Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.
Quan%ta%ve	  Digital	  Backchannel:	  Developing	  a	  Web-­‐Based	  Audience	  Response	  System	  for	  Measuring	  Audi...
Research	  Ques)on	  ì  How	  to	  create	  a	  	  quan)ta)ve	  digital	  backchannel	  with	  state	  of	  the	  art	  t...
Agile	  Teaching	  Students	   Lecturer	  Feedback	  adapted	  lecturing	  3	  
Feedback	  Qualita)ve	   Quan)ta)ve	  4	  
Feedback	  -­‐	  Backchannel	  Frontchannel	  Backchannel	  5	  
84	  %	  Quelle:	  APA	  25.4.2013,	  hPp://oesterreich.orf.at/stories/2581600/	  	  6	  
Backchannel	  7	  
Requirements	  ì  BYOD	  support	  ì  Con)nuous	  backchannel	  ac)vity	  ì  Ac)ons	  of	  students	  generate	  visibl...
Implementa)on	  Application ServerApplication ServerDatabase ServerApplication ServerApplication ServerInternetClient Appl...
Backchannel	  10	  
Dimension	  Criterias	  ì  Understandable	  to	  the	  student	  ì  Meaningful	  to	  the	  lecturer	  ì  Clear	  extre...
Dimensions	  ì  Happiness	  ì  Comprehension	  ì  Presenta)on	  Speed	  12	  
13	  
Happiness	  Comprehension	  Speed	  14	  
15	  
16	  
Findings	  ì  75%	  Par)cipa)on	  (~100	  Students)	  ì  BYOD	  (21	  Screen	  Res.,	  5	  OSs,	  18	  OS	  Versions,	  ...
Conclusion	  ì  Dimensions	  ì  BYOD	  ì  User	  Experience	  ì  Mo)va)on	  to	  par)cipate	  ì  Informa)on	  visuali...
Thank	  you!	  Chris)an	  Haintz	  chris)an.haintz@cnc.io	  19	  
20	  
21	  
Agile	  Development	  Cycle	  ì  1.	  Planning	  2.	  Requirements	  3.	  Analysis	  &	  Design	  4.	  Implementa)on	  5....
11	  Requirements	  1.  Constant	  and	  con)nuous	  ac)vity	  2.  Reduce	  distrac)on	  3.  Usability	  4.  Simplicity	  ...
24	  
Avatar	  -­‐	  Image	  Sprites	  	  25	  
1.	  Prototypes	  for	  Collec)ve	  Percep)on	  26	  
User	  Experience	  Problem	  27	  
Data	  Structure	  (JSON)	  28	  
Facts	  -­‐	  Test	  Lecture	  29	  
Raw	  Data	  -­‐	  Test	  Lecture	  30	  
31	  Ac)vity	  Test	  Lecture	  
Auditor	  Votes	  Histogram	  –	  Test	  Lecture	  32	  12.0%47.9%23.9%10.3%6.0%0.0%10.0%20.0%30.0%40.0%50.0%60.0%70.0%0% ...
Aging	  33	  !30$!20$!10$0$10$20$30$40$50$0$ 2$ 4$ 6$ 8$ 10$ 12$ 14$ 16$ 18$ 20$ 22$ 24$ 26$ 28$ 30$ 32$ 34$ 36$ 38$ 40$va...
Laptops65%DevicesMobileDevices35%Sta)s)cs	  Test	  Lecture	  34	  1.2$ 1.2$2.4$3.6$ 3.6$1.2$3.6$2.4$1.2$ 1.2$ 1.2$10.8$1.2...
Nächste SlideShare
Wird geladen in …5
×

Quantitative Digital Backchannel: Developing a Web-Based Audience Response System for Measuring Audience Perception in Large Lectures

1.319 Aufrufe

Veröffentlicht am

Masterdefense at Graz University of Technology, June 2013

Veröffentlicht in: Bildung, Technologie, Business
  • Als Erste(r) kommentieren

  • Gehören Sie zu den Ersten, denen das gefällt!

Quantitative Digital Backchannel: Developing a Web-Based Audience Response System for Measuring Audience Perception in Large Lectures

  1. 1. Quan%ta%ve  Digital  Backchannel:  Developing  a  Web-­‐Based  Audience  Response  System  for  Measuring  Audience  Percep%on  in  Large  Lectures      by  Chris)an  Haintz  1  
  2. 2. Research  Ques)on  ì  How  to  create  a    quan)ta)ve  digital  backchannel  with  state  of  the  art  technology  to  support  agile  teaching  in  large  lectures?  2  
  3. 3. Agile  Teaching  Students   Lecturer  Feedback  adapted  lecturing  3  
  4. 4. Feedback  Qualita)ve   Quan)ta)ve  4  
  5. 5. Feedback  -­‐  Backchannel  Frontchannel  Backchannel  5  
  6. 6. 84  %  Quelle:  APA  25.4.2013,  hPp://oesterreich.orf.at/stories/2581600/    6  
  7. 7. Backchannel  7  
  8. 8. Requirements  ì  BYOD  support  ì  Con)nuous  backchannel  ac)vity  ì  Ac)ons  of  students  generate  visible  impact  ì  Maximize  informa)on  while  keeping  it  simple  ì  …  8  
  9. 9. Implementa)on  Application ServerApplication ServerDatabase ServerApplication ServerApplication ServerInternetClient Application ServerAuditor InterfaceDBApplicationInterfaceMVC ApplicationLecturer InterfaceMVC ApplicationDBDBLoadBalancer9  
  10. 10. Backchannel  10  
  11. 11. Dimension  Criterias  ì  Understandable  to  the  student  ì  Meaningful  to  the  lecturer  ì  Clear  extremums  ì  Values  should  be  expectable  to  change  over  )me  11  
  12. 12. Dimensions  ì  Happiness  ì  Comprehension  ì  Presenta)on  Speed  12  
  13. 13. 13  
  14. 14. Happiness  Comprehension  Speed  14  
  15. 15. 15  
  16. 16. 16  
  17. 17. Findings  ì  75%  Par)cipa)on  (~100  Students)  ì  BYOD  (21  Screen  Res.,  5  OSs,  18  OS  Versions,  8  Browser)  ì  Maximize  meaningful  informa)on  ì  35%  in  between  of  extrema  and  neutral  posi)on  ì  Con)nuous  Ac)vity  ì  Ac)vity  decreases  significantly  over  )me  17  
  18. 18. Conclusion  ì  Dimensions  ì  BYOD  ì  User  Experience  ì  Mo)va)on  to  par)cipate  ì  Informa)on  visualiza)on  crucial  for  lecturer  How  to  create  a    quan)ta)ve  digital  backchannel  with  state  of  the  art  technology  to  support  agile  teaching  in  large  lectures?  18  
  19. 19. Thank  you!  Chris)an  Haintz  chris)an.haintz@cnc.io  19  
  20. 20. 20  
  21. 21. 21  
  22. 22. Agile  Development  Cycle  ì  1.  Planning  2.  Requirements  3.  Analysis  &  Design  4.  Implementa)on  5.  Tes)ng  and  Evalua)on    22  
  23. 23. 11  Requirements  1.  Constant  and  con)nuous  ac)vity  2.  Reduce  distrac)on  3.  Usability  4.  Simplicity  5.  Support  BYOD  policy  6.  Responsive  Design  7.  Auditor  impact  8.  Reduce  informa)on  9.  Cross-­‐plaiorm  capabili)es  10.  Interna)onaliza)on  11.  Maximize  meaningful  informa)on  23  
  24. 24. 24  
  25. 25. Avatar  -­‐  Image  Sprites    25  
  26. 26. 1.  Prototypes  for  Collec)ve  Percep)on  26  
  27. 27. User  Experience  Problem  27  
  28. 28. Data  Structure  (JSON)  28  
  29. 29. Facts  -­‐  Test  Lecture  29  
  30. 30. Raw  Data  -­‐  Test  Lecture  30  
  31. 31. 31  Ac)vity  Test  Lecture  
  32. 32. Auditor  Votes  Histogram  –  Test  Lecture  32  12.0%47.9%23.9%10.3%6.0%0.0%10.0%20.0%30.0%40.0%50.0%60.0%70.0%0% 1,10% 11,20% 21,30% >30%%"auditors"#"votes"Auditor"Votes"Histogram"
  33. 33. Aging  33  !30$!20$!10$0$10$20$30$40$50$0$ 2$ 4$ 6$ 8$ 10$ 12$ 14$ 16$ 18$ 20$ 22$ 24$ 26$ 28$ 30$ 32$ 34$ 36$ 38$ 40$value&[%]&*me&[minutes]&Different&Aging&Approaches&speed$(no$aging)$ speed$(linear$aging)$ speed$(quadra:c$aging)$0.10.20.30.40.50.60.70.80.91.010 2 3 4 5 6 7 8 9valueage [minutes]
  34. 34. Laptops65%DevicesMobileDevices35%Sta)s)cs  Test  Lecture  34  1.2$ 1.2$2.4$3.6$ 3.6$1.2$3.6$2.4$1.2$ 1.2$ 1.2$10.8$1.2$ 1.2$13.3$16.9$7.2$8.4$6.0$7.2$4.8$0.0$2.0$4.0$6.0$8.0$10.0$12.0$14.0$16.0$18.0$20.0$240x320$320x344$320x480$320x568$360x592$360x640$480x800$601x906$640x360$720x1230$720x1280$768x1024$1100x2100$1280x720$1280x800$1366x768$1440x900$1600x900$1680x1050$1920x1080$1920x1200$visits%[%]% Screen%Resolu2on%43.4$24.1$19.3$6.0$3.6$1.2$ 1.2$ 1.2$0.0$5.0$10.0$15.0$20.0$25.0$30.0$35.0$40.0$45.0$50.0$Chrome$ Firefox$ Safari$ Android$Browser$Opera$ Internet$Explorer$Mozilla$CompaEble$Agent$Safari$(inIapp)$visits%[%]% Browser%7"8"Vista"XP"x86_64"i686"10.8"10.7"10.6"4.2.2"4.1.x"4.0.x"2.3.x"2.1.x"6.1.x"6.0.x"5.0.x"5.1.x"0.0"5.0"10.0"15.0"20.0"25.0"30.0"35.0"Windows" Macintosh" Android" iOS" Linux"visits%[%]% Opera.ng%System%Versions%

×