )
[ ] [ ]( )
[ ]( )
( ) [ ]( )
{ } ( )A
A
A
B
AAA
x
A
B xCnnnIx ˆ
0
0
1
sinˆcos1ˆˆˆ 33 =










×+−××+= θθ
( )
[ ] [ ]( )
[ ]( )
( ) [ ]( )
{ } ( )A
A
A
B
AAA
x
A
B yCnnnIy ˆ
0
1
0
sinˆcos1ˆˆˆ 33 =










×+−××+= θθ
( )
[ ] [ ]( )
[ ]( )
( ) [ ]( )
{ } ( )A
A
A
B
AAA
x
A
B zCnnnIz ˆ
1
0
0
sinˆcos1ˆˆˆ 33 =










×+−××+= θθ
or
from which
[ ] [ ]( )
[ ]( )
( ) [ ]( )
{ } ( )θθθ ,ˆsinˆcos1ˆˆ 3333 nRnnnICC x
AAA
x
A
B
A
B
=×+−××+==↑
31
ROTATIONS
Quaternions (continue – 2)
SOLO
Definition of the Quaternions
The quaternions (4 parameters) were defined by
Hamilton as a generalization of the complex numbers
( ) 32100 , qkqjqiqqq

+++== ρ
( )2/cos0 θ=q
( ) nˆ2/sin θρ =

( ) ( ) ( ) zyx nqnqnq 2/sin&2/sin&2/sin 111 θθθ ===
where satisfy the relations:kji

,,
1−=⋅=⋅=⋅ kkjjii

kijji

=⋅−=⋅ ijkkj

=⋅−=⋅ jkiik

=⋅−=⋅
1−=⋅⋅ kji

the complex conjugate of is defined asq
( ) 32100
*
, qkqjqiqqq

−−−=−= ρ
32
ROTATIONS
Quaternions (continue – 3)
SOLO
Product of Quaternions
Product of two quaternions andAq Bq
( )( ) ( )( )3210321000 ,, BBBBAAAABBAABA qkqjqiqqkqjqiqqqqq

++++++== ρρ
( ) ( ) ( )3210321033221100 AAABBBBABABABABA qkqjqiqqkqjqiqqqqqqqqq

++++++−−−=
( ) ( ) ( )122131132332 BABABABABABA qqqqkqqqqjqqqqi −+−+−+

therefore
( )( ) ( ) ( )[ ]BAABBABABABBAABA qqqqqqqq ρρρρρρρρ

×++⋅−== 000000 ,,,
Let use this expression to find
( )( ) ( )( ) 2
3
2
2
2
1
2
0
222
000
*
00
*
1ˆˆ
2
sin
2
cos,,,, qqqqnnqqqqqqqqq +++==⋅





+





=⋅+=−==−=
θθ
ρρρρρρ

The quaternion product can be writen in matrix form as:
[ ] [ ] 













×−
−
=













×+
−
==





=
A
A
BxBB
T
BB
B
B
AxAA
T
AA
BA
q
Iq
qq
Iq
q
qq
q
q
ρρρ
ρ
ρρρ
ρ
ρ





0
330
00
330
00
1−=⋅⋅=⋅=⋅=⋅ kjikkjjii

kijji

=⋅−=⋅ ijkkj

=⋅−=⋅ jkiik

=⋅−=⋅
33
ROTATIONS
Quaternions (continue – 4)
SOLO
Rotation Description Using the Quaternions
Let compute the expression:
( )
( ) ( )
( )( ) ( ) ( ) ( )
( )( )
( ) ( ) ( )
( )[ ( )
( ) ( ) ( ) ( ) ( )
( ) ]ρρρρρρρρρρ
ρρρρρ


××−×+×−+⋅⋅×+⋅−⋅=
×−⋅=−=
AAAAAAAA
AAAAA
vvqvqvqvvvqqv
qvvqvqvqqvq
00
2
000
0000
*
,
,,,,0,
( )
( ) ( )
( ) ( )
( ) ( ) ( ) ( ) ( )
( ){ }
( )
( ) ( )
( )[ ] ( ) ( )
( ){ }
( ) [ ] [ ][ ]{ } ( )
( )A
AAAA
AAAAAAA
vqq
vvqqvv
vvqvqvqvvv



××+×−⋅+=
××+×−+⋅+⋅××=
××−×+×−+⋅+⋅−⋅=
ρρρρρ
ρρρρρρρ
ρρρρρρρρρρ
22,0
2,0
,0
0
2
0
0
2
0
00
2
0
Using the relations:
( )
( )
[ ][ ] ( )[ ][ ] ( )[ ][ ]
[ ] ( ) ( )[ ] [ ]





×=×=×
××−=××=××
=⋅+
→



=
=
nnq
nnnn
q
n
q
ˆsinˆ2/sin2/cos22
ˆˆcos1ˆˆ2/sin22
1
ˆ2/sin
2/cos
0
2
2
0
0
θθθρ
θθρρ
ρρ
θρ
θ




and ( ) ( )
[ ] [ ]( )
[ ]( )
( ) [ ]( )
{ } ( )AAAA
x
AB
A
B
vnnnIvCv

θθ sinˆcos1ˆˆ33 ×−−××+==
we obtain
( ) ( )
( ) ( )
( ) ( )
( )( ) [ ] [ ][ ]{ } ( )
( )AAABB
vqqvqqvqvv

××+×−=−=== ρρρρρ 221,0,,0,,0 000
*
34
ROTATIONS
Quaternions (continue – 5)
SOLO
Rotation Description Using the Quaternions (continue – 1)
Using the fact that we obtain:
[ ] [ ] [ ][ ]××+×−= ρρρ

22 033 qIC x
B
A










−
−
−










−
−
−
+










−
−
−
−










=
0
0
0
0
0
0
2
0
0
0
2
100
010
001
12
13
23
12
13
23
12
13
23
0
qq
qq
qq
qq
qq
qq
qq
qq
qq
q












−−
−−
−−
+










−
−
−
+










=
2
2
2
13231
32
2
1
2
321
3121
2
2
2
3
1020
1030
2030
2222
2222
2222
022
202
220
100
010
001
qqqqqq
qqqqqq
qqqqqq
qqqq
qqqq
qqqq












−−−+
+−−−
−+−−
=
2
2
2
110323120
3210
2
1
2
33021
20312130
2
2
2
3
2212222
2222122
2222221
qqqqqqqqqq
qqqqqqqqqq
qqqqqqqqqq
1
2
3
2
2
2
1
2
0 =+++ qqqq
( ) ( )
( ) ( )
( ) ( ) 











+−−−+
+−+−−
−+−−+
=
2
3
2
2
2
1
2
010323120
3210
2
3
2
2
2
1
2
03021
20312130
2
3
2
2
2
1
2
0
22
22
22
qqqqqqqqqqqq
qqqqqqqqqqqq
qqqqqqqqqqqq
C
B
A
35
ROTATIONS
Quaternions (continue – 6)
SOLO
Rotation as a Multiplication of Two Matrices
[ ] [ ] [ ][ ]××+×−= ρρρ

22 033 qIC x
B
A
( )[ ] [ ] [ ][ ]××+×−+= ρρρρρ

22 033
2
0 qIq x
T
[ ] [ ] [ ][ ] [ ] [ ][ ]××++××+×−= ρρρρρρρ

33033
2
0 2 x
T
x IqIq
[ ] [ ]( ) [ ] [ ]( ) [ ] [ ][ ]××++×−×−= ρρρρρρ

33330330 x
T
xx IIqIq
For any vector we can write ( ) ( ) ( )ρρρρρρ

⋅−⋅=×× aaaa

or in matrix notation
[ ][ ] [ ]( ) [ ] [ ] T
x
T
x
T
x
TT
IIaIa ρρρρρρρρρρρρ

≡+⇒−=×× 333333
Therefore we have
[ ] [ ]( ) [ ] [ ]( ) [ ] [ ][ ]××++×−×−= ρρρρρρ

33330330 x
T
xx
B
A IIqIqC
[ ] [ ]( ) [ ] [ ]( ) =+×−×−= T
xx IqIq ρρρρ

330330
[ ]321
3
2
1
012
103
230
012
103
230
qqq
q
q
q
qqq
qqq
qqq
qqq
qqq
qqq










+










−
−
−










−
−
−
=
36
ROTATIONS
Quaternions (continue – 7)
SOLO
Rotation as a Multiplication of Two Matrices (continue – 1)
[ ] [ ][ ]
[ ] [ ] 









×−
×−=
















−
−
−










−
−
−
=
ρ
ρ
ρρ










330
330
012
103
230
321
0123
1032
2301
x
T
x
B
A
Iq
Iq
qqq
qqq
qqq
qqq
qqqq
qqqq
qqqq
C
[ ] [ ][ ]
[ ] [ ] 









×−
−
×−−=
















−
−
−
−−−










−−
−−
−−
=
ρ
ρ
ρρ










330
330
012
103
230
321
0123
1032
2301
x
T
x
B
A
Iq
Iq
qqq
qqq
qqq
qqq
qqqq
qqqq
qqqq
C
[ ] [ ][ ]
[ ] [ ]









 ×−
×−=
















−
−
−










−
−
−
=
T
x
x
B
A
Iq
Iq
qqq
qqq
qqq
qqq
qqqq
qqqq
qqqq
C
ρ
ρ
ρρ








 330
330
321
012
103
230
3012
2103
1230
[ ] [ ][ ]
[ ] [ ]










−
×−
−×−=
















−−−
−
−
−










−−
−−
−−
=
T
x
x
B
A
Iq
Iq
qqq
qqq
qqq
qqq
qqqq
qqqq
qqqq
C
ρ
ρ
ρρ








 330
330
321
012
103
230
3012
2103
1230
37
ROTATIONS
Quaternions (continue – 8)
SOLO
Relation Between Quaternions and Euler Angles
38
ROTATIONS
Quaternions (continue – 9)
SOLO
Description of Successive Rotations Using Quaternions
Let describe two consecutive rotations:
- First rotation defined by the quaternion
( ) 

















== 1
11
1101
ˆ
2
sin,
2
cos, nqq
θθ
ρ

- Folowed by the second rotation defined by the quaternion
( ) 

















== 2
22
2202
ˆ
2
sin,
2
cos, nqq
θθ
ρ

After the first rotation the quaternion of the vector is transferred to 1
*
1 qvq
After the second rotation we obtain ( ) ( ) ( )21
*
2121
*
1
*
221
*
1
*
2 qqvqqqqvqqqqvqq ==
Therefore the quaternion representing those two rotation is:
( ) ( )( ) ( )






×











+





+





⋅











−











=
=×++⋅−====
21
21
1
2
2
1
21
2121
21120210212010220110210
ˆˆ
2
sin
2
sinˆ
2
cosˆ
2
cos,ˆˆ
2
sin
2
sin
2
cos
2
cos
,,,,
nnnnnn
qqqqqqqqqq
θθθθθθθθ
ρρρρρρρρρ

( ) ( )210 , qqqq == ρ
 21
2121
0
ˆˆ
2
sin
2
sin
2
cos
2
cos
2
cos nnq ⋅











−











=





=
θθθθθ
21
21
1
2
2
1
ˆˆ
2
sin
2
sinˆ
2
cosˆ
2
cosˆ
2
sin nnnnn ×











+





+





=





=
θθθθθ
ρ

39
ROTATIONS
Quaternions (continue – 10)
SOLO
Description of Successive Rotations Using Quaternions (continue – 1)
( ) ( )210 , qqqq == ρ
 21
2121
0
ˆˆ
2
sin
2
sin
2
cos
2
cos
2
cos nnq ⋅











−











=





=
θθθθθ
21
21
1
2
2
1
ˆˆ
2
sin
2
sinˆ
2
cosˆ
2
cosˆ
2
sin nnnnn ×











+





+





=





=
θθθθθ
ρ

Two consecutive rotations, followed by , are given by:1q 2q
From those equations we can see that:
0ˆˆˆˆˆˆˆˆˆˆ 21212112211221

=×→×−=×→×=×= nnnnnnnnnnifonlyandifqqqq
The rotations are commutative if and only if are collinear.21
ˆ&ˆ nn
In matrix form those two rotations are given by:
First Rotation: ( ) [ ] ( ) [ ]{ }111111331133 sinˆcos1ˆˆcosˆ, θθθθ ×−−+=− nnnInR
T
xx
Second Rotation: ( ) [ ] ( ) [ ]{ }222222332233 sinˆcos1ˆˆcosˆ, θθθθ ×−−+=− nnnInR
T
xx
Total Rotation:
( ) ( ) ( ) [ ] ( ) [ ]{ }θθθθθθ sinˆcos1ˆˆcosˆ,ˆ,ˆ, 331133223333 ×−−+=−−=− nnnInRnRnR T
xxxx
40
ROTATIONS
Quaternions (continue – 11)
SOLO
Description of Successive Rotations Using Quaternions (continue – 2)
Let find the quaternion that describes the Euler Rotations through the
angles respectively. Let write the rotations according to their order
123 →→
ϕθψ ,,












+

















+

















+





==
2
sin
2
cos
2
sin
2
cos
2
sin
2
cos
ϕϕθθψψ
ijkqqqq xyz
B
A



















−











+











+























+





=
2
sin
2
sin
2
cos
2
sin
2
cos
2
sin
2
cos
2
cos
2
sin
2
cos
ϕθϕθθϕϕθψψ
kjik

























+

















=
2
sin
2
sin
2
sin
2
cos
2
cos
2
cos
ϕθψϕθψ
























−

















+
2
cos
2
sin
2
sin
2
sin
2
cos
2
cos
ϕθψϕθψ
i

























+

















+
2
cos
2
sin
2
cos
2
sin
2
cos
2
sin
ϕθψϕθψ
j

























−

















+
2
sin
2
sin
2
cos
2
cos
2
cos
2
sin
ϕθψϕθψ
k

41
ROTATIONS
Quaternions (continue – 12)
SOLO
Differential Equation of the Quaternions
Let define
( ) ( )ρ

,0qtq B
A =
- the quaternion that defines the position of B frame
relative to frame A at time t.
( ) ( )tqqttq B
A ∆+∆+=∆+ ρ

,00
- the quaternion that defines the position of B frame
relative to frame A at time t+Δt.
( ) 










 ∆





 ∆
=∆ ∆t
B
A ntq ˆ
2
sin,
2
cos
θθ - the quaternion that defines the position of B frame
at time t+Δt relative to frame B at time t.
We have the relation: ( ) ( ) ( )tqtqttq B
A
B
A
B
A ∆=∆+
or
( ) ( ) ( ) ( )( ) ( ) ( ) ( )[ ] ( ) ( )( )ρρρρρρρρ
θθ 
∆∆−+=∆∆+−=∆+∆+−=∆+=










 ∆





 ∆
=∆ ∆ ,,0,1,,,,,ˆ
2
sin,
2
cos 00000000
*
qqqqqqqqttqtqntq B
A
B
At
B
A
therefore ( )( ) 










 ∆
−




 ∆
=∆∆− ∆tnqq ˆ
2
sin,1
2
cos,, 00
θθ
ρρ

( ) ( ) 










 ∆
−




 ∆
=∆∆ ∆tnqq ˆ
2
sin,1
2
cos,, 00
θθ
ρρ

or
42
ROTATIONS
Quaternions (continue – 13)
SOLO
Differential Equation of the Quaternions (continue – 1)
( ) ( ) 










 ∆
−




 ∆
=∆∆ ∆tnqq ˆ
2
sin,1
2
cos,, 00
θθ
ρρ

Let divide both sides by and take the limit .0→∆ tt∆
( ) ( ) ( ) 





=





=


















∆
∆





 ∆





 ∆






∆
∆





 ∆
−




 ∆
==





∆
∆
∆
∆
∆∆∆
→∆
tBttB
t
ntqnqn
tt
tq
td
d
tt
q
ˆ
2
1
,0ˆ
2
1
,0,ˆ
2
2
sin
2
1
,
2
1
2
cos
2
1
,lim 0
0
0
θθρ
θ
θ
θ
θ
θ
θ
ρ 

But is the instant angular velocity vector of frame B relative to frame A.tn∆
ˆθ
( )
( ) t
B
AB nt ∆← = ˆθω 
( ) ( )
( )( ) ( )
( )ttn
B
AB
B
ABt ←←∆ == ωωθ
 ,0ˆ,0
So we can write
( ) ( ) ( )
( )ttqtq
td
d B
AB
B
A
B
A ←= ω
2
1
This is the Differential equation of the quaternion that defines the position of B
relative to A, at the time t as a function of the angular velocity vector of frame B relative
to frame A, .
( )tq B
A
( )
( )t
B
AB←ω

43
ROTATIONS
Quaternions (continue – 14)
SOLO
Differential Equation of the Quaternions (continue – 2)
Developing this equation, we get
( ) ( ) ( )
( )ttqtq
td
d B
AB
B
A
B
A ←= ω
2
1
( ) ( )
( )[ ] ( ) ( ) ( )
( )B
AB
B
AB
B
AB
B
AB qtq
dt
d
dt
dq
←←←← ×+⋅−==





ωρωωρωρ
ρ 

00
0
,
2
1
,0,
2
1
,
from which
( )B
AB
dt
dq
←⋅−= ωρ

2
10
( ) ( )
( )B
AB
B
ABq
dt
d
←← ×+= ωρω
ρ 

0
2
1
or in matrix form
[ ] [ ]
( )
( )t
Iq
q
dt
d B
AB
x
T
←










×+
−
=










ω
ρ
ρ
ρ






330
0
2
1
44
ROTATIONS
Quaternions (continue – 15)
SOLO
Differential Equation of the Quaternions (continue – 3)


























−
−
−
−−−
=
















←
←
←
zBAB
yBAB
xBAB
qqq
qqq
qqq
qqq
q
q
q
q
dt
d
ω
ω
ω
012
103
230
321
3
2
1
0

[ ] [ ]
( )
( )t
Iq
q
dt
d B
AB
x
T
←










×+
−
=










ω
ρ
ρ
ρ






330
0
2
1
B
AAB
xBAByBABzBAB
xBABzBAByBAB
yBABzBABxBAB
zBAByBABxBAB
q
q
q
q
q
q
q
q
q
dt
d
←
←←←
←←←
←←←
←←←
Ω=


































−
−
−
−−−
=
















2
1
0
0
0
0
2
1
3
2
1
0
3
2
1
0







ωωω
ωωω
ωωω
ωωω
After rearranging
or
( )zBAByBABxBAB qqq
dt
dq
←←← ++−= ωωω 321
0
2
1
( )zBAByBABxBAB qqq
dt
dq
←←← +−= ωωω 230
1
2
1
( )zBAByBABxBAB qqq
dt
dq
←←← −+= ωωω 103
2
2
1
( )zBAByBABxBAB qqq
dt
dq
←←← ++−= ωωω 012
3
2
1
45
ROTATIONS
Quaternions (continue – 16)
SOLO
Pre-multiply the equation
Computation of as a Function of the Quaternion and its Derivatives
( )
( )t
B
AB←ω

[ ] [ ]
( )
( )t
Iq
q
dt
d B
AB
x
T
←










×+
−
=










ω
ρ
ρ
ρ






330
0
2
1
by [ ] [ ][ ]×−− ρρ



330 xIq
[ ] [ ][ ] [ ] [ ][ ]
[ ] [ ]
( )
( ) =










×+
−
×−−=












×−− ←
•
•
t
Iq
Iq
q
Iq
B
AB
x
T
xx ω
ρ
ρ
ρρ
ρ
ρρ












330
330
0
330
2
1
[ ] [ ][ ][ ] ( )
( )
[ ] [ ]( )[ ] ( )
( ) ( )
( )ttIIq
tIq
B
BA
B
BAx
TT
x
T
B
BAx
T
→→
→
=−−+=
=××−+=
ωωρρρρρρ
ωρρρρ


2
1
2
1
2
1
3333
2
0
33
2
0
Therefore
( )
( ) [ ] [ ][ ]












×−−=
•
•
←
ρ
ρρω





0
3302
q
Iqt x
B
AB
46
ROTATIONS
Quaternions (continue – 17)
SOLO
Computation of as a Function of the Quaternion and its Derivatives (continue – 1)
But and are related. Differentiating the equation
( )
( )t
B
AB←ω

we obtain
•
0q
•
ρ

1
2
0 =+ ρρ
T
q
( )
( ) [ ] [ ][ ] [ ] [ ]( ) =






×−+−=












×−−=
••
•
•
← ρρρ
ρ
ρρω






3300
0
330 22 xx
B
AB Iqq
q
Iqt
[ ] [ ]( )
[ ] [ ] ••• +×−
=






×−+= ρ
ρρρ
ρρρρρ



0
033
2
0
330
0
2
1
2
q
qIq
Iq
q
T
x
x
T
From the equation
••••
−=→=+ ρρρρ
 TT
q
qqq
0
000
1
0
we obtain
( )
[ ] [ ]( )
•
← +×−= ρρρρω
 T
x
B
AB qIq
q
033
2
0
0
2
47
ROTATIONS
Quaternions (continue – 18)
SOLO
Computation of as a Function of , and their Derivatives( )
( )t
B
AB←ω
 θ nˆ
Differentiate the quaternion ( ) 

















== nqq ˆ
2
sin,
2
cos,0
θθ
ρ

to obtain 











+











−=





=
•••
nnqq ˆ
2
sinˆ
2
cos
2
,
2
sin
2
,0
θθθθθ
ρ


Substitute this in the equation
( )
( ) [ ] [ ][ ]












×−−=
•
•
←
ρ
ρρω





0
3302
q
Iqt x
B
AB
[ ]






















+











−






×





−











−=
•
nn
nIn x
ˆ
2
sinˆ
2
cos
2
2
sin
2
ˆ
2
sin
2
cosˆ
2
sin2 33
θθθ
θθ
θθθ




[ ] [ ]
••
×





−×











−











+





+





= nnnnnnn ˆˆ
2
sin2ˆˆ
2
cos
2
sinˆ
2
cos
2
sin2ˆ
2
cosˆ
2
sin 222 θθθ
θ
θθθ
θ
θ
θ 
( ) [ ]
••
← ×−−+= nnnnAB
ˆˆcos1ˆsinˆ θθθω 
Finally we obtain
We recovered a result obtained before.
48
ROTATIONS
Quaternions (continue – 18)
SOLO
Differential Equation of the Quaternion Between Two Frames A and B Using the Angular
Velocities of a Third Frame I
The relations between the components of a vector in the frames A, B and I arev

( ) AB
A
IA
I
B
A
IB
I
B
vCvCCvCv

===
Using quaternions the same relations are given by
( ) B
A
A
I
IA
I
B
A
B
I
IB
I
B
qqvqqqvqv
***
==
Therefore
B
A
A
I
B
I qqq = B
I
A
I
B
A qqq
*
=
Let perform the following calculations
B
A
A
I
B
A
A
I
B
I q
dt
d
qqq
dt
d
q
dt
d
+=
&( )B
IB
B
I
B
I qq
dt
d
←= ω
2
1 ( )A
IA
A
I
A
I qq
dt
d
←= ω
2
1
and use
( ) ( ) B
A
A
I
B
A
A
IA
A
I
B
IB
B
I q
dt
d
qqqq += ←← ωω
2
1
2
1 ( ) ( ) B
A
A
IA
A
I
A
I
B
IB
B
I
A
I
B
A qqqqqq
dt
d
←← −= ωω

1
**
2
1
2
1
to obtain ( ) ( ) B
A
A
IA
B
IB
B
A
B
A qqq
dt
d
←← −= ωω
2
1
2
1
49
ROTATIONS
Quaternions (continue – 19)
SOLO
Differential Equatio of the Quaternion Between Two Frames A and B Using the Angular
Velocities of a Third Frame I (continue – 1)
Using the relations
ABIAIB ←←← += ωωω

and
( ) ( ) B
A
A
IA
B
A
B
IA qq ←← = ωω
* ( ) ( ) B
A
A
IA
B
IA
B
A qq ←← = ωω
we have
( ) ( )
( ) ( ) ( ) ( ) ( )
  
0
2
1
2
1
2
1
2
1
2
1 B
A
A
IA
B
IA
B
A
B
AB
B
A
B
A
A
IA
B
IA
B
AB
B
A
B
A qqqqqq
dt
d
←←←←←← −+=−+= ωωωωωω
from which ( ) ( ) B
A
A
AB
B
AB
B
A
B
A qqq
dt
d
←← == ωω
2
1
2
1
Since BAAB ←← −= ωω

we get
( ) ( ) ( ) ( ) B
A
A
BA
B
BA
B
A
B
A
A
AB
B
AB
B
A
B
A qqqqq
dt
d
←←←← −=−=== ωωωω
2
1
2
1
2
1
2
1
From we get1
*
== B
A
A
B
B
A
B
A qqqq A
B
B
A qq =
*
Therefore 





+





= B
A
A
B
B
A
A
B q
dt
d
qqq
dt
d
0
*B
A
B
A
A
B
A
B qq
dt
d
qq
dt
d






−=





50
ROTATIONS
Euler Angles
SOLO
The orientation of the Body Frame relative to the
Inertial Frame has three degrees of freedom.
We will use 3 Euler Angles that define the orientation
by three consecutive rotations around the consecutive
frame axes.
[ ]










−
=
11
1111
0
0
001
:
θθ
θθθ
cs
sc
[ ]









 −
=
22
22
22
0
010
0
:
θθ
θθ
θ
cs
sc
[ ]










−=
100
0
0
: 33
33
33 θθ
θθ
θ cs
sc
The three basic Euler rotations around
axes are described by the rotation matrices:
,3ˆ,2ˆ,1ˆ
51
ROTATIONS
Euler Angles (continue – 1)
SOLO
Introduce the Piogram that represents the following notation:
(from Pio R.L. “Symbolic Representations of Coordinate Transformations”, IEEE
on Aerospace and Navigation Electronics, Vol. ANE-11,June 1964, pp.128-134)
The Piogram
52
ROTATIONSEuler Angles (continue – 2)
SOLO
Rotation Around x Axis by an Angle .ϕ
[ ]










−
==
ϕϕ
ϕϕϕ
cossin0
sincos0
001
x
B
AC
BAAB xx





11 ϕϕω ==←
[ ]










−=−=
ϕϕ
ϕϕϕ
cossin0
sincos0
001
x
A
BC
The Piogram (continue – 1)
53
ROTATIONSEuler Angles (continue – 3)
SOLO
Rotation Around y Axis by an Angle .θ
[ ]









 −
==
θθ
θθ
θ
cos0sin
010
sin0cos
y
B
AC
BAAB yy

11 θθω ==←
[ ]










−
=−=
θθ
θθ
θ
cos0sin
010
sin0cos
y
A
BC
The Piogram (continue – 2)
54
ROTATIONSEuler Angles (continue – 4)SOLO
Rotation Around z Axis by an Angle .ψ
[ ]










−==
100
0cossin
0sincos
ψψ
ψψ
ψ x
B
AC
BAAB zz





11 ψψω ==←
[ ]









 −
=−=
100
0cossin
0sincos
ψψ
ψψ
ψ x
A
BC
The Piogram (continue – 3)
55
ROTATIONS
Euler Angles (continue – 5)
SOLO
Using the basic Euler Angles we can define the
following 12 different rotations:
(a) six rotations around three different axes:
321 →→ 231 →→ 312 →→ 132 →→ 213 →→ 123 →→
(b) six rotations such that the first and third are around the sam axes, but the second
is different:
121 →→ 131 →→ 212 →→ 232 →→ 313 →→ 323 →→
Suppose that the Transfer Matrix from A to B is defined by three
consecutive Euler Angles: around (unit vector in A Frame),
around (unit vector in intermediate frame), around (unit vector
in B Frame).
B
AC
iθ Iiˆ
jθ
Interjˆ
kθ Bkˆ
[ ] [ ] [ ] [ ] [ ]TB
A
B
A
A
B
A
B
B
Akkjjii
B
A CCCICCC ==→==
−1
&θθθ
56
ROTATIONSEuler Angles (continue – 6)
SOLO
123 →→Euler Angles rotations: using the Piogram
1.Rotation from A to A’ around the third axis by the angle ψ
2. Rotation from A’ to B’ around the third axis by the angle θ
.
3. Rotation from B’ to B around the third axis by the angle ϕ
.
xAv
yAv
zAv
yBv
zBv
xBv
ϕ
θ−
ψ
'xAv
'yAv
'zAv
'xBv
'yBv
'zBv
The Piogram (continue – 4)
57
ROTATIONSEuler Angles (continue – 7)
SOLO
123 →→Euler Angles rotations:
xAv
yAv
zAv
yBv
zBv
xBv
ϕ
θ−
ψ
'xAv
'yAv
'zAv
'xBv
'yBv
'zBv
Piogram:
Example 1: Computation of the relation between to using the PiogramyBv zAyAxA vvv ,,
From the Piogram:
( ) ( ) θϕψθϕψϕψθϕψϕ cossinsinsinsincoscoscossinsinsincos zAyAxAyB vvvv ++++−=
using the Piogram (continue – 1)
The Piogram (continue – 5)
58
ROTATIONSEuler Angles (continue – 8)SOLO
123 →→Euler Angles rotations:
xAv
yAv
zAv
yBv
zBv
xBv
ϕ
θ−
ψ
'xAv
'yAv
'zAv
'xBv
'yBv
'zBv
Piogram:
using the Piogram (continue – 2)
Example 2: Computation of the matrix (1st
column) using the Piogram
B
AC
1=xAv
0=yAv
0=zAv
ψcos' =xAv
ψsin' −=yAv
0' =zAv
ψsin' −=yBv
ψθcossin' =zBv
ψθcoscos=xBv
ψθϕ
ψϕ
cossincos
sinsin
+
+=zBv
ψθϕ
ψϕ
cossinsin
sincos
+
+−=yBv
ψcos
ψcos
ψsin
ψsin
θcos
θsin
θcos
θsin
ϕcos
ϕsin
ϕcos
ϕsin
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) 









+−+
++−
−
=












θϕψθϕψϕψθϕψϕ
θϕψθϕψϕψθϕψϕ
θψθψθ
ccssccscscss
csssscccsssc
ssccc
CCC
CCC
CCC
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
3,32,31,3
3,22,21,2
3,12,11,1
The Piogram (continue – 6)
59
ROTATIONSEuler Angles (continue – 9)
SOLO
123 →→Euler Angles rotations:
xAv
yAv
zAv
yBv
zBv
xBv
ϕ
θ−
ψ
'xAv
'yAv
'zAv
'xBv
'yBv
'zBv
Piogram:
Example 3: Computation of the angular velocity using the Piogram
using the Piogram (continue – 3)
AB←ω

xAAB←ω
yAAB←ω
zAAB←ω
0
0
0
B
ψ
ψ−
A
θ
θ
'A
ϕ−
ϕ
'B
( ) ( ) ( ) ( )
[ ] [ ] [ ]




















−
−
=










−−+










−+










=++=←
ψ
θ
ϕ
θ
ψψθ
ψψθ
ϕθψθψψϕθψω







10
0
0
0
0
1
0
1
0
1
0
0
111 233
'
''
'
''
s
csc
scc
xCyCz
B
B
A
B
A
A
A
A
A
A
A
AB
The Piogram (continue – 7)
60
ROTATIONSEuler Angles (continue – 10)SOLO
123 →→Euler Angles rotations:
Piogram:
Example 4: Computation of the angular velocities and using the Piogram
using the Piogram (continue – 4)
IB←ω

IA←ω

ψ
xBIB←ω
yBIB←ω
zBIB←ω
ϕ
θ−
ψ
θ
ϕ
A 'A 'B B
xAIA←ω
yAIA←ω
zAIA←ω
xBIB←ω
yBIB←ω
zBIB←ω
B
ϕ−
ϕ−
ψ−
ψ−
A'A xAIA←ω
yAIA←ω
zAIA←ω
θ
θ−
'B
Piogram:
( )
[ ] [ ] [ ]














































+










−−+










−−+










−−=










=
←
←
←
←
←
←
←
zBIB
yBIB
xBIB
zAIA
yAIA
xAIA
A
IA
ω
ω
ωϕ
ϕθθ
ψ
ψ
ω
ω
ω
ω
0
0
0
0
0
0
123




( )
[ ] [ ] [ ]














































+










+










+










=










=
←
←
←
←
←
←
←
zAIA
yAIA
xAIA
zBIB
yBIB
xBIB
B
IB
ω
ω
ω
ψ
ψθθ
ϕ
ϕ
ω
ω
ω
ω




0
0
0
0
0
0 321
IAIBBAAAB xyz ←←← −=++= ωωϕθψω





'' 111
The Piogram (continue – 8)
61
ROTATIONS
Euler Angles (continue – 9)
SOLO
321 →→Euler Angles rotations:
[ ] [ ] [ ]










−
++−−
+−+
==
φθφθθ
φψφθψφψφθψθψ
φψφθψφψφθψθψ
ϕθψ
ccscs
sccssccssscs
sscsccsssccc
CB
A 123




















−
+
−
=










+−
+
−
=










←
←
←
ψ
θ
ϕ
θ
ψϕθ
ψϕθ
ψθϕ
ψθψθϕ
ψθψθϕ
ω
ω
ω






10
0
0
s
csc
scc
s
csc
scc
zBAB
yBAB
xBAB




















−=










←
←
←
zBAB
yBAB
xBAB
csscs
ccsc
sc
c
ω
ω
ω
θψθψθ
ψθψθ
ψψ
θ
ψ
θ
ϕ
0
0
1















+

















+

















+





==
2
sin
2
cos
2
sin
2
cos
2
sin
2
cos
ψψθθϕϕ
kjiqqqq zyx
B
A

























−

















=
2
sin
2
sin
2
sin
2
cos
2
cos
2
cos0
ϕθψϕθψ
q
























+

















=
2
cos
2
sin
2
sin
2
sin
2
cos
2
cos1
ϕθψϕθψ
q
























−

















=
2
sin
2
cos
2
sin
2
cos
2
sin
2
cos2
ϕθψϕθψ
q
























+

















=
2
sin
2
sin
2
cos
2
cos
2
cos
2
sin3
ϕθψϕθψ
q
Piogram
62
ROTATIONS
Euler Angles (continue – 10)
SOLO
231 →→Euler Angles rotations:
Piogram
[ ] [ ] [ ]










+−
−
−+
==
ϕθϕθψϕθϕθψθψ
ϕθϕψψ
ϕθϕθψϕθϕθψθψ
ϕψθ
ccssssccsssc
scccs
csscsssccscc
C
B
A 132




















−
−
−
=










−
+−
−
=










←
←
←
θ
ψ
ϕ
θθψ
ψ
θθψ
θψθψϕ
θψϕ
θψθψϕ
ω
ω
ω






0
10
0
csc
s
scc
csc
s
scc
zBAB
yBAB
xBAB




















−
−
=










←
←
←
zBAB
yBAB
xBAB
ssccs
ccsc
sc
c
ω
ω
ω
θψψθψ
θψθψ
θθ
ψ
θ
ψ
ϕ
0
0
1















+

















+

















+





==
2
sin
2
cos
2
sin
2
cos
2
sin
2
cos
θθψψϕϕ
jkiqqqq yzx
B
A

























+

















=
2
sin
2
sin
2
sin
2
cos
2
cos
2
cos0
ϕθψϕθψ
q
























−

















=
2
cos
2
sin
2
sin
2
sin
2
cos
2
cos1
ϕθψϕθψ
q
























−

















=
2
sin
2
cos
2
sin
2
cos
2
sin
2
cos2
ϕθψϕθψ
q
























+

















=
2
sin
2
sin
2
cos
2
cos
2
cos
2
sin3
ϕθψϕθψ
q
63
ROTATIONS
Euler Angles (continue – 11)
SOLO
312 →→Euler Angles rotations:
Piogram
[ ] [ ] [ ]










−
++−
+−+
==
ϕθϕϕθ
θϕψθψϕψϕθψφψ
θϕψθψϕψϕθψθψ
θϕψ
ccscs
cscssccssccs
csssccsssscc
C
B
A 213




















−
−
+
=










+−
−
+
=










←
←
←
ψ
ϕ
θ
ϕ
ψψϕ
ψψϕ
ψϕθ
ψϕψϕθ
ψϕψϕθ
ω
ω
ω






10
0
0
s
scc
csc
s
scc
csc
zBAB
yBAB
xBAB




















−
−=










←
←
←
zBAB
yBAB
xBAB
ccsss
sccc
cs
c
ω
ω
ω
ϕψϕψϕ
ψϕψϕ
ψψ
ϕ
ψ
ϕ
θ
0
0
1















+

















+

















+





==
2
sin
2
cos
2
sin
2
cos
2
sin
2
cos
ψψϕϕθθ
kijqqqq zxy
B
A

























+

















=
2
sin
2
sin
2
sin
2
cos
2
cos
2
cos0
ϕθψϕθψ
q
























+

















=
2
cos
2
sin
2
sin
2
sin
2
cos
2
cos1
ϕθψϕθψ
q
























+

















=
2
sin
2
cos
2
sin
2
cos
2
sin
2
cos2
ϕθψϕθψ
q
























−

















=
2
sin
2
sin
2
cos
2
cos
2
cos
2
sin3
ϕθψϕθψ
q
64
ROTATIONS
Euler Angles (continue – 12)
SOLO
132 →→Euler Angles rotations:
Piogram
[ ] [ ] [ ]










+−−+
++−
−
==
ϕθϕθψϕψϕθϕθψ
ϕθϕθψϕψϕθϕθψ
θψψψθ
θψϕ
ccssssccsscs
sccssccssccs
scscc
CB
A 231




















−
=










+−
+
+
=










←
←
←
ϕ
ψ
θ
ϕϕψ
ϕϕψ
ψ
ϕψϕψθ
ϕψϕψθ
ϕψθ
ω
ω
ω






0
0
10
csc
scc
s
csc
scc
s
zBAB
yBAB
xBAB




















−
−
=










←
←
←
zBAB
yBAB
xBAB
sscsc
ccsc
sc
c
ω
ω
ω
ϕψϕψψ
ϕψϕψ
ϕϕ
ψ
ϕ
ψ
θ
0
0
1















+

















+

















+





==
2
sin
2
cos
2
sin
2
cos
2
sin
2
cos
ϕϕψψθθ
ikjqqqq xzy
B
A

























−

















=
2
sin
2
sin
2
sin
2
cos
2
cos
2
cos0
ϕθψϕθψ
q
























+

















=
2
cos
2
sin
2
sin
2
sin
2
cos
2
cos1
ϕθψϕθψ
q
























+

















=
2
sin
2
cos
2
sin
2
cos
2
sin
2
cos2
ϕθψϕθψ
q
























−

















=
2
sin
2
sin
2
cos
2
cos
2
cos
2
sin3
ϕθψϕθψ
q
65
ROTATIONS
Euler Angles (continue – 13)
SOLO
213 →→Euler Angles rotations:
Piogram
[ ] [ ] [ ]










−+−
−
−+−
==
ϕθϕθψθψϕθψθψ
ϕϕψϕψ
ϕθϕθψθψϕθψθψ
ψϕθ
ccsccssscssc
scccs
csssccsssscc
C
B
A 312



















−
=










+
+
+−
=










←
←
←
θ
ϕ
ψ
θϕθ
ϕ
θϕθ
θϕϕθψ
θϕψ
θϕϕθψ
ω
ω
ω






0
10
0
scc
s
ccs
scc
s
ccs
zBAB
yBAB
xBAB










=










−−
−−
−
=










←
←
←
zBAB
yBAB
xBAB
sccss
cscc
cs
c
ω
ω
ω
ϕθϕϕθ
ϕθϕθ
θθ
ϕ
θ
ϕ
ψ
0
0
1















+

















+

















+





==
2
sin
2
cos
2
sin
2
cos
2
sin
2
cos
θθϕϕψψ
jikqqqq yxz
B
A

























−

















=
2
sin
2
sin
2
sin
2
cos
2
cos
2
cos0
ϕθψϕθψ
q
























−

















=
2
cos
2
sin
2
sin
2
sin
2
cos
2
cos1
ϕθψϕθψ
q
























+

















=
2
sin
2
cos
2
sin
2
cos
2
sin
2
cos2
ϕθψϕθψ
q
























+

















=
2
sin
2
sin
2
cos
2
cos
2
cos
2
sin3
ϕθψϕθψ
q
66
ROTATIONS
Euler Angles (continue – 14)
SOLO
123 →→Euler Angles rotations:
Piogram
[ ] [ ] [ ]










+−+
++−
−
==
θϕψθϕψϕψθϕψϕ
θϕψθϕψϕψθϕψϕ
θψθψθ
ψθϕ
ccssccscscss
csssscccsssc
ssccc
CB
A 321




















−
−
=










+−
+
−
=










←
←
←
ψ
θ
ϕ
ϕθϕ
ϕθϕ
θ
ϕθψϕθ
ϕθψϕθ
θψϕ
ω
ω
ω






ccs
scc
s
ccs
scc
s
zBAB
yBAB
xBAB
0
0
01




















−=










←
←
←
zBAB
yBAB
xBAB
cs
sccc
csssc
c
ω
ω
ω
ϕϕ
ϕθϕθ
ϕθϕθθ
θ
ψ
θ
ϕ
0
0
1















+

















+

















+





==
2
sin
2
cos
2
sin
2
cos
2
sin
2
cos
ϕϕθθψψ
ijkqqqq xyz
B
A

























+

















=
2
sin
2
sin
2
sin
2
cos
2
cos
2
cos0
ϕθψϕθψ
q
























−

















=
2
cos
2
sin
2
sin
2
sin
2
cos
2
cos1
ϕθψϕθψ
q
























+

















=
2
cos
2
sin
2
cos
2
sin
2
cos
2
sin2
ϕθψϕθψ
q
























−

















=
2
sin
2
sin
2
cos
2
cos
2
cos
2
sin3
ϕθψϕθψ
q
67
ROTATIONS
Euler Angles (continue – 15)
SOLO
121 →→Euler Angles rotations:
Piogram
[ ] [ ] [ ]










−−−
++−
−
==
212121212
212121212
11
11212
ϕϕϕθϕϕϕϕθϕϕθ
ϕϕϕθϕϕϕϕθϕϕθ
θϕθϕθ
ϕθϕ
sscccscccscs
cssccccscsss
scssc
C
B
A




















−
=










−
+
+
=










←
←
←
2
1
22
22
221
221
21
0
0
10
ϕ
θ
ϕ
ϕϕθ
ϕϕθ
θ
ϕθϕθϕ
ϕθϕθϕ
ϕθϕ
ω
ω
ω






scs
css
c
scs
css
c
zBAB
yBAB
xBAB




















−−
−=










←
←
←
zBAB
yBAB
xBAB
scscs
sscs
cs
s
ω
ω
ω
ϕθϕθθ
ϕθϕθ
ϕϕ
θ
ϕ
θ
ϕ
22
22
22
2
1
0
0
1



( ) ( ) 











+

















+

















+





==
2
sin
2
cos
2
sin
2
cos
2
sin
2
cos 2211
21
ϕϕθθϕϕ
ϕϕ ijiqqqq xyx
B
A






 +






=























−

















=
2
cos
2
cos
2
sin
2
cos
2
sin
2
cos
2
cos
2
cos 212121
0
ϕϕθϕθϕϕθϕ
q





 +






=























+

















=
2
sin
2
cos
2
sin
2
cos
2
cos
2
cos
2
cos
2
sin 212121
1
ϕϕθϕθϕϕθϕ
q





 −






=























+

















=
2
cos
2
sin
2
sin
2
sin
2
sin
2
cos
2
sin
2
cos 212121
2
ϕϕθϕθϕϕθϕ
q





 −






=























−

















=
2
sin
2
sin
2
sin
2
sin
2
cos
2
cos
2
sin
2
sin 212121
3
ϕϕθϕθϕϕθϕ
q
68
ROTATIONS
Euler Angles (continue – 16)
SOLO
131 →→Euler Angles rotations:
Piogram
[ ] [ ] [ ]










+−−−
+−−==
212121212
212121212
11
11312
ϕϕϕψϕϕϕϕψϕϕψ
ϕϕϕψϕϕϕϕψϕϕψ
ψϕψϕψ
ϕψϕ
ccscscssccss
scccsssccccs
ssscc
C
B
A




















−
−
=










←
←
←
zBAB
yBAB
xBAB
scccs
csss
sc
s
ω
ω
ω
ϕψϕψψ
ϕψϕψ
ϕϕ
ψ
ϕ
ψ
ϕ
22
22
22
2
1
0
0
1



( ) ( ) 











+

















+

















+





==
2
sin
2
cos
2
sin
2
cos
2
sin
2
cos 2211
21
ϕϕψψϕϕ
ϕϕ ikiqqqq xzx
B
A





















−
−
=










←
←
←
zBAB
yBAB
xBAB
scccs
csss
sc
s
ω
ω
ω
ϕψϕψψ
ϕψϕψ
ϕϕ
ψ
ϕ
ψ
ϕ
22
22
22
2
1
0
0
1








 +






=























−

















=
2
cos
2
cos
2
sin
2
cos
2
sin
2
cos
2
cos
2
cos 212121
0
ϕϕψϕψϕϕψϕ
q





 +






=























+

















=
2
sin
2
cos
2
sin
2
cos
2
cos
2
cos
2
cos
2
sin 212121
1
ϕϕψϕψϕϕψϕ
q





 −






=























−

















=
2
sin
2
sin
2
cos
2
sin
2
sin
2
sin
2
sin
2
cos 122121
2
ϕϕψϕψϕϕψϕ
q





 −






=























+

















=
2
cos
2
sin
2
sin
2
sin
2
sin
2
cos
2
sin
2
cos 212121
3
ϕϕψϕψϕϕψϕ
q
69
ROTATIONS
Euler Angles (continue – 17)
SOLO
212 →→Euler Angles rotations:
Piogram
[ ] [ ] [ ]










+−−+
−−−
==
212122121
11
212122121
21122
θϕθθθθϕθϕθθθ
ϕθϕφθ
θϕθθθθϕθϕθθθ
θϕθ
cccsscsccssc
sccss
ccccsssscscc
C
B
A




















−−
=










−−
+
+
=










←
←
←
2
1
22
22
221
21
221
0
10
0
θ
ϕ
θ
θθϕ
ϕ
θθϕ
θϕθϕθ
θϕθ
θϕθϕθ
ω
ω
ω






scs
c
css
scs
c
css
zBAB
yBAB
xBAB




















−−
−−=










←
←
←
zBAB
yBAB
xBAB
ccssc
sscs
cs
s
ω
ω
ω
θϕϕθϕ
θϕθϕ
θθ
ϕ
θ
ϕ
θ
22
22
22
2
1
0
0
1



( ) ( ) 











+

















+

















+





==
2
sin
2
cos
2
sin
2
cos
2
sin
2
cos 2211
21
θθϕϕθθ
θθ jijqqqq yxy
B
A






 +






=























−

















=
2
cos
2
cos
2
sin
2
cos
2
sin
2
cos
2
cos
2
cos 212121
0
θθϕθϕθθϕθ
q





 +






=























−

















=
2
cos
2
sin
2
sin
2
sin
2
sin
2
cos
2
sin
2
cos 212121
1
θθϕθϕθθϕθ
q





 +






=























+

















=
2
sin
2
cos
2
sin
2
cos
2
cos
2
cos
2
cos
2
sin 212121
2
θθϕθϕθθϕθ
q





 +






=























+

















=
2
sin
2
sin
2
cos
2
sin
2
sin
2
sin
2
sin
2
cos 212121
3
θθϕθϕθθϕθ
q
70
ROTATIONS
Euler Angles (continue – 18)
SOLO
232 →→Euler Angles rotations:
Piogram
[ ] [ ] [ ]










+−+
−
−−−
==
212122121
11
212122121
21322
θθθψθθψθθθψθ
ϕθψψθ
θθθψθθψθθθψθ
θψθ
ccscssscsscc
sscsc
scccscsssccc
C
B
A




















+
−
=










+
+
−
=










←
←
←
2
1
22
22
221
21
221
0
10
0
θ
ψ
θ
θθψ
ψ
θθψ
θψθψθ
θψθ
θψθψθ
ω
ω
ω






css
c
scs
css
c
scs
zBAB
yBAB
xBAB




















−−
=










←
←
←
zBAB
yBAB
xBAB
scscc
csss
sc
s
ω
ω
ω
θψψθψ
θψθψ
θθ
ψ
θ
ψ
θ
22
22
22
2
1
0
0
1



( ) ( ) 











+

















+

















+





==
2
sin
2
cos
2
sin
2
cos
2
sin
2
cos 2211
21
θθψψθθ
θθ jkjqqqq yzy
B
A






 +






=























−

















=
2
cos
2
cos
2
sin
2
cos
2
sin
2
cos
2
cos
2
cos 212121
0
θθψθψθθψθ
q





 −






=























−

















=
2
sin
2
sin
2
sin
2
sin
2
cos
2
cos
2
sin
2
sin 212121
1
θθψθψθθψθ
q





 +






=























+

















=
2
sin
2
cos
2
sin
2
cos
2
cos
2
cos
2
cos
2
sin 212121
2
θθψθψθθψθ
q





 −






=























+

















=
2
cos
2
sin
2
sin
2
sin
2
sin
2
cos
2
sin
2
cos 212121
3
θθψθψθθψθ
q
71
ROTATIONS
Euler Angles (continue – 19)
SOLO
313 →→Euler Angles rotations:
Piogram
[ ] [ ] [ ]










−
+−−−
+−
==
ϕϕψϕψ
ψϕψϕψψψψϕψψψ
ψϕψϕψψψψϕψψψ
ψϕψ
cscss
cscccssccssc
ssscccsscscc
C
B
A
11
221212121
221212121
31132




















−
+
=










+
−
+
=










←
←
←
2
1
22
22
21
221
221
10
0
0
ψ
ϕ
ψ
ϕ
ψψϕ
ψψϕ
ψϕψ
ψϕψϕψ
ψϕψϕψ
ω
ω
ω






c
scs
css
c
scs
css
zBAB
yBAB
xBAB




















−−
−=










←
←
←
zBAB
yBAB
xBAB
sccsc
sscs
cs
s
ω
ω
ω
ϕψϕψϕ
ψϕψϕ
ψψ
ϕ
ψ
ϕ
ψ
22
22
22
2
1
0
0
1



( ) ( ) 











+

















+

















+





==
2
sin
2
cos
2
sin
2
cos
2
sin
2
cos 2211
21
ψψϕϕψψ
ψψ kikqqqq zxz
B
A






 +






=























−

















=
2
cos
2
cos
2
sin
2
cos
2
sin
2
cos
2
cos
2
cos 212121
0
ψψϕψϕψψϕψ
q





 −






=























+

















=
2
cos
2
sin
2
sin
2
sin
2
sin
2
cos
2
sin
2
cos 212121
1
ψψϕψϕψψϕψ
q





 −






=























−

















=
2
sin
2
sin
2
sin
2
sin
2
cos
2
cos
2
sin
2
sin 212121
2
ψψϕψϕψψϕψ
q





 +






=























+

















=
2
sin
2
cos
2
sin
2
cos
2
cos
2
cos
2
cos
2
sin 212121
3
ψψϕψϕψψϕψ
q
72
ROTATIONS
Euler Angles (continue – 20)
SOLO
323 →→Euler Angles rotations:
Piogram
[ ] [ ] [ ]










+−−−
−+−
==
θθψθψ
ψθψψψθψψψϕθψ
ψθψψψθψψψψθψ
ψθψ
csssc
ssccscscsscc
csscccsssccc
C
B
A
11
221212121
221212121
31232



















−
=










+
+
+−
=










←
←
←
2
1
22
22
21
221
221
10
0
0
ψ
θ
ψ
θ
ψψθ
ψψθ
ψθψ
ψθψθψ
ψθψθψ
ω
ω
ω






c
css
scs
c
css
scs
zBAB
yBAB
xBAB




















−
−
=










←
←
←
zBAB
yBAB
xBAB
ssccc
csss
sc
s
ω
ω
ω
θψθψθ
ψθψθ
ψψ
θ
ψ
θ
ψ
22
22
22
2
1
0
0
1



( ) ( ) 











+

















+

















+





==
2
sin
2
cos
2
sin
2
cos
2
sin
2
cos 2211
21
ψψθθψψ
ψψ kjkqqqq zyz
B
A






 +






=























−

















=
2
cos
2
cos
2
sin
2
cos
2
sin
2
cos
2
cos
2
cos 212121
0
ψψθψθψψθψ
q





 −






−=























−

















=
2
sin
2
sin
2
cos
2
sin
2
sin
2
sin
2
sin
2
cos 212121
1
ψψθψθψψθψ
q





 −






=























+

















=
2
cos
2
sin
2
sin
2
sin
2
sin
2
cos
2
sin
2
cos 212121
2
ψψθψθψψθψ
q





 +






=























+

















=
2
sin
2
cos
2
sin
2
cos
2
cos
2
cos
2
cos
2
sin 212121
3
ψψθψθψψθψ
q
73
ROTATIONS
Cayley-Klein (or Euler) Parameters and Related Quantities
SOLO
Rotation Matrix in Three Dimensional Space
We saw that the rotation of a vector is given byx

[ ] [ ] [ ] ( )θθ cos1ˆˆsinˆ' −××+×+= xnnxnxx

[ ] [ ] [ ] ( ){ } ( ) xnRxnnnI x

ˆ,cos1ˆˆsinˆ33 θθθ =−××+×+=
The Rotation Matrix has the properties( ) [ ] [ ] [ ] ( ){ }θθθ cos1ˆˆsinˆˆ, 3333 −××+×+=
∆
nnnInR xx
( ) ( )[ ]( )333333
ˆ,ˆ, x
T
xx InRnR =θθOrtho-normal
Unitary ( ) ( )[ ]( )conjugatecomplexInRnR x
T
xx == *
33
*
3333
ˆ,ˆ, θθ
A Theorem from Matrix Algebra states:
Every unitary matrix U can be expressed as an exponential matrix
where H is hermitian (iH is skew-symmetric)
( )iHU exp=
Let find the hermitian matrix that corresponds to the Unitary Rotation Matrix.
74
We found that the matrix has the following properties:[ ]×nˆ
[ ] [ ] T
x nnInn ˆˆˆˆ 33 +−=××
[ ] [ ] [ ] [ ]×−=××× nnnn ˆˆˆˆ
[ ] [ ] [ ] [ ] ( )T
x nnInnnn ˆˆˆˆˆˆ 33 +−−=××××
[ ] [ ]×−=× nn
T
ˆˆ skew-symmetric
ROTATIONS
Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 1)
SOLO
Rotation Matrix in Three Dimensional Space (continue – 1)
Define: [ ]×=
∆
nM ˆθ
Therefore [ ][ ] ( )T
x nnInnM ˆˆˆˆ 33
222
+−=××= θθ [ ] MnM 333
ˆ θθ −=×−=
( ) [ ]( )
[ ] [ ] [ ]
[ ][ ] ( ) [ ] θθ
θ
θ
θθ
θ
θ
θ
θθ
θθ
θθ
θ
sinˆcos1ˆˆ
ˆ
!3
ˆ)
!4!2
1(ˆ
!3
1
)
!4!2
1(
11
!3
1)
!4!2
1
(
!4
1
!3
1
!2
1
ˆexpexp
33
3
2
42
2
33
3
2
42
2
2
233
2
2
2
33
432
33
×+−××+=
×





+−+×++−−×+=






+−+++−−+=






+−++−+=
+++++=×=
nnnI
nnnI
MMMI
MMI
MMMMInM
x
x
x
x
x




( ) [ ] [ ] [ ] ( ){ } [ ]( )×=−××+×+=
∆
nnnnInR xx
ˆexpcos1ˆˆsinˆˆ, 3333 θθθθ
75
ROTATIONS
Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 2)
SOLO
Rotation Matrix in Three Dimensional Space (continue – 2)
One other way to write this is by using the following matrices:










−=
∆
010
100
000
1E










−
=
∆
001
000
100
2E









 −
=
∆
000
001
010
3E
[ ]
EnEnEnEn
nnn
nn
nn
nn
n
zyx
zyx
xy
xz
yz

⋅=++=









 −
+










−
+










−=










−
−
−
=×
ˆ
000
001
010
001
000
100
010
100
000
0
0
0
ˆ
321
Therefore
( ) [ ] [ ] [ ] ( ){ } [ ]( ) ( )EnnnnnInR xx

⋅=×=−××+×+=
∆
ˆexpˆexpcos1ˆˆsinˆˆ, 3333 θθθθθ
76
ROTATIONS
Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 3)
SOLO
Rotation Matrix in Three Dimensional Space (continue – 3)
One other way to obtain the same result is the following: compute first
[ ] ( ) [ ] [ ] [ ] [ ] ( ){ }
[ ] [ ] [ ] [ ][ ] [ ] ( )
[ ] [ ] [ ] [ ] ( )
[ ] [ ] [ ] θθ
θθ
θθ
θθθ
sinˆˆcosˆ
cos1ˆsinˆˆˆ
cos1ˆˆˆsinˆˆˆ
cos1ˆˆsinˆˆˆ,ˆ 3333
××+×=
−×−××+×=
−×××+××+×=
−××+×+×=×
nnn
nnnn
nnnnnn
nnnInnRn xx
( )
[ ] [ ] [ ]{ }θθ
θ
θ
sinˆˆcosˆ
ˆ,33
××+×= nnn
d
ndR x
Therefore
( )
[ ] ( )nRn
d
ndR
x
x
ˆ,ˆ
ˆ,
33
33
θ
θ
θ
×=
Since is independent of , we can integrate this equation to obtain again:[ ]×nˆ θ
( ) [ ]( ) ( )EnnnR x

⋅=×= ˆexpˆexpˆ,33 θθθ
Secondly compute
77
ROTATIONS
Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 4)
SOLO
Euler Parameters
The quaternion that describes the rotation was found to be:
( ) 32100 , qkqjqiqqq

+++== ρ
( )2/cos0 θ=q ( ) nˆ2/sin θρ =

( ) ( ) ( ) zyx nqnqnq 2/sin&2/sin&2/sin 111 θθθ ===
where satisfy the relationskji

,,
1−=⋅⋅=⋅=⋅=⋅ kjikkjjii

kijji

=⋅−=⋅ ijkkj

=⋅−=⋅ jkiik

=⋅−=⋅
The quaternions representing the vector in frames A and B arev

( ) ( )
( ) ( ) ( )
( )BBAA
vvvv

,0&,0 ==
The relation between those quaternions is given by:
( ) ( )
( ) ( )
( )( ) ( ) [ ] [ ][ ]{ } ( )
( )BBBA
vqqqvqqvqv

××+×+⋅+=−== ρρρρρρρ 0
2
000
*
2,0,,0,
We want to perform the same operations using 2x2 matrices with complex entries.






−
=




 −
=





=
10
01
,
0
0
,
01
10
321 σσσ
i
i
Pauli Spinor Matrices
For this let introduce the following definitions:
78
ROTATIONS
Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 5)
SOLO
Euler Parameters (continue – 1)
Define the operator as the transpose complex conjugate of a matrix A; i.e.:H
T *
( ) ( )TTH
AAA **
==
We can see that
222211 && σσσσσσ === HHH
Matrices having the property are called hermitian.AAH
=
Pauli Spinor Matrices are hermitian with zero trace.
UnitaryII x
H
x
H
122112211
11
10
01
01
10
01
10
σσσσσ
σσ
⇒=⇒=





=











=
=
They have the following properties:
UnitaryII
i
i
i
i
x
H
x
H
222222222
22
10
01
0
0
0
0
σσσσσ
σσ
⇒=⇒=





=




 −





 −
=
=
UnitaryII x
H
x
H
322332233
33
10
01
10
01
10
01
σσσσσ
σσ
⇒=⇒=





=





−





−
=
=






−
=




 −
=





=
10
01
,
0
0
,
01
10
321 σσσ
i
i
W. PAULI
79
ROTATIONS
Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 6)
SOLO
Euler Parameters (continue – 2)
Pauli Spinor Matrices properties (continue – 1):
321
0
0
0
0
01
10
σσσ i
i
i
i
i
=





−
=




 −






= 312
0
0
01
10
0
0
σσσ i
i
i
i
i
−=




−
=










 −
=
132
0
0
10
01
0
0
σσσ i
i
i
i
i
=





=





−




 −
= 123
0
0
0
0
10
01
σσσ i
i
i
i
i
−=





−
−
=




 −






−
=
213
0
0
01
10
01
10
10
01
σσσ i
i
i
i =




 −
=





−
=











−
=
231
0
0
01
10
10
01
01
10
σσσ i
i
i
i −=




 −
−=




 −
=





−





=
2233321 xiIi == σσσσσ
From those expressions we found that the relations between Pauli Matrices and
the quaternions are:
or
kijiii

=== 321 && σσσ
321 && σσσ ikijii −=−=−=







−
=




 −
=





=
10
01
,
0
0
,
01
10
321 σσσ
i
i
80
ROTATIONS
Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 7)
SOLO
Euler Parameters (continue – 3)
By similarity with quaternions definition:






−
=




 −
=





=
10
01
,
0
0
,
01
10
321 σσσ
i
i
( ) ( ) ( )( )knjninqq zyx

+++== 2/sin2/cos,0 θθρ
the 2x2 Rotation Matrix is given by:
( ) ( ) ( )( )
( ) ( )( )
( )






−
=





+−
−−−
=














−
+




 −
+





−





=
++−=
⋅−=
++−=
**
3012
1230
3210
332211220
22
3212222
10
01
0
0
01
10
10
01
ˆ2/sin2/cos
2/sin2/cosˆ,
αβ
βα
σσσ
σθθ
σσσθθθ
iqqiqq
iqqiqq
q
i
i
qqiq
qqqiIq
niI
nnniInR
x
x
zyxxx

where
1230 & qiqqiq −−=−=
∆∆
βα Cayley-Klein Parameters
81
ROTATIONS
Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 8)
SOLO
Euler Parameters (continue – 4)






−
=




 −
=





=
10
01
,
0
0
,
01
10
321 σσσ
i
i
1230 & qiqqiq −−=−=
∆∆
βα Cayley-Klein Parameters
Arthur Cayley
(1821-1895)
Felix C. Klein
(1849-1925)
Cayley-Klein Parameters are constrained by
1
2
3
2
2
2
1
2
0
**
=+++=+ qqqqββαα
The quaternions representing the vector in frames A and B
are
v

( ) ( )
( ) ( ) ( )
( )BBAA
vvvv

,0&,0 ==
Equivalently we define the 2x2 Matrix:
( )






−
+




 −
+





=++=
∆
10
01
0
0
01
10
32122 zAyAxAzAyAxA
A
x v
i
i
vvvvvV σσσ
We have:
( ) ( )








−+
−
=⋅=
zAyAxA
yAxAzAAA
x
vivv
ivvv
vV σ

22
( ) ( )








−+
−
=⋅=
zByBxB
yBxBzBBB
x
vivv
ivvv
vV σ

22
82
ROTATIONS
Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 9)
SOLO
Euler Parameters (continue – 5)






−
=




 −
=





=
10
01
,
0
0
,
01
10
321 σσσ
i
i
The relation between those matrices is
( ) ( )








−+
−
=⋅=
zAyAxA
yAxAzAAA
x
vivv
ivvv
vV σ

22
( ) ( )








−+
−
=⋅=
zByBxB
yBxBzBBB
x
vivv
ivvv
vV σ

22
( ) 





−
=





+−
−−−
= **
3012
1230
22
ˆ,
αβ
βα
θ
iqqiqq
iqqiqq
nR x






+−
−−−








−+
−






++−
++
=








−+
−
3012
1230
3012
1230
iqqiqq
iqqiqq
vivv
ivvv
qqiqq
iqqiqq
vivv
ivvv
zAyAxA
yAxAzA
zByBxB
yBxBzB
( )
( ) ( )
( )nRVnRV x
A
xx
B
x
ˆ,ˆ, 2222
*
2222 θθ=
or
83
ROTATIONS
Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 10)
SOLO






−
=




 −
=





=
10
01
,
0
0
,
01
10
321 σσσ
i
i
Elementary Features of the 2x2 Rotation Matrix
( ) ( ) 222222
ˆ,ˆ, xxx InRnR =−θθ(1) ( )[ ] ( )nRnR xx ˆ,ˆ, 22
1
22 θθ −=
−
(2) ( )[ ] ( ) 222222
ˆ,ˆ, xx
H
x InRnR =θθ ( )nR x
ˆ,22 θ Unitary
( )[ ] ( ) ( )( )[ ]
( ) ( )( )
( ) ( )( ) ( ) ( )[ ] 1
222222
22
2222
ˆ,ˆ,ˆ2/sin2/cos
ˆ2/sin2/cos
ˆ2/sin2/cosˆ,
−
=
=−=⋅+=
=⋅+=
=⋅−=
nRnRniI
niI
niInR
xxx
H
x
H
x
H
x
H
θθσθθ
σθθ
σθθθ
σσ




Proof
(3) ( ) 22
2
ˆ xIn =⋅σ

Proof ( ) ( )
( ) ( )( )[ ] ( ) ( )( )[ ]
( ) ( )( ) 22
22
22
2
2222
222222
ˆ2/sin2/cos
ˆ2/sin2/cosˆ2/sin2/cos
ˆ,ˆ,
xx
xx
xxx
InI
niIniI
nRnRI
=⋅+=
=⋅+⋅−=
=−=
σθθ
σθθσθθ
θθ


q.e.d.
q.e.d.
84
ROTATIONS
Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 11)
SOLO






−
=




 −
=





=
10
01
,
0
0
,
01
10
321 σσσ
i
i
Elementary Features of the 2x2 Rotation Matrix (continue – 1)
(4) ( ) 0ˆ =⋅σ

ntrace
(5) ( ) ( )[ ] ( ) ( ) ( ) ( ) 0ˆ,ˆˆˆ,:ˆ,ˆ, 222222 =⋅−⋅=⋅ nRnnnRnnR xxx θσσθσθ

(6) ( ) ( )
( ) ( )nRni
d
nndR
x
x
ˆ,ˆ
2
1ˆˆ,
22
22
θσ
θ
σθ 

⋅−=
⋅
( ) ( ) [ ] [ ] [ ] 0ˆ 321321 =++=++=⋅ σσσσσσσ tracentracentracennnntracentrace zyxzyx

Proof
q.e.d.
( ) ( ) ( ) ( )( )[ ] ( ) ( )( ) ( ) 222222 2/sinˆ2/cosˆˆ2/sin2/cosˆˆ, xxx IinnniInnR θσθσσθθσθ −⋅=⋅⋅−=⋅

Proof
( ) ( ) ( ) ( ) ( )( )[ ] ( )( ) ( ) 222222 2/sinˆ2/cosˆ2/sin2/cosˆˆ,ˆ xxx IinniInnRn θσθσθθσθσ −⋅=⋅−⋅=⋅

q.e.d.
Proof ( ) ( )
( ) ( )( )[ ]
( ) ( )( ) ( ) ( ) ( )( )[ ]σθθσσθθ
σθθ
θθ
σθ



⋅−⋅−=⋅−−=
⋅−=
⋅
niIniniI
niI
d
d
d
nndR
xx
x
x
ˆ2/sin2/cosˆ
2
1
ˆ2/cos
2
1
2/sin
2
1
ˆ2/sin2/cos
ˆˆ,
2222
22
22
q.e.d.
85
ROTATIONS
Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 12)
SOLO
Integrate the equation:






−
=




 −
=





=
10
01
,
0
0
,
01
10
321 σσσ
i
i
Elementary Features of the 2x2 Rotation Matrix (continue – 2)
( ) ( )
( ) ( )nRni
d
nndR
x
x
ˆ,ˆ
2
1ˆˆ,
22
22
θσ
θ
σθ 

⋅−=
⋅
( ) ( )
( ) ( )
( ) θσ
σθ
σθ
dni
nnR
nndR
x
x 


⋅−=
⋅
⋅
ˆ
2
1
ˆˆ,
ˆˆ,
22
22
( ) ( ) ( )



⋅=



⋅−= σ
θ
σ
θ
θ

n
i
ninR x
ˆ
2
expˆ
2
expˆ,22
( ) ( ) ( ) ( )



⋅−−=



⋅=



⋅=



⋅−
=
σ
θ
σ
θ
σ
θ
σ
θ σσ 

nininini
H
H
H
ˆ
2
ˆ
2
ˆ
2
ˆ
2
skew-hermitian
This is in accordance to the Theorem from Matrix Algebra that states:
Every unitary matrix U can be expressed as an exponential matrix
where H is hermitian (iH is skew-symmetric)
( )iHU exp=
86
ROTATIONS
Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 13)
SOLO
Let show that we get back the Rotation Matrix






−
=




 −
=





=
10
01
,
0
0
,
01
10
321 σσσ
i
i
Elementary Features of the 2x2 Rotation Matrix (continue – 3)
( ) ( )
( ) ( ) ( ) ( )
( ) ( )
( )σ
θθ
θ
σ
θθ
σ
θ
σ
θ
σ
θ
σ
θ
σ
θ
σ
θ
θ






⋅





−





=
+





+⋅





−





−⋅





−=
+⋅





−+⋅





−+⋅





−+⋅





−+=
=



⋅−=
niI
In
i
IniI
ninininiI
ninR
x
xxx
x
x
ˆ
2
sin
2
cos
2!4
1
ˆ
2!32!2
1
ˆ
2
ˆ
2!4
1
ˆ
2!3
1
ˆ
2!2
1
ˆ
2
ˆ
2
expˆ,
22
22
43
22
2
22
4
4
3
3
2
2
22
22
Therefore
( ) ( ) ( )σ
θθ
σ
θ
θ

⋅





−





=



⋅−= niIninR xx
ˆ
2
sin
2
cosˆ
2
expˆ, 2222
This is a generalization of the de Moivre expression for complex numbers:






−





=





−
2
sin
2
cos
2
exp
θθθ
ii
87
ROTATIONS
Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 14)
SOLO






−
=




 −
=





=
10
01
,
0
0
,
01
10
321 σσσ
i
i
Elementary Features of the 2x2 Rotation Matrix (continue – 4)
(7)
Proof
q.e.d.
( )( ) ( ) ( )21222121
ˆˆˆˆˆˆ nniInnnn x ×⋅+⋅=⋅⋅ σσσ

( )( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( )
( ) ( ) ( )
( ) ( ) ( ) 







×−×+×
×−××
+





⋅=








×−⋅×+×−
×+××+⋅
=








−−++−+−−
−+−−+++
=








−+
−








−+
−
=⋅⋅
zyx
yxz
zxy
xyz
xyyxyyxxzzyzzyzxxz
yzzyzxxzxyyxyyxxzz
zyx
yxz
zyx
yxz
nnnninn
nninnnn
inn
nninnnninn
nninnnninn
nnnninnnnnninnnninnnn
innnninnnnnnnninnnnnn
ninn
innn
ninn
innn
nn
212121
212121
21
21212121
21212121
212121212121212121
212121212121212121
222
222
111
111
21
ˆˆˆˆˆˆ
ˆˆˆˆˆˆ
10
01
ˆˆ
ˆˆˆˆˆˆˆˆ
ˆˆˆˆˆˆˆˆ
ˆˆ σσ

88
ROTATIONS
Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 15)
SOLO






−
=




 −
=





=
10
01
,
0
0
,
01
10
321 σσσ
i
i
Elementary Features of the 2x2 Rotation Matrix (continue – 5)
(8)
Proof
q.e.d.
( ) ( ) ( ) ( )
( )
( )





×











+











+











⋅−






⋅











−











=




⋅−



⋅−=
2121
2221
21222122
ˆˆ
2
sin
2
sinˆ
2
sin
2
cosˆ
2
cos
2
sin
ˆˆ
2
sin
2
sin
2
cos
2
cos
ˆ
2
expˆ
2
expˆ,ˆ,
nnnni
Inn
nininRnR
x
xx
φθφθφθ
σ
φθφθ
σ
φ
σ
θ
φθ


( ) ( ) ( ) ( )
( ) ( )
( )( )
( ) ( )
( ) ( )[ ]
( ) ( )σ
φθ
σ
φθ
σ
φθφθ
σ
φθ
σ
φθ
σσ
φθφθ
σ
φφ
σ
θθ
σ
φ
σ
θ
φθ






⋅











−⋅











−
×⋅+⋅











−











=
⋅











−⋅











−
⋅⋅











−











=






⋅





−











⋅





−





=






⋅−





⋅−=
21
21222122
21
2122
222122
21222122
ˆ
2
sin
2
cosˆ
2
cos
2
sin
ˆˆˆˆ
2
sin
2
sin
2
cos
2
cos
ˆ
2
sin
2
cosˆ
2
cos
2
sin
ˆˆ
2
sin
2
sin
2
cos
2
cos
ˆ
2
sin
2
cosˆ
2
sin
2
cos
ˆ
2
expˆ
2
expˆ,ˆ,
nini
nniInnI
nini
nnI
niIniI
nininRnR
xx
x
xx
xx
89
ROTATIONS
Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 16)
SOLO






−
=




 −
=





=
10
01
,
0
0
,
01
10
321 σσσ
i
i
Elementary Features of the 2x2 Rotation Matrix (continue – 6)
(9a)
( )
























−






−





=











−











=





−





=












−
−
=













−=



−=
2
cos
2
sin
2
sin
2
cos
01
10
2
sin
10
01
2
cos
2
sin
2
cos
0
2
2
0
exp
01
10
2
exp
2
expˆ,
122
122
ϕϕ
ϕϕ
ϕϕ
σ
ϕϕ
ϕ
ϕ
ϕ
σ
ϕ
ϕ
i
i
iiI
i
i
iixR
x
x
( )






























−





=




 −






−











=





−





=












−
=












 −
−=



−=
2
cos
2
sin
2
sin
2
cos
0
0
2
sin
10
01
2
cos
2
sin
2
cos
0
2
2
0
exp
0
0
2
exp
2
expˆ,
222
222
θθ
θθ
θθ
σ
θθ
θ
θ
θ
σ
θ
θ
i
i
iiI
i
i
iiyR
x
x
90
ROTATIONS
Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 17)
SOLO






−
=




 −
=





=
10
01
,
0
0
,
01
10
321 σσσ
i
i
Elementary Features of the 2x2 Rotation Matrix (continue – 7)
(9b)
( )
























−
=


















+











−





=






−






−











=





−





=












−
=













−
−=





−=
2
exp0
0
2
exp
2
sin
2
cos0
0
2
sin
2
cos
10
01
2
sin
10
01
2
cos
2
sin
2
cos
2
0
0
2exp
10
01
2
exp
2
expˆ,
322
322
ψ
ψ
ψψ
ψψ
ψψ
σ
ψϕ
ψ
ψ
ψ
σ
ψ
ψ
i
i
i
i
iiI
i
i
iizR
x
x
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
1 von 98

Recomendados

The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy... von
The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...
The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...National Cheng Kung University
1.6K views6 Folien
Fir 05 dynamics von
Fir 05 dynamicsFir 05 dynamics
Fir 05 dynamicsnguyendattdh
1.1K views65 Folien
Bt chuong 3 von
Bt chuong 3Bt chuong 3
Bt chuong 3Nguyễn Phụng
4.5K views3 Folien
Differential Equation and its Application in LR circuit von
Differential Equation and its Application in LR circuitDifferential Equation and its Application in LR circuit
Differential Equation and its Application in LR circuitKrushnaNemade
1.9K views14 Folien
(2) newton's law in circular motion von
(2) newton's law in circular motion(2) newton's law in circular motion
(2) newton's law in circular motionphysics101
2.1K views15 Folien
ME451_L17_Root locus - examples.pdf von
ME451_L17_Root locus - examples.pdfME451_L17_Root locus - examples.pdf
ME451_L17_Root locus - examples.pdfHamzaLiaqat24
117 views5 Folien

Más contenido relacionado

Was ist angesagt?

Eigen values and eigen vectors engineering von
Eigen values and eigen vectors engineeringEigen values and eigen vectors engineering
Eigen values and eigen vectors engineeringshubham211
8.1K views18 Folien
Es272 ch7 von
Es272 ch7Es272 ch7
Es272 ch7Batuhan Yıldırım
3.5K views13 Folien
Line integral & ML inequality von
Line integral & ML inequalityLine integral & ML inequality
Line integral & ML inequalitymalharrana101
2.6K views12 Folien
Lecture 14 15-time_domain_analysis_of_2nd_order_systems von
Lecture 14 15-time_domain_analysis_of_2nd_order_systemsLecture 14 15-time_domain_analysis_of_2nd_order_systems
Lecture 14 15-time_domain_analysis_of_2nd_order_systemsSyed Ali Raza Rizvi
11.3K views65 Folien
Robotics ch 4 robot dynamics von
Robotics ch 4 robot dynamicsRobotics ch 4 robot dynamics
Robotics ch 4 robot dynamicsCharlton Inao
990 views40 Folien
Cours11 Commande dans l'espace d'état von
Cours11 Commande dans l'espace d'étatCours11 Commande dans l'espace d'état
Cours11 Commande dans l'espace d'étatsarah Benmerzouk
283 views30 Folien

Was ist angesagt?(20)

Eigen values and eigen vectors engineering von shubham211
Eigen values and eigen vectors engineeringEigen values and eigen vectors engineering
Eigen values and eigen vectors engineering
shubham2118.1K views
Line integral & ML inequality von malharrana101
Line integral & ML inequalityLine integral & ML inequality
Line integral & ML inequality
malharrana1012.6K views
Lecture 14 15-time_domain_analysis_of_2nd_order_systems von Syed Ali Raza Rizvi
Lecture 14 15-time_domain_analysis_of_2nd_order_systemsLecture 14 15-time_domain_analysis_of_2nd_order_systems
Lecture 14 15-time_domain_analysis_of_2nd_order_systems
Syed Ali Raza Rizvi11.3K views
Robotics ch 4 robot dynamics von Charlton Inao
Robotics ch 4 robot dynamicsRobotics ch 4 robot dynamics
Robotics ch 4 robot dynamics
Charlton Inao990 views
Cours11 Commande dans l'espace d'état von sarah Benmerzouk
Cours11 Commande dans l'espace d'étatCours11 Commande dans l'espace d'état
Cours11 Commande dans l'espace d'état
sarah Benmerzouk283 views
Lecture 6 modelling-of_electrical__electronic_systems von Saifullah Memon
Lecture 6 modelling-of_electrical__electronic_systemsLecture 6 modelling-of_electrical__electronic_systems
Lecture 6 modelling-of_electrical__electronic_systems
Saifullah Memon4.1K views
My Lecture Notes from Linear Algebra von Paul R. Martin
My Lecture Notes fromLinear AlgebraMy Lecture Notes fromLinear Algebra
My Lecture Notes from Linear Algebra
Paul R. Martin3.9K views
T. Masrour - cours dynamique des systèmes - vibrations -chapitre2-n ddl (1) von tawfik-masrour
T. Masrour - cours dynamique des systèmes - vibrations -chapitre2-n ddl (1)T. Masrour - cours dynamique des systèmes - vibrations -chapitre2-n ddl (1)
T. Masrour - cours dynamique des systèmes - vibrations -chapitre2-n ddl (1)
tawfik-masrour9K views
Ppt Vibration Motion (Simple Harmonic Motion) von shendyaji
Ppt Vibration Motion (Simple Harmonic Motion)Ppt Vibration Motion (Simple Harmonic Motion)
Ppt Vibration Motion (Simple Harmonic Motion)
shendyaji5.4K views
The Controller Design For Linear System: A State Space Approach von Yang Hong
The Controller Design For Linear System: A State Space ApproachThe Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space Approach
Yang Hong1.6K views

Destacado

Multi sensor-fusion von
Multi sensor-fusionMulti sensor-fusion
Multi sensor-fusion万言 李
2.3K views42 Folien
Coordinate system transformation von
Coordinate system transformationCoordinate system transformation
Coordinate system transformationTarun Gehlot
4.5K views17 Folien
Lecture 1: Quadrotor von
Lecture 1: QuadrotorLecture 1: Quadrotor
Lecture 1: QuadrotorWong Kiong
4.4K views28 Folien
Robotics: 3D Movements von
Robotics: 3D MovementsRobotics: 3D Movements
Robotics: 3D MovementsDamian T. Gordon
6K views21 Folien
Properties of surfaces-Centre of gravity and Moment of Inertia von
Properties of surfaces-Centre of gravity and Moment of InertiaProperties of surfaces-Centre of gravity and Moment of Inertia
Properties of surfaces-Centre of gravity and Moment of InertiaJISHNU V
15.1K views48 Folien
How does a Quadrotor fly? A journey from physics, mathematics, control system... von
How does a Quadrotor fly? A journey from physics, mathematics, control system...How does a Quadrotor fly? A journey from physics, mathematics, control system...
How does a Quadrotor fly? A journey from physics, mathematics, control system...Corrado Santoro
66.3K views64 Folien

Destacado(7)

Multi sensor-fusion von 万言 李
Multi sensor-fusionMulti sensor-fusion
Multi sensor-fusion
万言 李2.3K views
Coordinate system transformation von Tarun Gehlot
Coordinate system transformationCoordinate system transformation
Coordinate system transformation
Tarun Gehlot4.5K views
Lecture 1: Quadrotor von Wong Kiong
Lecture 1: QuadrotorLecture 1: Quadrotor
Lecture 1: Quadrotor
Wong Kiong4.4K views
Properties of surfaces-Centre of gravity and Moment of Inertia von JISHNU V
Properties of surfaces-Centre of gravity and Moment of InertiaProperties of surfaces-Centre of gravity and Moment of Inertia
Properties of surfaces-Centre of gravity and Moment of Inertia
JISHNU V15.1K views
How does a Quadrotor fly? A journey from physics, mathematics, control system... von Corrado Santoro
How does a Quadrotor fly? A journey from physics, mathematics, control system...How does a Quadrotor fly? A journey from physics, mathematics, control system...
How does a Quadrotor fly? A journey from physics, mathematics, control system...
Corrado Santoro66.3K views

Similar a Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions

Solucao_Marion_Thornton_Dinamica_Classic (1).pdf von
Solucao_Marion_Thornton_Dinamica_Classic (1).pdfSolucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdfFranciscoJavierCaedo
76 views496 Folien
Tension coefficient method von
Tension coefficient methodTension coefficient method
Tension coefficient methodDivya Vishnoi
10.1K views27 Folien
robot kinematics von
robot kinematicsrobot kinematics
robot kinematicsSumit Kumar
989 views27 Folien
Kittel c. introduction to solid state physics 8 th edition - solution manual von
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manualamnahnura
103.5K views60 Folien
PART I.3 - Physical Mathematics von
PART I.3 - Physical MathematicsPART I.3 - Physical Mathematics
PART I.3 - Physical MathematicsMaurice R. TREMBLAY
539 views146 Folien
Unit-6_Final.docx von
Unit-6_Final.docxUnit-6_Final.docx
Unit-6_Final.docxSTUDY INNOVATIONS
25 views20 Folien

Similar a Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions(20)

Tension coefficient method von Divya Vishnoi
Tension coefficient methodTension coefficient method
Tension coefficient method
Divya Vishnoi10.1K views
Kittel c. introduction to solid state physics 8 th edition - solution manual von amnahnura
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
amnahnura103.5K views
Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION... von Mehmet Bariskan
Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...
Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...
Mehmet Bariskan3K views
Mathematics.pdf von zaraa30
Mathematics.pdfMathematics.pdf
Mathematics.pdf
zaraa3013 views
EMT_2A_cylindrical coordinates.pptx von 5610UmarIqbal
EMT_2A_cylindrical coordinates.pptxEMT_2A_cylindrical coordinates.pptx
EMT_2A_cylindrical coordinates.pptx
5610UmarIqbal17 views
Form 5 Additional Maths Note von Chek Wei Tan
Form 5 Additional Maths NoteForm 5 Additional Maths Note
Form 5 Additional Maths Note
Chek Wei Tan76.5K views
Jee advanced-2020-paper-1-solution von AnkitBiswas17
Jee advanced-2020-paper-1-solutionJee advanced-2020-paper-1-solution
Jee advanced-2020-paper-1-solution
AnkitBiswas1782 views
Differential geometry three dimensional space von Solo Hermelin
Differential geometry   three dimensional spaceDifferential geometry   three dimensional space
Differential geometry three dimensional space
Solo Hermelin9.2K views
Computer Graphic - Transformations in 2D von 2013901097
Computer Graphic - Transformations in 2DComputer Graphic - Transformations in 2D
Computer Graphic - Transformations in 2D
20139010973.3K views

Más de Solo Hermelin

5 introduction to quantum mechanics von
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanicsSolo Hermelin
16.7K views390 Folien
Stabilization of linear time invariant systems, Factorization Approach von
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachSolo Hermelin
2.7K views73 Folien
Slide Mode Control (S.M.C.) von
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Solo Hermelin
8.2K views215 Folien
Sliding Mode Observers von
Sliding Mode ObserversSliding Mode Observers
Sliding Mode ObserversSolo Hermelin
2.2K views24 Folien
Reduced order observers von
Reduced order observersReduced order observers
Reduced order observersSolo Hermelin
1.8K views30 Folien
Inner outer and spectral factorizations von
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizationsSolo Hermelin
1.4K views22 Folien

Más de Solo Hermelin(20)

5 introduction to quantum mechanics von Solo Hermelin
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
Solo Hermelin16.7K views
Stabilization of linear time invariant systems, Factorization Approach von Solo Hermelin
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization Approach
Solo Hermelin2.7K views
Slide Mode Control (S.M.C.) von Solo Hermelin
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)
Solo Hermelin8.2K views
Reduced order observers von Solo Hermelin
Reduced order observersReduced order observers
Reduced order observers
Solo Hermelin1.8K views
Inner outer and spectral factorizations von Solo Hermelin
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizations
Solo Hermelin1.4K views
Anti ballistic missiles ii von Solo Hermelin
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles ii
Solo Hermelin9.5K views
Anti ballistic missiles i von Solo Hermelin
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles i
Solo Hermelin10.8K views
12 performance of an aircraft with parabolic polar von Solo Hermelin
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar
Solo Hermelin1.7K views
11 fighter aircraft avionics - part iv von Solo Hermelin
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv
Solo Hermelin8.4K views
10 fighter aircraft avionics - part iii von Solo Hermelin
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii
Solo Hermelin6.1K views
9 fighter aircraft avionics-part ii von Solo Hermelin
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii
Solo Hermelin5.8K views
8 fighter aircraft avionics-part i von Solo Hermelin
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i
Solo Hermelin16.8K views
6 computing gunsight, hud and hms von Solo Hermelin
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hms
Solo Hermelin12.4K views
2 aircraft flight instruments von Solo Hermelin
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instruments
Solo Hermelin3.4K views
3 modern aircraft cutaway von Solo Hermelin
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutaway
Solo Hermelin24.8K views

Último

별헤는 사람들 2023년 12월호 전명원 교수 자료 von
별헤는 사람들 2023년 12월호 전명원 교수 자료별헤는 사람들 2023년 12월호 전명원 교수 자료
별헤는 사람들 2023년 12월호 전명원 교수 자료sciencepeople
37 views30 Folien
application of genetic engineering 2.pptx von
application of genetic engineering 2.pptxapplication of genetic engineering 2.pptx
application of genetic engineering 2.pptxSankSurezz
9 views12 Folien
Pollination By Nagapradheesh.M.pptx von
Pollination By Nagapradheesh.M.pptxPollination By Nagapradheesh.M.pptx
Pollination By Nagapradheesh.M.pptxMNAGAPRADHEESH
16 views9 Folien
Distinct distributions of elliptical and disk galaxies across the Local Super... von
Distinct distributions of elliptical and disk galaxies across the Local Super...Distinct distributions of elliptical and disk galaxies across the Local Super...
Distinct distributions of elliptical and disk galaxies across the Local Super...Sérgio Sacani
31 views12 Folien
Batrachospermum.pptx von
Batrachospermum.pptxBatrachospermum.pptx
Batrachospermum.pptxnisarahmad632316
43 views37 Folien
RemeOs science and clinical evidence von
RemeOs science and clinical evidenceRemeOs science and clinical evidence
RemeOs science and clinical evidencePetrusViitanen1
36 views96 Folien

Último(20)

별헤는 사람들 2023년 12월호 전명원 교수 자료 von sciencepeople
별헤는 사람들 2023년 12월호 전명원 교수 자료별헤는 사람들 2023년 12월호 전명원 교수 자료
별헤는 사람들 2023년 12월호 전명원 교수 자료
sciencepeople37 views
application of genetic engineering 2.pptx von SankSurezz
application of genetic engineering 2.pptxapplication of genetic engineering 2.pptx
application of genetic engineering 2.pptx
SankSurezz9 views
Pollination By Nagapradheesh.M.pptx von MNAGAPRADHEESH
Pollination By Nagapradheesh.M.pptxPollination By Nagapradheesh.M.pptx
Pollination By Nagapradheesh.M.pptx
MNAGAPRADHEESH16 views
Distinct distributions of elliptical and disk galaxies across the Local Super... von Sérgio Sacani
Distinct distributions of elliptical and disk galaxies across the Local Super...Distinct distributions of elliptical and disk galaxies across the Local Super...
Distinct distributions of elliptical and disk galaxies across the Local Super...
Sérgio Sacani31 views
A training, certification and marketing scheme for informal dairy vendors in ... von ILRI
A training, certification and marketing scheme for informal dairy vendors in ...A training, certification and marketing scheme for informal dairy vendors in ...
A training, certification and marketing scheme for informal dairy vendors in ...
ILRI13 views
Metatheoretical Panda-Samaneh Borji.pdf von samanehborji
Metatheoretical Panda-Samaneh Borji.pdfMetatheoretical Panda-Samaneh Borji.pdf
Metatheoretical Panda-Samaneh Borji.pdf
samanehborji16 views
Light Pollution for LVIS students von CWBarthlmew
Light Pollution for LVIS studentsLight Pollution for LVIS students
Light Pollution for LVIS students
CWBarthlmew6 views
"How can I develop my learning path in bioinformatics? von Bioinformy
"How can I develop my learning path in bioinformatics?"How can I develop my learning path in bioinformatics?
"How can I develop my learning path in bioinformatics?
Bioinformy23 views
How to be(come) a successful PhD student von Tom Mens
How to be(come) a successful PhD studentHow to be(come) a successful PhD student
How to be(come) a successful PhD student
Tom Mens473 views

Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions

  • 1. 1 NOTES ON ROTATIONS SOLO HERMELIN INITIAL INTERMEDIATE FINAL Updated: 3.03.07 Run This http://www.solohermelin.com
  • 2. 2 ROTATIONS TABLE OF CONTENT SOLO Rotation of a Rigid Body Mathematical Computation of a Rotation Rotation Matrix Computation of the Rotation Matrix Consecutive Rotations Decomposition of a Vector in Two Different Frames of Coordinates Differential Equation of the Rotation Matrices Computation of the Angular Velocity Vector from .AB←ω  ( ) ( )nRtC x B A ˆ,33 θ−= Computation of and as functions of .AB←ω  td dθ θ = td nd n ˆ ˆ = • Quaternions Computation of the Rotation Matrix Definition of the Quaternions Product of Quaternions Rotation Description Using the Quaternions
  • 3. 3 ROTATIONS TABLE OF CONTENT (continue – 1) SOLO Rotation as a Multiplication of Two Matrices Relations Between Quaternions and Euler Angles Description of Successive Rotations Using Quaternions Differential Equation of the Quaternions Computation of as a Function of the Quaternion and its Derivatives ( ) ( )t B AB←ω  Computation of as a Function of , and their Derivatives( ) ( )t B AB←ω  θ nˆ Differential Equation of the Quaternion Between Two Frames A and B Using the Angular Velocities of a Third Frame I Euler Angles The Piogram Successive Euler Rotations 321 →→ 231 →→ 312 →→ 132 →→ 213 →→ 123 →→ 121 →→ 131 →→ 212 →→ 232 →→ 313 →→ 323 →→
  • 4. 4 ROTATIONS TABLE OF CONTENT (continue – 2) SOLO Cayley-Klein (or Euler) Parameters and Related Quantities Rotation Matrix in Three Dimensional Space Euler Parameters Elementary Features of the 2x2 Rotation Matrix Gibbs Vector Differential Equation of Gibbs Vector References
  • 5. 5 ROTATIONS Rotation of a Rigid Body SOLO 23r 31r 12r1 3 2 P P 1 2 331r 23r 12r A rigid body in mechanics is defined as a system of mass points subject to the constraint that the distance between all pair of points remains constant through the motion. To define a point P in a rigid body it is enough to specify the distance of this point to three non-collinear points. This means that a rigid body is completely defined by three of its non-collinear points. Since each point, in a three dimensional space is defined by three coordinates, those three points are defined by 9 coordinates. But the three points are constrained by the three distances between them: 313123231212 && constrconstrconstr === Therefore a rigid body is completely defined by 9 – 3 = 6 degrees of freedom.
  • 6. 6 ROTATIONS Rotation of a Rigid Body (continue – 1) SOLO We have the following theorems about a rigid body: Euler’s Theorem (1775) The most general displacement of a rigid body with one point fixed is equivalent to a single rotation about some axis through that point. Chasles’ Theorem (1839) The most general displacement of a rigid body is a translation plus a rotation. Leonhard Euler 1707-1783 Michel Chasles 1793-1880
  • 7. 7 ROTATIONS Rotation of a Rigid Body (continue – 2) SOLO Proof of Euler’s Theorem O – Fixed point in the rigid body A,B – Two point in the rigid body at equal distance r from O.       == rOBOA __________ A’,B’ – The new position of A,B respectively. Since the body is rigid rOBOA == __________ '' Therefore A,B, A’,B’ are one a sphere with center O. α – plane passing through O such that A and A’ are at the same distance from it. β – plane passing through O such that B and B’ are at the same distance from it. PP’ – Intersection of the planes andα β The two spherical triangles APB and A’PB’ are equal. The arcs AA’ and BB’ are equal. That means that rotation around PP’ that moves A to A’ will move B to B’. q.e.d.
  • 8. 8 ROTATIONS Mathematical Computation of a Rotation SOLO A B C O θ φφ nˆ v  1v  We saw that every rotation is defined by three parameters: • Direction of the rotation axis , defined by two parameters.nˆ • The angle of rotation , defines the third parameter.θ Let rotate the vector around by a large angle , to obtain the new vector → = OAv  nˆ θ→ =OBv1  From the drawing we have: →→→→ ++== CBACOAOBv1  vOA  = → ( ) ( )θcos1ˆˆ −××= → vnnAC  Since direction of is: ( ) ( ) φν sinˆˆ&ˆˆ =×××× vnnvnn  and it’s length is: AC → ( )θφ cos1sin −v ( ) θsinˆ vnCB  ×= → Since has the direction and the absolute value CB → vn  ׈ θφsinsinv ( ) ( ) ( ) θθ sinˆcos1ˆˆ1 vnvnnvv  ×+−××+=
  • 9. 9 ROTATIONS Computation of the Rotation Matrix SOLO We have two frames of coordinates A and B defined by the orthogonal unit vectors and{ }AAA zyx ˆ,ˆ,ˆ { }BBB zyx ˆ,ˆ,ˆ The frame B can be reached by rotating the A frame around some direction by an angle .nˆ θ We want to find the Rotation Matrix that describes this rotation from A to B. ( )θ,ˆ33 nRC x B A = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) θθ θθ θθ sinˆˆcos1ˆˆˆˆˆ sinˆˆcos1ˆˆˆˆˆ sinˆˆcos1ˆˆˆˆˆ AAAB AAAB AAAB znznnxz ynynnxy xnxnnxx ×+−××+= ×+−××+= ×+−××+= Let write those equations in matrix form. ( ) [ ]( ) [ ]( ) ( ) [ ]( )           ×+           −××+           = 0 0 1 sinˆ 0 0 1 cos1ˆˆ 0 0 1 ˆ θθ AAAA B nnnx [ ]( )           − − − =× 0 0 0 ˆ xy xz yz A nn nn nn n [ ] 0ˆ =×ntrace Rotation Matrix
  • 10. 10 ROTATIONS Computation of the Rotation Matrix (continue – 1) SOLO ( ) [ ]( ) [ ]( ) ( ) [ ]( )           ×+           −××+           = 0 0 1 sinˆ 0 0 1 cos1ˆˆ 0 0 1 ˆ θθ AAAA B nnnx ( ) [ ]( ) [ ]( ) ( ) [ ]( )           ×+           −××+           = 0 1 0 sinˆ 0 1 0 cos1ˆˆ 0 1 0 ˆ θθ AAAA B nnny ( ) [ ]( ) [ ]( ) ( ) [ ]( )           ×+           −××+           = 1 0 0 sinˆ 1 0 0 cos1ˆˆ 1 0 0 ˆ θθ AAAA B nnnz ( ) [ ] [ ]( ) [ ]( ) ( ) [ ]( ) { } ( )A A A B AAA x A B xCnnnIx ˆ 0 0 1 sinˆcos1ˆˆˆ 33 =           ×+−××+= θθ ( ) [ ] [ ]( ) [ ]( ) ( ) [ ]( ) { } ( )A A A B AAA x A B yCnnnIy ˆ 0 1 0 sinˆcos1ˆˆˆ 33 =           ×+−××+= θθ ( ) [ ] [ ]( ) [ ]( ) ( ) [ ]( ) { } ( )A A A B AAA x A B zCnnnIz ˆ 1 0 0 sinˆcos1ˆˆˆ 33 =           ×+−××+= θθ Rotation Matrix (continue – 1)
  • 11. 11 ROTATIONS Computation of the Rotation Matrix (continue – 2) SOLO Ax Az Ay Bz By Bx  O nˆ θ θ θ θ [ ] [ ]( ) [ ]( ) ( ) [ ]( ) { } ( )θθθ ,ˆsinˆcos1ˆˆ 3333 nRnnnICC x AAA x A B A B =×+−××+==↑ The matrix has the following properties:[ ]( )A n׈ [ ]( ) { } [ ]( )ATA nn ×−=× ˆˆ [ ]( ) [ ]( ) =             −− −− −− =           − − −           − − − =×× 22 22 22 0 0 0 0 0 0 ˆˆ yxzyzx zyzxyx zxyxyz xy xz yz xy xz yz AA nnnnnn nnnnnn nnnnnn nn nn nn nn nn nn nn T x zzyzx zyyyx zxyxx nnI nnnnn nnnnn nnnnn ˆˆ 000 010 001 33 2 2 2 +−=             +           −= [ ]( ) [ ]( ) ( ) 213ˆˆ −=+−=×× AA nntrace [ ]( ) [ ] [ ] nn nn nn nn nnnnn xy xz yz zyx AT ˆˆ000 0 0 0 ˆˆ ×==           − − − =× [ ]( ) [ ]( ) [ ]( ) ( )[ ]( ) [ ]( ) [ ]( ) [ ]( )AATAAT x AAA nnnnnnnnInnn ×−=×+×−=×+−=××× ˆˆˆˆˆˆˆˆˆˆˆ 22 [ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( ) ( )T x AAAAAA nnInnnnnn ˆˆˆˆˆˆˆˆ 33 +−−=××−=×××× skew-symmetric Rotation Matrix (continue – 2)
  • 12. 12 ROTATIONS Computation of the Rotation Matrix (continue – 3) SOLO Ax Az Ay Bz By Bx  O nˆ θ θ θ θ [ ] [ ] [ ]( ) ( ) [ ]( ) ( ) ( ) [ ]( ) ( ){ } [ ] [ ]( ) [ ]( ) ( ) [ ]( ) { } ( ) ( ) B Axx AAA x TATATA x TA B CnRnR nnnI nnnIC =−=−= ×−−××+= ×+−××+= θθ θθ θθ ,ˆ,ˆ sinˆcos1ˆˆ sinˆcos1ˆˆ 3333 33 33 Note The last term can be writen in matrix form as Therefore In the same way End Note In fact is the matrix representation of the vector product:[ ][ ]vnn  ×× ˆˆ ( ) ( )vInnvvnn x T  33ˆˆˆˆ −→−⋅ ( ) ( ) ( ) ( ) vvnnnnvvnnvnn  −⋅=⋅−⋅=×× ˆˆˆˆˆˆˆˆ [ ][ ] T x nnInn ˆˆˆˆ 33 +−=×× ( )[ ] ( )[ ] [ ][ ][ ] [ ]×−=×××→×−=−⋅×=××× nnnnvnvvnnnvnnn ˆˆˆˆˆˆˆˆˆˆˆ  ( )[ ]{ } ( ) [ ][ ][ ][ ] [ ][ ]××−=××××→××−=×××× nnnnnnvnnvnnnn ˆˆˆˆˆˆˆˆˆˆˆˆ  Rotation Matrix (continue – 3)
  • 13. 13 ROTATIONS Computation of the Rotation Matrix (continue – 4) SOLO Ax Az Ay Bz By Bx  O nˆ θ θ θ θ [ ] [ ]( ) ( ) [ ]( ) ( ) ( ) [ ]( ) ( ){ } [ ] [ ]( ) [ ]( ) ( )( ) [ ]( ) ( ) θθ θθ θθ sin0cos123 sinˆcos1ˆˆ sinˆcos1ˆˆ 33 33 −−−= =×−−××+= =×+−××+= AAA x TATATA x B A ntracenntraceItrace nnnItracetraceC Therefore θcos21+= B ACtrace Let compute the trace (sum of the diagonal components of a matrix) of B AC Also we have [ ] [ ]( ) ( ) [ ]( ) ( ) ( ) [ ]( ) ( ){ } [ ] [ ]( )( ) [ ]( ) { } [ ] ( ) [ ]( ) { }=×−−+= =×−−+−+= =×+−××+= θθθ θθ θθ sinˆcos1ˆˆcos sinˆcos1ˆˆ sinˆcos1ˆˆ 33 3333 33 AT x AT xx TATATA x B A nnnI nnnII nnnIC ( ) θθθ sin 0 0 0 cos1cos 000 010 001 2 2 2           − − − −−             +           = xy xz yz zzyzx zyyyx zxyxx nn nn nn nnnnn nnnnn nnnnn Rotation Matrix (continue – 4)
  • 14. 14 ROTATIONS Computation of the Rotation Matrix (continue – 5) SOLO Ax Az Ay Bz By Bx  O nˆ θ θ θ θ Therefore we have ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )             −+−−+− +−−+−− −−+−−+ = θθθθθθ θθθθθθ θθθθθθ cos1cossincos1sincos1 sincos1cos1cossincos1 sincos1sincos1cos1cos 2 2 2 zxzyyzx xzyyzyx yzxzyxx B A nnnnnnn nnnnnnn nnnnnnn C We get ( )1 2 1 cos −= B AtraceCθ two solutions for θ If ; i.e. we obtain0sin ≠θ πθ ,0≠ ( ) ( )[ ] ( )θsin2/2,33,2 B A B Ax CCn −= ( ) ( )[ ] ( )θsin2/3,11,3 B A B Ay CCn −= ( ) ( )[ ] ( )θsin2/1,22,1 B A B Az CCn −= Rotation Matrix (continue – 5)
  • 15. 15 ROTATIONS Consecutive Rotations SOLO - Perform first a rotation of the vector , according to the Rotation Matrix to the vector . v  ( )1133 ,ˆ θnR x 1v  - Perform a second a rotation of the vector , according to the Rotation Matrix to the vector . 1v  ( )2233 ,ˆ θnR x 2v  ( )vnRv x  11331 ,ˆ θ= ( ) ( ) ( ) ( )vnRvnRnRvnRv xxxx  θθθθ ,ˆ,ˆ,ˆ,ˆ 3311332233122332 === The result of those two consecutive rotation is a rotation defined as: ( ) ( ) ( )1133223333 ,ˆ,ˆ,ˆ θθθ nRnRnR xxx = Let interchange the order of rotations, first according to the Rotation Matrix and after that according to the Rotation Matrix . ( )2233 ,ˆ θnR x ( )1133 ,ˆ θnR x The result of those two consecutive rotation is a rotation defined as: ( ) ( )22331133 ,ˆ,ˆ θθ nRnR xx Since in general, the matrix product is not commutative ( ) ( ) ( ) ( )2233113311332233 ,ˆ,ˆ,ˆ,ˆ θθθθ nRnRnRnR xxxx ≠ Therefore, in general, the consecutive rotations are not commutative. Rotation Matrix (continue – 6)
  • 16. 16 ROTATIONSSOLO INITIAL INTERMEDIATE FINAL Consecutive Rotations of a DiceRotation Matrix (continue – 7)
  • 17. 17 ROTATIONS Decomposition of a Vector in Two Different Frames of Coordinates SOLO We have two frames of coordinate systems A and B, with the same origin O. We can reach B from A by performing a rotation. Let describe the vector in both frames.v  BzBByBBxBAzAAyAAxA zvyvxvzvyvxvv  111111 ++=++= ( )           = zA yA xA A v v v v  ( )           = zB yB xB B v v v v  & ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) BBABBABBAA BBABBABBAA BBABBABBAA zzzyyzxxzz zzyyyyxxyy zzxyyxxxxx ˆˆˆˆˆˆˆˆˆˆ ˆˆˆˆˆˆˆˆˆˆ ˆˆˆˆˆˆˆ1ˆˆ ⋅+⋅+⋅= ⋅+⋅+⋅= ⋅+⋅+⋅=  ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] zABBABBABBA yABBABBABBA xABBABBABBA vzzzyyzxxz vzzyyyyxxy vzzxyyxxxxv ˆˆˆˆˆˆˆˆˆ ˆˆˆˆˆˆˆˆˆ ˆˆˆˆˆˆˆ1ˆ ⋅+⋅+⋅+ ⋅+⋅+⋅+ ⋅+⋅+⋅=  from which Rotation Matrix (continue – 8)
  • 18. 18 ROTATIONS Decomposition of a Vector in Two Different Frames of Coordinates (continue – 1) SOLO ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                     ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ =           zA yA xA BABABA BABABA BABABA zB yB xB v v v zzzyzx yzyyyx xzxyxx v v v ˆˆˆˆˆˆ ˆˆˆˆˆˆ ˆˆˆˆˆˆ ( ) ( )AB A B vCv  = where is the Transformation Matrix (or Direction Cosine Matrix – DCM) from frame A to frame B. B AC ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )          ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ==↑ BABABA BABABA BABABA B A B A zzzyzx yzyyyx xzxyxx CC ˆˆˆˆˆˆ ˆˆˆˆˆˆ ˆˆˆˆˆˆ : In the same way ( ) ( ) ( ) ( )BA B BB A A vCvCv  == −1 therefore ( ) 1− = B A A B CC Rotation Matrix (continue – 9)
  • 19. 19 ROTATIONS Decomposition of a Vector in Two Different Frames of Coordinates (continue – 2) SOLO ( ) ( ) ( ) [ ] ( ) ( ) [ ] ( ) ( ) ( )ATAAB A TB A TAAB A TAB A BTB vvvCCvvCvCvvv  ====2 Since the scalar product is independent of the frame of coordinates, we have [ ] [ ] [ ] 1− =→= B A TB A B A TB A CCICC [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )           =                         = 100 010 001 3,33,23,1 2,32,22,1 1,31,21,1 3,32,31,3 3,22,21,2 3,12,11,1 B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A TB A CCC CCC CCC CCC CCC CCC CC or ( ) ( )    =≠ == ==∑ = 3,2,10 3,2,11 ,, 3 1 jji iji kjCkiC ij k B A B A δ Those are 9 equations in , but by interchanging i with j we get the same conditions, therefore we have only 6 independent equations. ( ) 3,2,1,, =jijiC B A We see that the Rotation Matrix is ortho-normal (having real coefficients and the rows/columns are orthogonal to each other and of unit absolute value. Rotation Matrix (continue – 10) This means that the relation between the two coordinate systems is defined by 9 – 6 = 3 independent parameters.
  • 20. 20 ROTATIONS Differential Equations of the Rotation Matrices SOLO We want to develop the differential equation of the Rotation Matrix as a function of the Angular Velocity of the Rotation. Let define by: -the Rotation Matrix that defines a frame of coordinates B at the time t relative to some frame A. ( )tC B A -the Rotation Matrix that defines the frame of coordinates B at the time t+Δt relative to some frame A. ( )ttC B A ∆+ ( )φω ∆−,ˆ33xR -the Rotation Matrix from the frame of coordinates B at the time t to B at time t+Δt relative to some frame A. ( ) ( ) ( )tCRttC B Ax B A φω ∆−=∆+ ,ˆ33 and ( ) [ ] [ ] [ ] ( ) [ ]{ } [ ] [ ] [ ] [ ]             ∆       ∆ ×−      ∆ ××+= ∆×−∆−××+=∆− 2 cos 2 sinˆ2 2 sinˆˆ2 sinˆcos1ˆˆ,ˆ 2 33 3333 φφ ω φ ωω φωφωωφω x xx I IR Rotation Matrix (continue – 11)
  • 21. 21 ROTATIONS Differential Equations of the Rotation Matrices (continue – 1) SOLO Let differentiate the Rotation Matrix ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tC dt dIR tC t IR tC t IR t tCtCR t tCttC t C dt dC B A xxB A xx t B A xx t B A B Ax t B A B A t B A t B A φ φ φωφ φ φω φωφω θ       ∆ −∆− =      ∆ ∆ ∆ −∆− =       ∆ −∆− = ∆ −∆− = ∆ −∆+ = ∆ ∆ = →∆→∆ →∆→∆ →∆→∆ 3333 0 3333 0 3333 0 33 0 00 ,ˆ lim ,ˆ lim ,ˆ lim ,ˆ lim limlim ( ) [ ][ ] [ ] [ ]×−=                     ∆       ∆       ∆ ×−      ∆       ∆       ∆ ××= ∆ −∆− →∆→∆ ω φ φ φ ω φ φ φ ωω φ φω θθ ˆ 2 cos 2 2 sin ˆ 2 2 2 sin ˆˆlim ,ˆ lim 2 2 0 3333 0 xx IR and Therefore ( ) [ ] ( )tC dt d dt tdC B A B A φ ω ×−= ˆ Rotation Matrix (continue – 12)
  • 22. 22 ROTATIONS Differential Equations of the Rotation Matrices (continue – 2) SOLO The final result of the Rotation Matrix differentiation is: Since defines the unit vector of rotation and the rotation rate from B at time t to B at time t+Δt, relative to A, then is the angular velocity vector of the frame B relative to A, at the time t ωˆ dt dφ ω φ ˆ dt d ( ) ω φ ω ˆ dt dB AB =←  ( ) ( )[ ]( ) ( )tCt dt tdC B A B AB B A ×−= ←ω  By changing indixes A and B we obtain ( ) ( )[ ] ( ) ( )tCt dt tdC A B A BA A B ×−= ←ω  Rotation Matrix (continue – 13)
  • 23. 23 ROTATIONS Differential Equations of the Rotation Matrices (continue – 3) SOLO Let find the relation between and[ ]( )B AB ×←ω  [ ]( )A AB ×←ω  For any vector let perform the following computationsv  [ ]( ) ( ) [ ]( ) [ ]( )A AB B A B AB BB AB vCvv  ×=×=× ←←← ωωω [ ]( ) ( ) [ ]( ) ( ) [ ]( ) ( )BA B A AB B A AB A A B A AB B A AA AB B A vCCvCCCvC  ×=×=×= ←←← ωωω Since this is true for any vector we havev  [ ]( ) [ ]( ) A B A AB B A B AB CC ×=× ←← ωω  Pre-multiplying by and post-multiplying by we get: A BC B AC [ ]( ) [ ]( ) B A B AB A B A AB CC ×=× ←← ωω  Rotation Matrix (continue – 14)
  • 24. 24 ROTATIONS Differential Equations of the Rotation Matrices (continue – 4) SOLO Let differentiate the equation 33x A B B A ICC = to obtain [ ] ( ) [ ] ( ) 0=+×−=+×−=+ ←← dt dC C dt dC CCC dt dC CC dt dC A BB A B AB A BB A A B B A B AB A BB A A B B A ωω  Post-multiplying by we get A BC [ ] ( ) [ ] ( ) [ ] ( ) A B A AB A B B A B AB A B B AB A B A B CCCCC dt dC ×=×=×= ←←← ωωω  We obtained for the differentiation of the Rotation Matrix ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( )B AB A B A B A AB A B A BA A B ttCtCttCt dt tdC ×=×=×−= ←←← ωωω  Note We can see that ( )[ ] ( ) ( )[ ] ( ) ( ) ( )tttt ABBA A AB A BA ←←←← =−⇒×=×− ωωωω  End Note Rotation Matrix (continue – 15)
  • 25. 25 ROTATIONS Differential Equations of the Rotation Matrices (continue – 5) SOLO Suppose that we have a third frame of coordinates I (for example inertial) and we have the angular velocity vectors of frames A and B relative to I. We have [ ]( ) B I B IB B I C dt dC ×−= ←ω  [ ]( ) A I A IA A I C dt dC ×−= ←ω  A I B A B I CCC = dt dC CC dt dC dt dC A IB A A I B A B I += [ ]( ) [ ]( ) I A A I A IA B A I A B I B IB I A A IB A I A B I B A CCCCCC dt dC CC dt dC dt dC ×+×−=−= ←← ωω  or From which we get: [ ]( ) [ ]( )A IA B A B A B IB B A CC dt dC ×+×−= ←← ωω  Rotation Matrix (continue – 16)
  • 26. 26 ROTATIONSSOLO From the equation Computation of the Angular Velocity Vector from .AB←ω  ( ) ( )nRtC x B A ˆ,33 θ−= ( ) ( )[ ]( ) ( )tCt dt tdC B A B AB B A ×−= ←ω  we obtain ( )[ ]( ) ( ) ( )[ ]TB A B AB AB tC dt tdC t −=×←ω  Since the Rotation Matrix is defined also by and ( ) [ ] ( ) [ ]{ }θθθθ sinˆcos1ˆˆcosˆ, 3333 ×−−+=−= × nnnInRC T x B A ( )tC B A nˆθ we can compute as function of and their derivativesnˆθAB←ω  td dθ θ = td nd n ˆ ˆ = • (this is a long procedure described in the complementary work “Notes on Rotations”, and a simpler derivation will be given later, we give here the final result) [ ] ( ) θθθω sinˆcos1ˆˆˆ •• ← +−×−= nnnnAB  Rotation Matrix (continue – 17)
  • 27. 27 ROTATIONSSOLO Computation of and as functions of .AB←ω  td dθ θ = td nd n ˆ ˆ = • Let pre-multiply the equation by and use T nˆ[ ] ( ) θθθω sinˆcos1ˆˆˆ •• ← +−×−= nnnnAB  [ ] 0ˆˆ,0ˆˆ,1ˆˆ ==×= • nnnnnn TTT to obtain [ ] ( ) AB TTTT AB T nnnnnnnnn ← •• ← =→+−×−= ωθθθθω  ˆsinˆˆcos1ˆˆˆˆˆˆ Let pre-multiply the equation by and use[ ]×nˆ[ ] ( ) θθθω sinˆcos1ˆˆˆ •• ← +−×−= nnnnAB  [ ] [ ][ ] ( ) ••• −=−=××=× nnInnnnnnn x T ˆˆˆˆˆˆˆ,0ˆˆ 33 to obtain [ ] [ ] [ ][ ] ( ) [ ] ( ) [ ] θθθθθω sinˆˆcos1ˆsinˆˆcos1ˆˆˆˆˆˆ •••• ← ×+−=×+−××−×=× nnnnnnnnnnn AB  Let pre-multiply the equation by[ ] ( ) [ ] θθω sinˆˆcos1ˆˆ •• ← ×+−=× nnnn AB  [ ]×nˆ [ ][ ] [ ] ( ) [ ][ ] [ ] ( )θθθθω cos1ˆˆsinˆsinˆˆˆcos1ˆˆˆˆ −×+−=××+−×=×× •••• ← nnnnnnnnnn AB  Rotation Matrix (continue – 18)
  • 28. 28 ROTATIONS Computation of and as functions of (continue – 1) SOLO AB←ω  td dθ θ = td nd n ˆ ˆ = • We have two equations: ( ) [ ] [ ] ABnnnn ← •• ×=×+− ωθθ  ˆsinˆˆcos1ˆ [ ] ( ) [ ][ ] ABnnnnn ← •• ××=−×+− ωθθ  ˆˆcos1ˆˆsinˆ with two unknowns and • nˆ [ ] • × nn ˆˆ From those equations we get: ( )[ ] [ ] ( ) [ ][ ] θωθωθθ sinˆˆcos1ˆsincos1ˆ 22 ABAB nnnn ←← • ××−−×=+−  or ( ) [ ] ( ) [ ][ ] θωθωθ sinˆˆcos1ˆcos1ˆ2 ABAB nnnn ←← • ××−−×=−  Finally we obtain: AB T n ←= ωθ  ˆ [ ] [ ][ ] ABnnnn ← •             ××−×= ω θ  2 cotˆˆˆ 2 1 ˆ Rotation Matrix (continue – 19)
  • 29. 29 ROTATIONS Quaternions SOLO The quaternions method was introduced by Hamilton in 1843. It is based on Euler Theorem (1775) that states: The most general displacement of a rigid body with one point fixed is equivalent to a single rotation about some axis through that point. Therefore every rotation is defined by three parameters: • Direction of the rotation axis , defined by two parameters • The angle of rotation , defines the third parameter nˆ θ William Rowan Hamilton 1805 - 1865 ( ) ( ) ( ) θθ sinˆcos1ˆˆ1 vnvnnvv  ×+−××+= The rotation of around by angle is given by:nˆ θv  A B C O θ φφ nˆ v  1v  that can be writen ( )[ ] ( ) ( ) θθ sinˆcos1ˆˆ1 vnvvnnvv  ×+−−⋅+= or ( ) ( ) ( ) θθθ sinˆcos1ˆˆcos1 vnvnnvv  ×+−⋅+=
  • 30. 30 ROTATIONS Quaternions (continue – 1) SOLO Computation of the Rotation Matrix We found the Rotation Matrix that describes this rotation from A to B. ( )θ,ˆ33 nRC x B A = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) θθ θθ θθ sinˆˆcos1ˆˆˆˆˆ sinˆˆcos1ˆˆˆˆˆ sinˆˆcos1ˆˆˆˆˆ AAAB AAAB AAAB znznnxz ynynnxy xnxnnxx ×+−××+= ×+−××+= ×+−××+= ( ) [ ] [ ]( ) [ ]( ) ( ) [ ]( ) { } ( )A A A B AAA x A B xCnnnIx ˆ 0 0 1 sinˆcos1ˆˆˆ 33 =           ×+−××+= θθ ( ) [ ] [ ]( ) [ ]( ) ( ) [ ]( ) { } ( )A A A B AAA x A B yCnnnIy ˆ 0 1 0 sinˆcos1ˆˆˆ 33 =           ×+−××+= θθ ( ) [ ] [ ]( ) [ ]( ) ( ) [ ]( ) { } ( )A A A B AAA x A B zCnnnIz ˆ 1 0 0 sinˆcos1ˆˆˆ 33 =           ×+−××+= θθ or from which [ ] [ ]( ) [ ]( ) ( ) [ ]( ) { } ( )θθθ ,ˆsinˆcos1ˆˆ 3333 nRnnnICC x AAA x A B A B =×+−××+==↑
  • 31. 31 ROTATIONS Quaternions (continue – 2) SOLO Definition of the Quaternions The quaternions (4 parameters) were defined by Hamilton as a generalization of the complex numbers ( ) 32100 , qkqjqiqqq  +++== ρ ( )2/cos0 θ=q ( ) nˆ2/sin θρ =  ( ) ( ) ( ) zyx nqnqnq 2/sin&2/sin&2/sin 111 θθθ === where satisfy the relations:kji  ,, 1−=⋅=⋅=⋅ kkjjii  kijji  =⋅−=⋅ ijkkj  =⋅−=⋅ jkiik  =⋅−=⋅ 1−=⋅⋅ kji  the complex conjugate of is defined asq ( ) 32100 * , qkqjqiqqq  −−−=−= ρ
  • 32. 32 ROTATIONS Quaternions (continue – 3) SOLO Product of Quaternions Product of two quaternions andAq Bq ( )( ) ( )( )3210321000 ,, BBBBAAAABBAABA qkqjqiqqkqjqiqqqqq  ++++++== ρρ ( ) ( ) ( )3210321033221100 AAABBBBABABABABA qkqjqiqqkqjqiqqqqqqqqq  ++++++−−−= ( ) ( ) ( )122131132332 BABABABABABA qqqqkqqqqjqqqqi −+−+−+  therefore ( )( ) ( ) ( )[ ]BAABBABABABBAABA qqqqqqqq ρρρρρρρρ  ×++⋅−== 000000 ,,, Let use this expression to find ( )( ) ( )( ) 2 3 2 2 2 1 2 0 222 000 * 00 * 1ˆˆ 2 sin 2 cos,,,, qqqqnnqqqqqqqqq +++==⋅      +      =⋅+=−==−= θθ ρρρρρρ  The quaternion product can be writen in matrix form as: [ ] [ ]               ×− − =              ×+ − ==      = A A BxBB T BB B B AxAA T AA BA q Iq qq Iq q qq q q ρρρ ρ ρρρ ρ ρ      0 330 00 330 00 1−=⋅⋅=⋅=⋅=⋅ kjikkjjii  kijji  =⋅−=⋅ ijkkj  =⋅−=⋅ jkiik  =⋅−=⋅
  • 33. 33 ROTATIONS Quaternions (continue – 4) SOLO Rotation Description Using the Quaternions Let compute the expression: ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )[ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ]ρρρρρρρρρρ ρρρρρ   ××−×+×−+⋅⋅×+⋅−⋅= ×−⋅=−= AAAAAAAA AAAAA vvqvqvqvvvqqv qvvqvqvqqvq 00 2 000 0000 * , ,,,,0, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ){ } ( ) [ ] [ ][ ]{ } ( ) ( )A AAAA AAAAAAA vqq vvqqvv vvqvqvqvvv    ××+×−⋅+= ××+×−+⋅+⋅××= ××−×+×−+⋅+⋅−⋅= ρρρρρ ρρρρρρρ ρρρρρρρρρρ 22,0 2,0 ,0 0 2 0 0 2 0 00 2 0 Using the relations: ( ) ( ) [ ][ ] ( )[ ][ ] ( )[ ][ ] [ ] ( ) ( )[ ] [ ]      ×=×=× ××−=××=×× =⋅+ →    = = nnq nnnn q n q ˆsinˆ2/sin2/cos22 ˆˆcos1ˆˆ2/sin22 1 ˆ2/sin 2/cos 0 2 2 0 0 θθθρ θθρρ ρρ θρ θ     and ( ) ( ) [ ] [ ]( ) [ ]( ) ( ) [ ]( ) { } ( )AAAA x AB A B vnnnIvCv  θθ sinˆcos1ˆˆ33 ×−−××+== we obtain ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) [ ] [ ][ ]{ } ( ) ( )AAABB vqqvqqvqvv  ××+×−=−=== ρρρρρ 221,0,,0,,0 000 *
  • 34. 34 ROTATIONS Quaternions (continue – 5) SOLO Rotation Description Using the Quaternions (continue – 1) Using the fact that we obtain: [ ] [ ] [ ][ ]××+×−= ρρρ  22 033 qIC x B A           − − −           − − − +           − − − −           = 0 0 0 0 0 0 2 0 0 0 2 100 010 001 12 13 23 12 13 23 12 13 23 0 qq qq qq qq qq qq qq qq qq q             −− −− −− +           − − − +           = 2 2 2 13231 32 2 1 2 321 3121 2 2 2 3 1020 1030 2030 2222 2222 2222 022 202 220 100 010 001 qqqqqq qqqqqq qqqqqq qqqq qqqq qqqq             −−−+ +−−− −+−− = 2 2 2 110323120 3210 2 1 2 33021 20312130 2 2 2 3 2212222 2222122 2222221 qqqqqqqqqq qqqqqqqqqq qqqqqqqqqq 1 2 3 2 2 2 1 2 0 =+++ qqqq ( ) ( ) ( ) ( ) ( ) ( )             +−−−+ +−+−− −+−−+ = 2 3 2 2 2 1 2 010323120 3210 2 3 2 2 2 1 2 03021 20312130 2 3 2 2 2 1 2 0 22 22 22 qqqqqqqqqqqq qqqqqqqqqqqq qqqqqqqqqqqq C B A
  • 35. 35 ROTATIONS Quaternions (continue – 6) SOLO Rotation as a Multiplication of Two Matrices [ ] [ ] [ ][ ]××+×−= ρρρ  22 033 qIC x B A ( )[ ] [ ] [ ][ ]××+×−+= ρρρρρ  22 033 2 0 qIq x T [ ] [ ] [ ][ ] [ ] [ ][ ]××++××+×−= ρρρρρρρ  33033 2 0 2 x T x IqIq [ ] [ ]( ) [ ] [ ]( ) [ ] [ ][ ]××++×−×−= ρρρρρρ  33330330 x T xx IIqIq For any vector we can write ( ) ( ) ( )ρρρρρρ  ⋅−⋅=×× aaaa  or in matrix notation [ ][ ] [ ]( ) [ ] [ ] T x T x T x TT IIaIa ρρρρρρρρρρρρ  ≡+⇒−=×× 333333 Therefore we have [ ] [ ]( ) [ ] [ ]( ) [ ] [ ][ ]××++×−×−= ρρρρρρ  33330330 x T xx B A IIqIqC [ ] [ ]( ) [ ] [ ]( ) =+×−×−= T xx IqIq ρρρρ  330330 [ ]321 3 2 1 012 103 230 012 103 230 qqq q q q qqq qqq qqq qqq qqq qqq           +           − − −           − − − =
  • 36. 36 ROTATIONS Quaternions (continue – 7) SOLO Rotation as a Multiplication of Two Matrices (continue – 1) [ ] [ ][ ] [ ] [ ]           ×− ×−=                 − − −           − − − = ρ ρ ρρ           330 330 012 103 230 321 0123 1032 2301 x T x B A Iq Iq qqq qqq qqq qqq qqqq qqqq qqqq C [ ] [ ][ ] [ ] [ ]           ×− − ×−−=                 − − − −−−           −− −− −− = ρ ρ ρρ           330 330 012 103 230 321 0123 1032 2301 x T x B A Iq Iq qqq qqq qqq qqq qqqq qqqq qqqq C [ ] [ ][ ] [ ] [ ]           ×− ×−=                 − − −           − − − = T x x B A Iq Iq qqq qqq qqq qqq qqqq qqqq qqqq C ρ ρ ρρ          330 330 321 012 103 230 3012 2103 1230 [ ] [ ][ ] [ ] [ ]           − ×− −×−=                 −−− − − −           −− −− −− = T x x B A Iq Iq qqq qqq qqq qqq qqqq qqqq qqqq C ρ ρ ρρ          330 330 321 012 103 230 3012 2103 1230
  • 37. 37 ROTATIONS Quaternions (continue – 8) SOLO Relation Between Quaternions and Euler Angles
  • 38. 38 ROTATIONS Quaternions (continue – 9) SOLO Description of Successive Rotations Using Quaternions Let describe two consecutive rotations: - First rotation defined by the quaternion ( )                   == 1 11 1101 ˆ 2 sin, 2 cos, nqq θθ ρ  - Folowed by the second rotation defined by the quaternion ( )                   == 2 22 2202 ˆ 2 sin, 2 cos, nqq θθ ρ  After the first rotation the quaternion of the vector is transferred to 1 * 1 qvq After the second rotation we obtain ( ) ( ) ( )21 * 2121 * 1 * 221 * 1 * 2 qqvqqqqvqqqqvqq == Therefore the quaternion representing those two rotation is: ( ) ( )( ) ( )       ×            +      +      ⋅            −            = =×++⋅−==== 21 21 1 2 2 1 21 2121 21120210212010220110210 ˆˆ 2 sin 2 sinˆ 2 cosˆ 2 cos,ˆˆ 2 sin 2 sin 2 cos 2 cos ,,,, nnnnnn qqqqqqqqqq θθθθθθθθ ρρρρρρρρρ  ( ) ( )210 , qqqq == ρ  21 2121 0 ˆˆ 2 sin 2 sin 2 cos 2 cos 2 cos nnq ⋅            −            =      = θθθθθ 21 21 1 2 2 1 ˆˆ 2 sin 2 sinˆ 2 cosˆ 2 cosˆ 2 sin nnnnn ×            +      +      =      = θθθθθ ρ 
  • 39. 39 ROTATIONS Quaternions (continue – 10) SOLO Description of Successive Rotations Using Quaternions (continue – 1) ( ) ( )210 , qqqq == ρ  21 2121 0 ˆˆ 2 sin 2 sin 2 cos 2 cos 2 cos nnq ⋅            −            =      = θθθθθ 21 21 1 2 2 1 ˆˆ 2 sin 2 sinˆ 2 cosˆ 2 cosˆ 2 sin nnnnn ×            +      +      =      = θθθθθ ρ  Two consecutive rotations, followed by , are given by:1q 2q From those equations we can see that: 0ˆˆˆˆˆˆˆˆˆˆ 21212112211221  =×→×−=×→×=×= nnnnnnnnnnifonlyandifqqqq The rotations are commutative if and only if are collinear.21 ˆ&ˆ nn In matrix form those two rotations are given by: First Rotation: ( ) [ ] ( ) [ ]{ }111111331133 sinˆcos1ˆˆcosˆ, θθθθ ×−−+=− nnnInR T xx Second Rotation: ( ) [ ] ( ) [ ]{ }222222332233 sinˆcos1ˆˆcosˆ, θθθθ ×−−+=− nnnInR T xx Total Rotation: ( ) ( ) ( ) [ ] ( ) [ ]{ }θθθθθθ sinˆcos1ˆˆcosˆ,ˆ,ˆ, 331133223333 ×−−+=−−=− nnnInRnRnR T xxxx
  • 40. 40 ROTATIONS Quaternions (continue – 11) SOLO Description of Successive Rotations Using Quaternions (continue – 2) Let find the quaternion that describes the Euler Rotations through the angles respectively. Let write the rotations according to their order 123 →→ ϕθψ ,,             +                  +                  +      == 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos ϕϕθθψψ ijkqqqq xyz B A                    −            +            +                        +      = 2 sin 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos 2 cos 2 sin 2 cos ϕθϕθθϕϕθψψ kjik                          +                  = 2 sin 2 sin 2 sin 2 cos 2 cos 2 cos ϕθψϕθψ                         −                  + 2 cos 2 sin 2 sin 2 sin 2 cos 2 cos ϕθψϕθψ i                          +                  + 2 cos 2 sin 2 cos 2 sin 2 cos 2 sin ϕθψϕθψ j                          −                  + 2 sin 2 sin 2 cos 2 cos 2 cos 2 sin ϕθψϕθψ k 
  • 41. 41 ROTATIONS Quaternions (continue – 12) SOLO Differential Equation of the Quaternions Let define ( ) ( )ρ  ,0qtq B A = - the quaternion that defines the position of B frame relative to frame A at time t. ( ) ( )tqqttq B A ∆+∆+=∆+ ρ  ,00 - the quaternion that defines the position of B frame relative to frame A at time t+Δt. ( )             ∆       ∆ =∆ ∆t B A ntq ˆ 2 sin, 2 cos θθ - the quaternion that defines the position of B frame at time t+Δt relative to frame B at time t. We have the relation: ( ) ( ) ( )tqtqttq B A B A B A ∆=∆+ or ( ) ( ) ( ) ( )( ) ( ) ( ) ( )[ ] ( ) ( )( )ρρρρρρρρ θθ  ∆∆−+=∆∆+−=∆+∆+−=∆+=            ∆       ∆ =∆ ∆ ,,0,1,,,,,ˆ 2 sin, 2 cos 00000000 * qqqqqqqqttqtqntq B A B At B A therefore ( )( )             ∆ −      ∆ =∆∆− ∆tnqq ˆ 2 sin,1 2 cos,, 00 θθ ρρ  ( ) ( )             ∆ −      ∆ =∆∆ ∆tnqq ˆ 2 sin,1 2 cos,, 00 θθ ρρ  or
  • 42. 42 ROTATIONS Quaternions (continue – 13) SOLO Differential Equation of the Quaternions (continue – 1) ( ) ( )             ∆ −      ∆ =∆∆ ∆tnqq ˆ 2 sin,1 2 cos,, 00 θθ ρρ  Let divide both sides by and take the limit .0→∆ tt∆ ( ) ( ) ( )       =      =                   ∆ ∆       ∆       ∆       ∆ ∆       ∆ −      ∆ ==      ∆ ∆ ∆ ∆ ∆∆∆ →∆ tBttB t ntqnqn tt tq td d tt q ˆ 2 1 ,0ˆ 2 1 ,0,ˆ 2 2 sin 2 1 , 2 1 2 cos 2 1 ,lim 0 0 0 θθρ θ θ θ θ θ θ ρ   But is the instant angular velocity vector of frame B relative to frame A.tn∆ ˆθ ( ) ( ) t B AB nt ∆← = ˆθω  ( ) ( ) ( )( ) ( ) ( )ttn B AB B ABt ←←∆ == ωωθ  ,0ˆ,0 So we can write ( ) ( ) ( ) ( )ttqtq td d B AB B A B A ←= ω 2 1 This is the Differential equation of the quaternion that defines the position of B relative to A, at the time t as a function of the angular velocity vector of frame B relative to frame A, . ( )tq B A ( ) ( )t B AB←ω 
  • 43. 43 ROTATIONS Quaternions (continue – 14) SOLO Differential Equation of the Quaternions (continue – 2) Developing this equation, we get ( ) ( ) ( ) ( )ttqtq td d B AB B A B A ←= ω 2 1 ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )B AB B AB B AB B AB qtq dt d dt dq ←←←← ×+⋅−==      ωρωωρωρ ρ   00 0 , 2 1 ,0, 2 1 , from which ( )B AB dt dq ←⋅−= ωρ  2 10 ( ) ( ) ( )B AB B ABq dt d ←← ×+= ωρω ρ   0 2 1 or in matrix form [ ] [ ] ( ) ( )t Iq q dt d B AB x T ←           ×+ − =           ω ρ ρ ρ       330 0 2 1
  • 44. 44 ROTATIONS Quaternions (continue – 15) SOLO Differential Equation of the Quaternions (continue – 3)                           − − − −−− =                 ← ← ← zBAB yBAB xBAB qqq qqq qqq qqq q q q q dt d ω ω ω 012 103 230 321 3 2 1 0  [ ] [ ] ( ) ( )t Iq q dt d B AB x T ←           ×+ − =           ω ρ ρ ρ       330 0 2 1 B AAB xBAByBABzBAB xBABzBAByBAB yBABzBABxBAB zBAByBABxBAB q q q q q q q q q dt d ← ←←← ←←← ←←← ←←← Ω=                                   − − − −−− =                 2 1 0 0 0 0 2 1 3 2 1 0 3 2 1 0        ωωω ωωω ωωω ωωω After rearranging or ( )zBAByBABxBAB qqq dt dq ←←← ++−= ωωω 321 0 2 1 ( )zBAByBABxBAB qqq dt dq ←←← +−= ωωω 230 1 2 1 ( )zBAByBABxBAB qqq dt dq ←←← −+= ωωω 103 2 2 1 ( )zBAByBABxBAB qqq dt dq ←←← ++−= ωωω 012 3 2 1
  • 45. 45 ROTATIONS Quaternions (continue – 16) SOLO Pre-multiply the equation Computation of as a Function of the Quaternion and its Derivatives ( ) ( )t B AB←ω  [ ] [ ] ( ) ( )t Iq q dt d B AB x T ←           ×+ − =           ω ρ ρ ρ       330 0 2 1 by [ ] [ ][ ]×−− ρρ    330 xIq [ ] [ ][ ] [ ] [ ][ ] [ ] [ ] ( ) ( ) =           ×+ − ×−−=             ×−− ← • • t Iq Iq q Iq B AB x T xx ω ρ ρ ρρ ρ ρρ             330 330 0 330 2 1 [ ] [ ][ ][ ] ( ) ( ) [ ] [ ]( )[ ] ( ) ( ) ( ) ( )ttIIq tIq B BA B BAx TT x T B BAx T →→ → =−−+= =××−+= ωωρρρρρρ ωρρρρ   2 1 2 1 2 1 3333 2 0 33 2 0 Therefore ( ) ( ) [ ] [ ][ ]             ×−−= • • ← ρ ρρω      0 3302 q Iqt x B AB
  • 46. 46 ROTATIONS Quaternions (continue – 17) SOLO Computation of as a Function of the Quaternion and its Derivatives (continue – 1) But and are related. Differentiating the equation ( ) ( )t B AB←ω  we obtain • 0q • ρ  1 2 0 =+ ρρ T q ( ) ( ) [ ] [ ][ ] [ ] [ ]( ) =       ×−+−=             ×−−= •• • • ← ρρρ ρ ρρω       3300 0 330 22 xx B AB Iqq q Iqt [ ] [ ]( ) [ ] [ ] ••• +×− =       ×−+= ρ ρρρ ρρρρρ    0 033 2 0 330 0 2 1 2 q qIq Iq q T x x T From the equation •••• −=→=+ ρρρρ  TT q qqq 0 000 1 0 we obtain ( ) [ ] [ ]( ) • ← +×−= ρρρρω  T x B AB qIq q 033 2 0 0 2
  • 47. 47 ROTATIONS Quaternions (continue – 18) SOLO Computation of as a Function of , and their Derivatives( ) ( )t B AB←ω  θ nˆ Differentiate the quaternion ( )                   == nqq ˆ 2 sin, 2 cos,0 θθ ρ  to obtain             +            −=      = ••• nnqq ˆ 2 sinˆ 2 cos 2 , 2 sin 2 ,0 θθθθθ ρ   Substitute this in the equation ( ) ( ) [ ] [ ][ ]             ×−−= • • ← ρ ρρω      0 3302 q Iqt x B AB [ ]                       +            −       ×      −            −= • nn nIn x ˆ 2 sinˆ 2 cos 2 2 sin 2 ˆ 2 sin 2 cosˆ 2 sin2 33 θθθ θθ θθθ     [ ] [ ] •• ×      −×            −            +      +      = nnnnnnn ˆˆ 2 sin2ˆˆ 2 cos 2 sinˆ 2 cos 2 sin2ˆ 2 cosˆ 2 sin 222 θθθ θ θθθ θ θ θ  ( ) [ ] •• ← ×−−+= nnnnAB ˆˆcos1ˆsinˆ θθθω  Finally we obtain We recovered a result obtained before.
  • 48. 48 ROTATIONS Quaternions (continue – 18) SOLO Differential Equation of the Quaternion Between Two Frames A and B Using the Angular Velocities of a Third Frame I The relations between the components of a vector in the frames A, B and I arev  ( ) AB A IA I B A IB I B vCvCCvCv  === Using quaternions the same relations are given by ( ) B A A I IA I B A B I IB I B qqvqqqvqv *** == Therefore B A A I B I qqq = B I A I B A qqq * = Let perform the following calculations B A A I B A A I B I q dt d qqq dt d q dt d += &( )B IB B I B I qq dt d ←= ω 2 1 ( )A IA A I A I qq dt d ←= ω 2 1 and use ( ) ( ) B A A I B A A IA A I B IB B I q dt d qqqq += ←← ωω 2 1 2 1 ( ) ( ) B A A IA A I A I B IB B I A I B A qqqqqq dt d ←← −= ωω  1 ** 2 1 2 1 to obtain ( ) ( ) B A A IA B IB B A B A qqq dt d ←← −= ωω 2 1 2 1
  • 49. 49 ROTATIONS Quaternions (continue – 19) SOLO Differential Equatio of the Quaternion Between Two Frames A and B Using the Angular Velocities of a Third Frame I (continue – 1) Using the relations ABIAIB ←←← += ωωω  and ( ) ( ) B A A IA B A B IA qq ←← = ωω * ( ) ( ) B A A IA B IA B A qq ←← = ωω we have ( ) ( ) ( ) ( ) ( ) ( ) ( )    0 2 1 2 1 2 1 2 1 2 1 B A A IA B IA B A B AB B A B A A IA B IA B AB B A B A qqqqqq dt d ←←←←←← −+=−+= ωωωωωω from which ( ) ( ) B A A AB B AB B A B A qqq dt d ←← == ωω 2 1 2 1 Since BAAB ←← −= ωω  we get ( ) ( ) ( ) ( ) B A A BA B BA B A B A A AB B AB B A B A qqqqq dt d ←←←← −=−=== ωωωω 2 1 2 1 2 1 2 1 From we get1 * == B A A B B A B A qqqq A B B A qq = * Therefore       +      = B A A B B A A B q dt d qqq dt d 0 *B A B A A B A B qq dt d qq dt d       −=     
  • 50. 50 ROTATIONS Euler Angles SOLO The orientation of the Body Frame relative to the Inertial Frame has three degrees of freedom. We will use 3 Euler Angles that define the orientation by three consecutive rotations around the consecutive frame axes. [ ]           − = 11 1111 0 0 001 : θθ θθθ cs sc [ ]           − = 22 22 22 0 010 0 : θθ θθ θ cs sc [ ]           −= 100 0 0 : 33 33 33 θθ θθ θ cs sc The three basic Euler rotations around axes are described by the rotation matrices: ,3ˆ,2ˆ,1ˆ
  • 51. 51 ROTATIONS Euler Angles (continue – 1) SOLO Introduce the Piogram that represents the following notation: (from Pio R.L. “Symbolic Representations of Coordinate Transformations”, IEEE on Aerospace and Navigation Electronics, Vol. ANE-11,June 1964, pp.128-134) The Piogram
  • 52. 52 ROTATIONSEuler Angles (continue – 2) SOLO Rotation Around x Axis by an Angle .ϕ [ ]           − == ϕϕ ϕϕϕ cossin0 sincos0 001 x B AC BAAB xx      11 ϕϕω ==← [ ]           −=−= ϕϕ ϕϕϕ cossin0 sincos0 001 x A BC The Piogram (continue – 1)
  • 53. 53 ROTATIONSEuler Angles (continue – 3) SOLO Rotation Around y Axis by an Angle .θ [ ]           − == θθ θθ θ cos0sin 010 sin0cos y B AC BAAB yy  11 θθω ==← [ ]           − =−= θθ θθ θ cos0sin 010 sin0cos y A BC The Piogram (continue – 2)
  • 54. 54 ROTATIONSEuler Angles (continue – 4)SOLO Rotation Around z Axis by an Angle .ψ [ ]           −== 100 0cossin 0sincos ψψ ψψ ψ x B AC BAAB zz      11 ψψω ==← [ ]           − =−= 100 0cossin 0sincos ψψ ψψ ψ x A BC The Piogram (continue – 3)
  • 55. 55 ROTATIONS Euler Angles (continue – 5) SOLO Using the basic Euler Angles we can define the following 12 different rotations: (a) six rotations around three different axes: 321 →→ 231 →→ 312 →→ 132 →→ 213 →→ 123 →→ (b) six rotations such that the first and third are around the sam axes, but the second is different: 121 →→ 131 →→ 212 →→ 232 →→ 313 →→ 323 →→ Suppose that the Transfer Matrix from A to B is defined by three consecutive Euler Angles: around (unit vector in A Frame), around (unit vector in intermediate frame), around (unit vector in B Frame). B AC iθ Iiˆ jθ Interjˆ kθ Bkˆ [ ] [ ] [ ] [ ] [ ]TB A B A A B A B B Akkjjii B A CCCICCC ==→== −1 &θθθ
  • 56. 56 ROTATIONSEuler Angles (continue – 6) SOLO 123 →→Euler Angles rotations: using the Piogram 1.Rotation from A to A’ around the third axis by the angle ψ 2. Rotation from A’ to B’ around the third axis by the angle θ . 3. Rotation from B’ to B around the third axis by the angle ϕ . xAv yAv zAv yBv zBv xBv ϕ θ− ψ 'xAv 'yAv 'zAv 'xBv 'yBv 'zBv The Piogram (continue – 4)
  • 57. 57 ROTATIONSEuler Angles (continue – 7) SOLO 123 →→Euler Angles rotations: xAv yAv zAv yBv zBv xBv ϕ θ− ψ 'xAv 'yAv 'zAv 'xBv 'yBv 'zBv Piogram: Example 1: Computation of the relation between to using the PiogramyBv zAyAxA vvv ,, From the Piogram: ( ) ( ) θϕψθϕψϕψθϕψϕ cossinsinsinsincoscoscossinsinsincos zAyAxAyB vvvv ++++−= using the Piogram (continue – 1) The Piogram (continue – 5)
  • 58. 58 ROTATIONSEuler Angles (continue – 8)SOLO 123 →→Euler Angles rotations: xAv yAv zAv yBv zBv xBv ϕ θ− ψ 'xAv 'yAv 'zAv 'xBv 'yBv 'zBv Piogram: using the Piogram (continue – 2) Example 2: Computation of the matrix (1st column) using the Piogram B AC 1=xAv 0=yAv 0=zAv ψcos' =xAv ψsin' −=yAv 0' =zAv ψsin' −=yBv ψθcossin' =zBv ψθcoscos=xBv ψθϕ ψϕ cossincos sinsin + +=zBv ψθϕ ψϕ cossinsin sincos + +−=yBv ψcos ψcos ψsin ψsin θcos θsin θcos θsin ϕcos ϕsin ϕcos ϕsin ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )           +−+ ++− − =             θϕψθϕψϕψθϕψϕ θϕψθϕψϕψθϕψϕ θψθψθ ccssccscscss csssscccsssc ssccc CCC CCC CCC B A B A B A B A B A B A B A B A B A 3,32,31,3 3,22,21,2 3,12,11,1 The Piogram (continue – 6)
  • 59. 59 ROTATIONSEuler Angles (continue – 9) SOLO 123 →→Euler Angles rotations: xAv yAv zAv yBv zBv xBv ϕ θ− ψ 'xAv 'yAv 'zAv 'xBv 'yBv 'zBv Piogram: Example 3: Computation of the angular velocity using the Piogram using the Piogram (continue – 3) AB←ω  xAAB←ω yAAB←ω zAAB←ω 0 0 0 B ψ ψ− A θ θ 'A ϕ− ϕ 'B ( ) ( ) ( ) ( ) [ ] [ ] [ ]                     − − =           −−+           −+           =++=← ψ θ ϕ θ ψψθ ψψθ ϕθψθψψϕθψω        10 0 0 0 0 1 0 1 0 1 0 0 111 233 ' '' ' '' s csc scc xCyCz B B A B A A A A A A A AB The Piogram (continue – 7)
  • 60. 60 ROTATIONSEuler Angles (continue – 10)SOLO 123 →→Euler Angles rotations: Piogram: Example 4: Computation of the angular velocities and using the Piogram using the Piogram (continue – 4) IB←ω  IA←ω  ψ xBIB←ω yBIB←ω zBIB←ω ϕ θ− ψ θ ϕ A 'A 'B B xAIA←ω yAIA←ω zAIA←ω xBIB←ω yBIB←ω zBIB←ω B ϕ− ϕ− ψ− ψ− A'A xAIA←ω yAIA←ω zAIA←ω θ θ− 'B Piogram: ( ) [ ] [ ] [ ]                                               +           −−+           −−+           −−=           = ← ← ← ← ← ← ← zBIB yBIB xBIB zAIA yAIA xAIA A IA ω ω ωϕ ϕθθ ψ ψ ω ω ω ω 0 0 0 0 0 0 123     ( ) [ ] [ ] [ ]                                               +           +           +           =           = ← ← ← ← ← ← ← zAIA yAIA xAIA zBIB yBIB xBIB B IB ω ω ω ψ ψθθ ϕ ϕ ω ω ω ω     0 0 0 0 0 0 321 IAIBBAAAB xyz ←←← −=++= ωωϕθψω      '' 111 The Piogram (continue – 8)
  • 61. 61 ROTATIONS Euler Angles (continue – 9) SOLO 321 →→Euler Angles rotations: [ ] [ ] [ ]           − ++−− +−+ == φθφθθ φψφθψφψφθψθψ φψφθψφψφθψθψ ϕθψ ccscs sccssccssscs sscsccsssccc CB A 123                     − + − =           +− + − =           ← ← ← ψ θ ϕ θ ψϕθ ψϕθ ψθϕ ψθψθϕ ψθψθϕ ω ω ω       10 0 0 s csc scc s csc scc zBAB yBAB xBAB                     −=           ← ← ← zBAB yBAB xBAB csscs ccsc sc c ω ω ω θψθψθ ψθψθ ψψ θ ψ θ ϕ 0 0 1                +                  +                  +      == 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos ψψθθϕϕ kjiqqqq zyx B A                          −                  = 2 sin 2 sin 2 sin 2 cos 2 cos 2 cos0 ϕθψϕθψ q                         +                  = 2 cos 2 sin 2 sin 2 sin 2 cos 2 cos1 ϕθψϕθψ q                         −                  = 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos2 ϕθψϕθψ q                         +                  = 2 sin 2 sin 2 cos 2 cos 2 cos 2 sin3 ϕθψϕθψ q Piogram
  • 62. 62 ROTATIONS Euler Angles (continue – 10) SOLO 231 →→Euler Angles rotations: Piogram [ ] [ ] [ ]           +− − −+ == ϕθϕθψϕθϕθψθψ ϕθϕψψ ϕθϕθψϕθϕθψθψ ϕψθ ccssssccsssc scccs csscsssccscc C B A 132                     − − − =           − +− − =           ← ← ← θ ψ ϕ θθψ ψ θθψ θψθψϕ θψϕ θψθψϕ ω ω ω       0 10 0 csc s scc csc s scc zBAB yBAB xBAB                     − − =           ← ← ← zBAB yBAB xBAB ssccs ccsc sc c ω ω ω θψψθψ θψθψ θθ ψ θ ψ ϕ 0 0 1                +                  +                  +      == 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos θθψψϕϕ jkiqqqq yzx B A                          +                  = 2 sin 2 sin 2 sin 2 cos 2 cos 2 cos0 ϕθψϕθψ q                         −                  = 2 cos 2 sin 2 sin 2 sin 2 cos 2 cos1 ϕθψϕθψ q                         −                  = 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos2 ϕθψϕθψ q                         +                  = 2 sin 2 sin 2 cos 2 cos 2 cos 2 sin3 ϕθψϕθψ q
  • 63. 63 ROTATIONS Euler Angles (continue – 11) SOLO 312 →→Euler Angles rotations: Piogram [ ] [ ] [ ]           − ++− +−+ == ϕθϕϕθ θϕψθψϕψϕθψφψ θϕψθψϕψϕθψθψ θϕψ ccscs cscssccssccs csssccsssscc C B A 213                     − − + =           +− − + =           ← ← ← ψ ϕ θ ϕ ψψϕ ψψϕ ψϕθ ψϕψϕθ ψϕψϕθ ω ω ω       10 0 0 s scc csc s scc csc zBAB yBAB xBAB                     − −=           ← ← ← zBAB yBAB xBAB ccsss sccc cs c ω ω ω ϕψϕψϕ ψϕψϕ ψψ ϕ ψ ϕ θ 0 0 1                +                  +                  +      == 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos ψψϕϕθθ kijqqqq zxy B A                          +                  = 2 sin 2 sin 2 sin 2 cos 2 cos 2 cos0 ϕθψϕθψ q                         +                  = 2 cos 2 sin 2 sin 2 sin 2 cos 2 cos1 ϕθψϕθψ q                         +                  = 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos2 ϕθψϕθψ q                         −                  = 2 sin 2 sin 2 cos 2 cos 2 cos 2 sin3 ϕθψϕθψ q
  • 64. 64 ROTATIONS Euler Angles (continue – 12) SOLO 132 →→Euler Angles rotations: Piogram [ ] [ ] [ ]           +−−+ ++− − == ϕθϕθψϕψϕθϕθψ ϕθϕθψϕψϕθϕθψ θψψψθ θψϕ ccssssccsscs sccssccssccs scscc CB A 231                     − =           +− + + =           ← ← ← ϕ ψ θ ϕϕψ ϕϕψ ψ ϕψϕψθ ϕψϕψθ ϕψθ ω ω ω       0 0 10 csc scc s csc scc s zBAB yBAB xBAB                     − − =           ← ← ← zBAB yBAB xBAB sscsc ccsc sc c ω ω ω ϕψϕψψ ϕψϕψ ϕϕ ψ ϕ ψ θ 0 0 1                +                  +                  +      == 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos ϕϕψψθθ ikjqqqq xzy B A                          −                  = 2 sin 2 sin 2 sin 2 cos 2 cos 2 cos0 ϕθψϕθψ q                         +                  = 2 cos 2 sin 2 sin 2 sin 2 cos 2 cos1 ϕθψϕθψ q                         +                  = 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos2 ϕθψϕθψ q                         −                  = 2 sin 2 sin 2 cos 2 cos 2 cos 2 sin3 ϕθψϕθψ q
  • 65. 65 ROTATIONS Euler Angles (continue – 13) SOLO 213 →→Euler Angles rotations: Piogram [ ] [ ] [ ]           −+− − −+− == ϕθϕθψθψϕθψθψ ϕϕψϕψ ϕθϕθψθψϕθψθψ ψϕθ ccsccssscssc scccs csssccsssscc C B A 312                    − =           + + +− =           ← ← ← θ ϕ ψ θϕθ ϕ θϕθ θϕϕθψ θϕψ θϕϕθψ ω ω ω       0 10 0 scc s ccs scc s ccs zBAB yBAB xBAB           =           −− −− − =           ← ← ← zBAB yBAB xBAB sccss cscc cs c ω ω ω ϕθϕϕθ ϕθϕθ θθ ϕ θ ϕ ψ 0 0 1                +                  +                  +      == 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos θθϕϕψψ jikqqqq yxz B A                          −                  = 2 sin 2 sin 2 sin 2 cos 2 cos 2 cos0 ϕθψϕθψ q                         −                  = 2 cos 2 sin 2 sin 2 sin 2 cos 2 cos1 ϕθψϕθψ q                         +                  = 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos2 ϕθψϕθψ q                         +                  = 2 sin 2 sin 2 cos 2 cos 2 cos 2 sin3 ϕθψϕθψ q
  • 66. 66 ROTATIONS Euler Angles (continue – 14) SOLO 123 →→Euler Angles rotations: Piogram [ ] [ ] [ ]           +−+ ++− − == θϕψθϕψϕψθϕψϕ θϕψθϕψϕψθϕψϕ θψθψθ ψθϕ ccssccscscss csssscccsssc ssccc CB A 321                     − − =           +− + − =           ← ← ← ψ θ ϕ ϕθϕ ϕθϕ θ ϕθψϕθ ϕθψϕθ θψϕ ω ω ω       ccs scc s ccs scc s zBAB yBAB xBAB 0 0 01                     −=           ← ← ← zBAB yBAB xBAB cs sccc csssc c ω ω ω ϕϕ ϕθϕθ ϕθϕθθ θ ψ θ ϕ 0 0 1                +                  +                  +      == 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos ϕϕθθψψ ijkqqqq xyz B A                          +                  = 2 sin 2 sin 2 sin 2 cos 2 cos 2 cos0 ϕθψϕθψ q                         −                  = 2 cos 2 sin 2 sin 2 sin 2 cos 2 cos1 ϕθψϕθψ q                         +                  = 2 cos 2 sin 2 cos 2 sin 2 cos 2 sin2 ϕθψϕθψ q                         −                  = 2 sin 2 sin 2 cos 2 cos 2 cos 2 sin3 ϕθψϕθψ q
  • 67. 67 ROTATIONS Euler Angles (continue – 15) SOLO 121 →→Euler Angles rotations: Piogram [ ] [ ] [ ]           −−− ++− − == 212121212 212121212 11 11212 ϕϕϕθϕϕϕϕθϕϕθ ϕϕϕθϕϕϕϕθϕϕθ θϕθϕθ ϕθϕ sscccscccscs cssccccscsss scssc C B A                     − =           − + + =           ← ← ← 2 1 22 22 221 221 21 0 0 10 ϕ θ ϕ ϕϕθ ϕϕθ θ ϕθϕθϕ ϕθϕθϕ ϕθϕ ω ω ω       scs css c scs css c zBAB yBAB xBAB                     −− −=           ← ← ← zBAB yBAB xBAB scscs sscs cs s ω ω ω ϕθϕθθ ϕθϕθ ϕϕ θ ϕ θ ϕ 22 22 22 2 1 0 0 1    ( ) ( )             +                  +                  +      == 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos 2211 21 ϕϕθθϕϕ ϕϕ ijiqqqq xyx B A        +       =                        −                  = 2 cos 2 cos 2 sin 2 cos 2 sin 2 cos 2 cos 2 cos 212121 0 ϕϕθϕθϕϕθϕ q       +       =                        +                  = 2 sin 2 cos 2 sin 2 cos 2 cos 2 cos 2 cos 2 sin 212121 1 ϕϕθϕθϕϕθϕ q       −       =                        +                  = 2 cos 2 sin 2 sin 2 sin 2 sin 2 cos 2 sin 2 cos 212121 2 ϕϕθϕθϕϕθϕ q       −       =                        −                  = 2 sin 2 sin 2 sin 2 sin 2 cos 2 cos 2 sin 2 sin 212121 3 ϕϕθϕθϕϕθϕ q
  • 68. 68 ROTATIONS Euler Angles (continue – 16) SOLO 131 →→Euler Angles rotations: Piogram [ ] [ ] [ ]           +−−− +−−== 212121212 212121212 11 11312 ϕϕϕψϕϕϕϕψϕϕψ ϕϕϕψϕϕϕϕψϕϕψ ψϕψϕψ ϕψϕ ccscscssccss scccsssccccs ssscc C B A                     − − =           ← ← ← zBAB yBAB xBAB scccs csss sc s ω ω ω ϕψϕψψ ϕψϕψ ϕϕ ψ ϕ ψ ϕ 22 22 22 2 1 0 0 1    ( ) ( )             +                  +                  +      == 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos 2211 21 ϕϕψψϕϕ ϕϕ ikiqqqq xzx B A                      − − =           ← ← ← zBAB yBAB xBAB scccs csss sc s ω ω ω ϕψϕψψ ϕψϕψ ϕϕ ψ ϕ ψ ϕ 22 22 22 2 1 0 0 1          +       =                        −                  = 2 cos 2 cos 2 sin 2 cos 2 sin 2 cos 2 cos 2 cos 212121 0 ϕϕψϕψϕϕψϕ q       +       =                        +                  = 2 sin 2 cos 2 sin 2 cos 2 cos 2 cos 2 cos 2 sin 212121 1 ϕϕψϕψϕϕψϕ q       −       =                        −                  = 2 sin 2 sin 2 cos 2 sin 2 sin 2 sin 2 sin 2 cos 122121 2 ϕϕψϕψϕϕψϕ q       −       =                        +                  = 2 cos 2 sin 2 sin 2 sin 2 sin 2 cos 2 sin 2 cos 212121 3 ϕϕψϕψϕϕψϕ q
  • 69. 69 ROTATIONS Euler Angles (continue – 17) SOLO 212 →→Euler Angles rotations: Piogram [ ] [ ] [ ]           +−−+ −−− == 212122121 11 212122121 21122 θϕθθθθϕθϕθθθ ϕθϕφθ θϕθθθθϕθϕθθθ θϕθ cccsscsccssc sccss ccccsssscscc C B A                     −− =           −− + + =           ← ← ← 2 1 22 22 221 21 221 0 10 0 θ ϕ θ θθϕ ϕ θθϕ θϕθϕθ θϕθ θϕθϕθ ω ω ω       scs c css scs c css zBAB yBAB xBAB                     −− −−=           ← ← ← zBAB yBAB xBAB ccssc sscs cs s ω ω ω θϕϕθϕ θϕθϕ θθ ϕ θ ϕ θ 22 22 22 2 1 0 0 1    ( ) ( )             +                  +                  +      == 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos 2211 21 θθϕϕθθ θθ jijqqqq yxy B A        +       =                        −                  = 2 cos 2 cos 2 sin 2 cos 2 sin 2 cos 2 cos 2 cos 212121 0 θθϕθϕθθϕθ q       +       =                        −                  = 2 cos 2 sin 2 sin 2 sin 2 sin 2 cos 2 sin 2 cos 212121 1 θθϕθϕθθϕθ q       +       =                        +                  = 2 sin 2 cos 2 sin 2 cos 2 cos 2 cos 2 cos 2 sin 212121 2 θθϕθϕθθϕθ q       +       =                        +                  = 2 sin 2 sin 2 cos 2 sin 2 sin 2 sin 2 sin 2 cos 212121 3 θθϕθϕθθϕθ q
  • 70. 70 ROTATIONS Euler Angles (continue – 18) SOLO 232 →→Euler Angles rotations: Piogram [ ] [ ] [ ]           +−+ − −−− == 212122121 11 212122121 21322 θθθψθθψθθθψθ ϕθψψθ θθθψθθψθθθψθ θψθ ccscssscsscc sscsc scccscsssccc C B A                     + − =           + + − =           ← ← ← 2 1 22 22 221 21 221 0 10 0 θ ψ θ θθψ ψ θθψ θψθψθ θψθ θψθψθ ω ω ω       css c scs css c scs zBAB yBAB xBAB                     −− =           ← ← ← zBAB yBAB xBAB scscc csss sc s ω ω ω θψψθψ θψθψ θθ ψ θ ψ θ 22 22 22 2 1 0 0 1    ( ) ( )             +                  +                  +      == 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos 2211 21 θθψψθθ θθ jkjqqqq yzy B A        +       =                        −                  = 2 cos 2 cos 2 sin 2 cos 2 sin 2 cos 2 cos 2 cos 212121 0 θθψθψθθψθ q       −       =                        −                  = 2 sin 2 sin 2 sin 2 sin 2 cos 2 cos 2 sin 2 sin 212121 1 θθψθψθθψθ q       +       =                        +                  = 2 sin 2 cos 2 sin 2 cos 2 cos 2 cos 2 cos 2 sin 212121 2 θθψθψθθψθ q       −       =                        +                  = 2 cos 2 sin 2 sin 2 sin 2 sin 2 cos 2 sin 2 cos 212121 3 θθψθψθθψθ q
  • 71. 71 ROTATIONS Euler Angles (continue – 19) SOLO 313 →→Euler Angles rotations: Piogram [ ] [ ] [ ]           − +−−− +− == ϕϕψϕψ ψϕψϕψψψψϕψψψ ψϕψϕψψψψϕψψψ ψϕψ cscss cscccssccssc ssscccsscscc C B A 11 221212121 221212121 31132                     − + =           + − + =           ← ← ← 2 1 22 22 21 221 221 10 0 0 ψ ϕ ψ ϕ ψψϕ ψψϕ ψϕψ ψϕψϕψ ψϕψϕψ ω ω ω       c scs css c scs css zBAB yBAB xBAB                     −− −=           ← ← ← zBAB yBAB xBAB sccsc sscs cs s ω ω ω ϕψϕψϕ ψϕψϕ ψψ ϕ ψ ϕ ψ 22 22 22 2 1 0 0 1    ( ) ( )             +                  +                  +      == 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos 2211 21 ψψϕϕψψ ψψ kikqqqq zxz B A        +       =                        −                  = 2 cos 2 cos 2 sin 2 cos 2 sin 2 cos 2 cos 2 cos 212121 0 ψψϕψϕψψϕψ q       −       =                        +                  = 2 cos 2 sin 2 sin 2 sin 2 sin 2 cos 2 sin 2 cos 212121 1 ψψϕψϕψψϕψ q       −       =                        −                  = 2 sin 2 sin 2 sin 2 sin 2 cos 2 cos 2 sin 2 sin 212121 2 ψψϕψϕψψϕψ q       +       =                        +                  = 2 sin 2 cos 2 sin 2 cos 2 cos 2 cos 2 cos 2 sin 212121 3 ψψϕψϕψψϕψ q
  • 72. 72 ROTATIONS Euler Angles (continue – 20) SOLO 323 →→Euler Angles rotations: Piogram [ ] [ ] [ ]           +−−− −+− == θθψθψ ψθψψψθψψψϕθψ ψθψψψθψψψψθψ ψθψ csssc ssccscscsscc csscccsssccc C B A 11 221212121 221212121 31232                    − =           + + +− =           ← ← ← 2 1 22 22 21 221 221 10 0 0 ψ θ ψ θ ψψθ ψψθ ψθψ ψθψθψ ψθψθψ ω ω ω       c css scs c css scs zBAB yBAB xBAB                     − − =           ← ← ← zBAB yBAB xBAB ssccc csss sc s ω ω ω θψθψθ ψθψθ ψψ θ ψ θ ψ 22 22 22 2 1 0 0 1    ( ) ( )             +                  +                  +      == 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos 2211 21 ψψθθψψ ψψ kjkqqqq zyz B A        +       =                        −                  = 2 cos 2 cos 2 sin 2 cos 2 sin 2 cos 2 cos 2 cos 212121 0 ψψθψθψψθψ q       −       −=                        −                  = 2 sin 2 sin 2 cos 2 sin 2 sin 2 sin 2 sin 2 cos 212121 1 ψψθψθψψθψ q       −       =                        +                  = 2 cos 2 sin 2 sin 2 sin 2 sin 2 cos 2 sin 2 cos 212121 2 ψψθψθψψθψ q       +       =                        +                  = 2 sin 2 cos 2 sin 2 cos 2 cos 2 cos 2 cos 2 sin 212121 3 ψψθψθψψθψ q
  • 73. 73 ROTATIONS Cayley-Klein (or Euler) Parameters and Related Quantities SOLO Rotation Matrix in Three Dimensional Space We saw that the rotation of a vector is given byx  [ ] [ ] [ ] ( )θθ cos1ˆˆsinˆ' −××+×+= xnnxnxx  [ ] [ ] [ ] ( ){ } ( ) xnRxnnnI x  ˆ,cos1ˆˆsinˆ33 θθθ =−××+×+= The Rotation Matrix has the properties( ) [ ] [ ] [ ] ( ){ }θθθ cos1ˆˆsinˆˆ, 3333 −××+×+= ∆ nnnInR xx ( ) ( )[ ]( )333333 ˆ,ˆ, x T xx InRnR =θθOrtho-normal Unitary ( ) ( )[ ]( )conjugatecomplexInRnR x T xx == * 33 * 3333 ˆ,ˆ, θθ A Theorem from Matrix Algebra states: Every unitary matrix U can be expressed as an exponential matrix where H is hermitian (iH is skew-symmetric) ( )iHU exp= Let find the hermitian matrix that corresponds to the Unitary Rotation Matrix.
  • 74. 74 We found that the matrix has the following properties:[ ]×nˆ [ ] [ ] T x nnInn ˆˆˆˆ 33 +−=×× [ ] [ ] [ ] [ ]×−=××× nnnn ˆˆˆˆ [ ] [ ] [ ] [ ] ( )T x nnInnnn ˆˆˆˆˆˆ 33 +−−=×××× [ ] [ ]×−=× nn T ˆˆ skew-symmetric ROTATIONS Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 1) SOLO Rotation Matrix in Three Dimensional Space (continue – 1) Define: [ ]×= ∆ nM ˆθ Therefore [ ][ ] ( )T x nnInnM ˆˆˆˆ 33 222 +−=××= θθ [ ] MnM 333 ˆ θθ −=×−= ( ) [ ]( ) [ ] [ ] [ ] [ ][ ] ( ) [ ] θθ θ θ θθ θ θ θ θθ θθ θθ θ sinˆcos1ˆˆ ˆ !3 ˆ) !4!2 1(ˆ !3 1 ) !4!2 1( 11 !3 1) !4!2 1 ( !4 1 !3 1 !2 1 ˆexpexp 33 3 2 42 2 33 3 2 42 2 2 233 2 2 2 33 432 33 ×+−××+= ×      +−+×++−−×+=       +−+++−−+=       +−++−+= +++++=×= nnnI nnnI MMMI MMI MMMMInM x x x x x     ( ) [ ] [ ] [ ] ( ){ } [ ]( )×=−××+×+= ∆ nnnnInR xx ˆexpcos1ˆˆsinˆˆ, 3333 θθθθ
  • 75. 75 ROTATIONS Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 2) SOLO Rotation Matrix in Three Dimensional Space (continue – 2) One other way to write this is by using the following matrices:           −= ∆ 010 100 000 1E           − = ∆ 001 000 100 2E           − = ∆ 000 001 010 3E [ ] EnEnEnEn nnn nn nn nn n zyx zyx xy xz yz  ⋅=++=           − +           − +           −=           − − − =× ˆ 000 001 010 001 000 100 010 100 000 0 0 0 ˆ 321 Therefore ( ) [ ] [ ] [ ] ( ){ } [ ]( ) ( )EnnnnnInR xx  ⋅=×=−××+×+= ∆ ˆexpˆexpcos1ˆˆsinˆˆ, 3333 θθθθθ
  • 76. 76 ROTATIONS Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 3) SOLO Rotation Matrix in Three Dimensional Space (continue – 3) One other way to obtain the same result is the following: compute first [ ] ( ) [ ] [ ] [ ] [ ] ( ){ } [ ] [ ] [ ] [ ][ ] [ ] ( ) [ ] [ ] [ ] [ ] ( ) [ ] [ ] [ ] θθ θθ θθ θθθ sinˆˆcosˆ cos1ˆsinˆˆˆ cos1ˆˆˆsinˆˆˆ cos1ˆˆsinˆˆˆ,ˆ 3333 ××+×= −×−××+×= −×××+××+×= −××+×+×=× nnn nnnn nnnnnn nnnInnRn xx ( ) [ ] [ ] [ ]{ }θθ θ θ sinˆˆcosˆ ˆ,33 ××+×= nnn d ndR x Therefore ( ) [ ] ( )nRn d ndR x x ˆ,ˆ ˆ, 33 33 θ θ θ ×= Since is independent of , we can integrate this equation to obtain again:[ ]×nˆ θ ( ) [ ]( ) ( )EnnnR x  ⋅=×= ˆexpˆexpˆ,33 θθθ Secondly compute
  • 77. 77 ROTATIONS Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 4) SOLO Euler Parameters The quaternion that describes the rotation was found to be: ( ) 32100 , qkqjqiqqq  +++== ρ ( )2/cos0 θ=q ( ) nˆ2/sin θρ =  ( ) ( ) ( ) zyx nqnqnq 2/sin&2/sin&2/sin 111 θθθ === where satisfy the relationskji  ,, 1−=⋅⋅=⋅=⋅=⋅ kjikkjjii  kijji  =⋅−=⋅ ijkkj  =⋅−=⋅ jkiik  =⋅−=⋅ The quaternions representing the vector in frames A and B arev  ( ) ( ) ( ) ( ) ( ) ( )BBAA vvvv  ,0&,0 == The relation between those quaternions is given by: ( ) ( ) ( ) ( ) ( )( ) ( ) [ ] [ ][ ]{ } ( ) ( )BBBA vqqqvqqvqv  ××+×+⋅+=−== ρρρρρρρ 0 2 000 * 2,0,,0, We want to perform the same operations using 2x2 matrices with complex entries.       − =      − =      = 10 01 , 0 0 , 01 10 321 σσσ i i Pauli Spinor Matrices For this let introduce the following definitions:
  • 78. 78 ROTATIONS Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 5) SOLO Euler Parameters (continue – 1) Define the operator as the transpose complex conjugate of a matrix A; i.e.:H T * ( ) ( )TTH AAA ** == We can see that 222211 && σσσσσσ === HHH Matrices having the property are called hermitian.AAH = Pauli Spinor Matrices are hermitian with zero trace. UnitaryII x H x H 122112211 11 10 01 01 10 01 10 σσσσσ σσ ⇒=⇒=      =            = = They have the following properties: UnitaryII i i i i x H x H 222222222 22 10 01 0 0 0 0 σσσσσ σσ ⇒=⇒=      =      −       − = = UnitaryII x H x H 322332233 33 10 01 10 01 10 01 σσσσσ σσ ⇒=⇒=      =      −      − = =       − =      − =      = 10 01 , 0 0 , 01 10 321 σσσ i i W. PAULI
  • 79. 79 ROTATIONS Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 6) SOLO Euler Parameters (continue – 2) Pauli Spinor Matrices properties (continue – 1): 321 0 0 0 0 01 10 σσσ i i i i i =      − =      −       = 312 0 0 01 10 0 0 σσσ i i i i i −=     − =            − = 132 0 0 10 01 0 0 σσσ i i i i i =      =      −      − = 123 0 0 0 0 10 01 σσσ i i i i i −=      − − =      −       − = 213 0 0 01 10 01 10 10 01 σσσ i i i i =      − =      − =            − = 231 0 0 01 10 10 01 01 10 σσσ i i i i −=      − −=      − =      −      = 2233321 xiIi == σσσσσ From those expressions we found that the relations between Pauli Matrices and the quaternions are: or kijiii  === 321 && σσσ 321 && σσσ ikijii −=−=−=        − =      − =      = 10 01 , 0 0 , 01 10 321 σσσ i i
  • 80. 80 ROTATIONS Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 7) SOLO Euler Parameters (continue – 3) By similarity with quaternions definition:       − =      − =      = 10 01 , 0 0 , 01 10 321 σσσ i i ( ) ( ) ( )( )knjninqq zyx  +++== 2/sin2/cos,0 θθρ the 2x2 Rotation Matrix is given by: ( ) ( ) ( )( ) ( ) ( )( ) ( )       − =      +− −−− =               − +      − +      −      = ++−= ⋅−= ++−= ** 3012 1230 3210 332211220 22 3212222 10 01 0 0 01 10 10 01 ˆ2/sin2/cos 2/sin2/cosˆ, αβ βα σσσ σθθ σσσθθθ iqqiqq iqqiqq q i i qqiq qqqiIq niI nnniInR x x zyxxx  where 1230 & qiqqiq −−=−= ∆∆ βα Cayley-Klein Parameters
  • 81. 81 ROTATIONS Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 8) SOLO Euler Parameters (continue – 4)       − =      − =      = 10 01 , 0 0 , 01 10 321 σσσ i i 1230 & qiqqiq −−=−= ∆∆ βα Cayley-Klein Parameters Arthur Cayley (1821-1895) Felix C. Klein (1849-1925) Cayley-Klein Parameters are constrained by 1 2 3 2 2 2 1 2 0 ** =+++=+ qqqqββαα The quaternions representing the vector in frames A and B are v  ( ) ( ) ( ) ( ) ( ) ( )BBAA vvvv  ,0&,0 == Equivalently we define the 2x2 Matrix: ( )       − +      − +      =++= ∆ 10 01 0 0 01 10 32122 zAyAxAzAyAxA A x v i i vvvvvV σσσ We have: ( ) ( )         −+ − =⋅= zAyAxA yAxAzAAA x vivv ivvv vV σ  22 ( ) ( )         −+ − =⋅= zByBxB yBxBzBBB x vivv ivvv vV σ  22
  • 82. 82 ROTATIONS Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 9) SOLO Euler Parameters (continue – 5)       − =      − =      = 10 01 , 0 0 , 01 10 321 σσσ i i The relation between those matrices is ( ) ( )         −+ − =⋅= zAyAxA yAxAzAAA x vivv ivvv vV σ  22 ( ) ( )         −+ − =⋅= zByBxB yBxBzBBB x vivv ivvv vV σ  22 ( )       − =      +− −−− = ** 3012 1230 22 ˆ, αβ βα θ iqqiqq iqqiqq nR x       +− −−−         −+ −       ++− ++ =         −+ − 3012 1230 3012 1230 iqqiqq iqqiqq vivv ivvv qqiqq iqqiqq vivv ivvv zAyAxA yAxAzA zByBxB yBxBzB ( ) ( ) ( ) ( )nRVnRV x A xx B x ˆ,ˆ, 2222 * 2222 θθ= or
  • 83. 83 ROTATIONS Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 10) SOLO       − =      − =      = 10 01 , 0 0 , 01 10 321 σσσ i i Elementary Features of the 2x2 Rotation Matrix ( ) ( ) 222222 ˆ,ˆ, xxx InRnR =−θθ(1) ( )[ ] ( )nRnR xx ˆ,ˆ, 22 1 22 θθ −= − (2) ( )[ ] ( ) 222222 ˆ,ˆ, xx H x InRnR =θθ ( )nR x ˆ,22 θ Unitary ( )[ ] ( ) ( )( )[ ] ( ) ( )( ) ( ) ( )( ) ( ) ( )[ ] 1 222222 22 2222 ˆ,ˆ,ˆ2/sin2/cos ˆ2/sin2/cos ˆ2/sin2/cosˆ, − = =−=⋅+= =⋅+= =⋅−= nRnRniI niI niInR xxx H x H x H x H θθσθθ σθθ σθθθ σσ     Proof (3) ( ) 22 2 ˆ xIn =⋅σ  Proof ( ) ( ) ( ) ( )( )[ ] ( ) ( )( )[ ] ( ) ( )( ) 22 22 22 2 2222 222222 ˆ2/sin2/cos ˆ2/sin2/cosˆ2/sin2/cos ˆ,ˆ, xx xx xxx InI niIniI nRnRI =⋅+= =⋅+⋅−= =−= σθθ σθθσθθ θθ   q.e.d. q.e.d.
  • 84. 84 ROTATIONS Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 11) SOLO       − =      − =      = 10 01 , 0 0 , 01 10 321 σσσ i i Elementary Features of the 2x2 Rotation Matrix (continue – 1) (4) ( ) 0ˆ =⋅σ  ntrace (5) ( ) ( )[ ] ( ) ( ) ( ) ( ) 0ˆ,ˆˆˆ,:ˆ,ˆ, 222222 =⋅−⋅=⋅ nRnnnRnnR xxx θσσθσθ  (6) ( ) ( ) ( ) ( )nRni d nndR x x ˆ,ˆ 2 1ˆˆ, 22 22 θσ θ σθ   ⋅−= ⋅ ( ) ( ) [ ] [ ] [ ] 0ˆ 321321 =++=++=⋅ σσσσσσσ tracentracentracennnntracentrace zyxzyx  Proof q.e.d. ( ) ( ) ( ) ( )( )[ ] ( ) ( )( ) ( ) 222222 2/sinˆ2/cosˆˆ2/sin2/cosˆˆ, xxx IinnniInnR θσθσσθθσθ −⋅=⋅⋅−=⋅  Proof ( ) ( ) ( ) ( ) ( )( )[ ] ( )( ) ( ) 222222 2/sinˆ2/cosˆ2/sin2/cosˆˆ,ˆ xxx IinniInnRn θσθσθθσθσ −⋅=⋅−⋅=⋅  q.e.d. Proof ( ) ( ) ( ) ( )( )[ ] ( ) ( )( ) ( ) ( ) ( )( )[ ]σθθσσθθ σθθ θθ σθ    ⋅−⋅−=⋅−−= ⋅−= ⋅ niIniniI niI d d d nndR xx x x ˆ2/sin2/cosˆ 2 1 ˆ2/cos 2 1 2/sin 2 1 ˆ2/sin2/cos ˆˆ, 2222 22 22 q.e.d.
  • 85. 85 ROTATIONS Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 12) SOLO Integrate the equation:       − =      − =      = 10 01 , 0 0 , 01 10 321 σσσ i i Elementary Features of the 2x2 Rotation Matrix (continue – 2) ( ) ( ) ( ) ( )nRni d nndR x x ˆ,ˆ 2 1ˆˆ, 22 22 θσ θ σθ   ⋅−= ⋅ ( ) ( ) ( ) ( ) ( ) θσ σθ σθ dni nnR nndR x x    ⋅−= ⋅ ⋅ ˆ 2 1 ˆˆ, ˆˆ, 22 22 ( ) ( ) ( )    ⋅=    ⋅−= σ θ σ θ θ  n i ninR x ˆ 2 expˆ 2 expˆ,22 ( ) ( ) ( ) ( )    ⋅−−=    ⋅=    ⋅=    ⋅− = σ θ σ θ σ θ σ θ σσ   nininini H H H ˆ 2 ˆ 2 ˆ 2 ˆ 2 skew-hermitian This is in accordance to the Theorem from Matrix Algebra that states: Every unitary matrix U can be expressed as an exponential matrix where H is hermitian (iH is skew-symmetric) ( )iHU exp=
  • 86. 86 ROTATIONS Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 13) SOLO Let show that we get back the Rotation Matrix       − =      − =      = 10 01 , 0 0 , 01 10 321 σσσ i i Elementary Features of the 2x2 Rotation Matrix (continue – 3) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )σ θθ θ σ θθ σ θ σ θ σ θ σ θ σ θ σ θ θ       ⋅      −      = +      +⋅      −      −⋅      −= +⋅      −+⋅      −+⋅      −+⋅      −+= =    ⋅−= niI In i IniI ninininiI ninR x xxx x x ˆ 2 sin 2 cos 2!4 1 ˆ 2!32!2 1 ˆ 2 ˆ 2!4 1 ˆ 2!3 1 ˆ 2!2 1 ˆ 2 ˆ 2 expˆ, 22 22 43 22 2 22 4 4 3 3 2 2 22 22 Therefore ( ) ( ) ( )σ θθ σ θ θ  ⋅      −      =    ⋅−= niIninR xx ˆ 2 sin 2 cosˆ 2 expˆ, 2222 This is a generalization of the de Moivre expression for complex numbers:       −      =      − 2 sin 2 cos 2 exp θθθ ii
  • 87. 87 ROTATIONS Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 14) SOLO       − =      − =      = 10 01 , 0 0 , 01 10 321 σσσ i i Elementary Features of the 2x2 Rotation Matrix (continue – 4) (7) Proof q.e.d. ( )( ) ( ) ( )21222121 ˆˆˆˆˆˆ nniInnnn x ×⋅+⋅=⋅⋅ σσσ  ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )         ×−×+× ×−×× +      ⋅=         ×−⋅×+×− ×+××+⋅ =         −−++−+−− −+−−+++ =         −+ −         −+ − =⋅⋅ zyx yxz zxy xyz xyyxyyxxzzyzzyzxxz yzzyzxxzxyyxyyxxzz zyx yxz zyx yxz nnnninn nninnnn inn nninnnninn nninnnninn nnnninnnnnninnnninnnn innnninnnnnnnninnnnnn ninn innn ninn innn nn 212121 212121 21 21212121 21212121 212121212121212121 212121212121212121 222 222 111 111 21 ˆˆˆˆˆˆ ˆˆˆˆˆˆ 10 01 ˆˆ ˆˆˆˆˆˆˆˆ ˆˆˆˆˆˆˆˆ ˆˆ σσ 
  • 88. 88 ROTATIONS Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 15) SOLO       − =      − =      = 10 01 , 0 0 , 01 10 321 σσσ i i Elementary Features of the 2x2 Rotation Matrix (continue – 5) (8) Proof q.e.d. ( ) ( ) ( ) ( ) ( ) ( )      ×            +            +            ⋅−       ⋅            −            =     ⋅−    ⋅−= 2121 2221 21222122 ˆˆ 2 sin 2 sinˆ 2 sin 2 cosˆ 2 cos 2 sin ˆˆ 2 sin 2 sin 2 cos 2 cos ˆ 2 expˆ 2 expˆ,ˆ, nnnni Inn nininRnR x xx φθφθφθ σ φθφθ σ φ σ θ φθ   ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )[ ] ( ) ( )σ φθ σ φθ σ φθφθ σ φθ σ φθ σσ φθφθ σ φφ σ θθ σ φ σ θ φθ       ⋅            −⋅            − ×⋅+⋅            −            = ⋅            −⋅            − ⋅⋅            −            =       ⋅      −            ⋅      −      =       ⋅−      ⋅−= 21 21222122 21 2122 222122 21222122 ˆ 2 sin 2 cosˆ 2 cos 2 sin ˆˆˆˆ 2 sin 2 sin 2 cos 2 cos ˆ 2 sin 2 cosˆ 2 cos 2 sin ˆˆ 2 sin 2 sin 2 cos 2 cos ˆ 2 sin 2 cosˆ 2 sin 2 cos ˆ 2 expˆ 2 expˆ,ˆ, nini nniInnI nini nnI niIniI nininRnR xx x xx xx
  • 89. 89 ROTATIONS Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 16) SOLO       − =      − =      = 10 01 , 0 0 , 01 10 321 σσσ i i Elementary Features of the 2x2 Rotation Matrix (continue – 6) (9a) ( )                         −       −      =            −            =      −      =             − − =              −=    −= 2 cos 2 sin 2 sin 2 cos 01 10 2 sin 10 01 2 cos 2 sin 2 cos 0 2 2 0 exp 01 10 2 exp 2 expˆ, 122 122 ϕϕ ϕϕ ϕϕ σ ϕϕ ϕ ϕ ϕ σ ϕ ϕ i i iiI i i iixR x x ( )                               −      =      −       −            =      −      =             − =              − −=    −= 2 cos 2 sin 2 sin 2 cos 0 0 2 sin 10 01 2 cos 2 sin 2 cos 0 2 2 0 exp 0 0 2 exp 2 expˆ, 222 222 θθ θθ θθ σ θθ θ θ θ σ θ θ i i iiI i i iiyR x x
  • 90. 90 ROTATIONS Cayley-Klein (or Euler) Parameters and Related Quantities (continue – 17) SOLO       − =      − =      = 10 01 , 0 0 , 01 10 321 σσσ i i Elementary Features of the 2x2 Rotation Matrix (continue – 7) (9b) ( )                         − =                   +            −      =       −       −            =      −      =             − =              − −=      −= 2 exp0 0 2 exp 2 sin 2 cos0 0 2 sin 2 cos 10 01 2 sin 10 01 2 cos 2 sin 2 cos 2 0 0 2exp 10 01 2 exp 2 expˆ, 322 322 ψ ψ ψψ ψψ ψψ σ ψϕ ψ ψ ψ σ ψ ψ i i i i iiI i i iizR x x