Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

Math trainer as a chatbot via system(push) messages for Android

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige

Hier ansehen

1 von 38 Anzeige

Weitere Verwandte Inhalte

Ähnlich wie Math trainer as a chatbot via system(push) messages for Android (20)

Weitere von Educational Technology (20)

Anzeige

Aktuellste (20)

Math trainer as a chatbot via system(push) messages for Android

  1. 1. W I S S E N T E C H N I K L E I D E N S C H A F T https://www.tugraz.at/institutes/isds/home/ Math trainer as a chatbot via system(push) messages for Android Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  2. 2. 2 Thema oder andere gleichbleibende Information Table of contents 1. Introduction 2. Goals and problems 3. Technologies 4. Implementation 5. Results 6. Conclusion Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  3. 3. 3 Introduction Chatbots What are they? computer program designed to simulate conversations with human users intelligent software clients with the possibility of interaction (texting, speaking) designed to mimic human behavior and responses Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  4. 4. 4 Introduction Chatbots History ELIZA - first chatbot occurrence dates back to 1966 invented for multiple goals, one of those to pass the Turing test ALICE started development of AIML (Artificial Intelligence Markup Language) SmarterChild, Watson AI Bixby, Siri, Alexa, Cortana Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  5. 5. 5 Introduction Chatbots in education Why? conducted studies have shown advantages in learning environments rise in motivation feeling more comfortable improved communication and information processing increase of engagement way of building long-lasting knowledge easier and faster learning of new topics productivity increase Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  6. 6. 6 Introduction Chatbots in education Steve human-like shape chatbot, provided both textual and voice support Sam human child shape with the goal of improving basic children abilities Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  7. 7. 7 Introduction Chatbots in education Autotutor combines latent semantic analysis with a database of questions establishes a dialogue with the user Guilly voice assistant chatbot that taught children how to recycle Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  8. 8. 8 Introduction Category of chatbots Different types and categories of chatbots different domains different purpose generic chatbots answer user questions from any domain Chorus - Google Hangouts chatbot cross/open-domain chatbots can be used in more than one field/domain Guardian, AskWiz Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  9. 9. 9 Introduction Category of chatbots closed domain chatbots are focused on one specific domain Legion Mobile, Snaptravel informative chatbots conversational chatbots have Artificial Intelligence and NLP establishes human-like conversations Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  10. 10. 10 Goals and problems Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  11. 11. 11 Goals and problems Educational mathematical applications mathematical subjects are at first hard to understand practice and repetition of exercises are required students are not in the center Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  12. 12. 12 Goals and problems Purpose and goal show the effectiveness and usefulness of chatbots improve mathematical skills with push notifications continuous improvement Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  13. 13. 13 Goals and problems Research questions Can a chatbot help to foster mathematical skills for children? Can push notifications help learning engagement? Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  14. 14. 14 Technologies Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  15. 15. 15 Technologies Concepts and conditions android as the chosen OS owned by Google open-source mostly used on mobile phones and tablets built on a Linux-based kernel SDK GIT - version control system app expandability easy to add new features (trainers) Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  16. 16. 16 Technologies Frontend Technologies mockups - showcase of a design implementation idea XML - extensible markup language transmit and save data layout editor - tool to create layouts generates XML code for every element added has a lot of widgets Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  17. 17. 17 Technologies Backend Technologies application program interface way of communication between applications supplies data to the client SharedPreferences - interface that enables storing data on the phone java - object-oriented programming language threads - virtual CPU that allows parallel task execution gradle - automated build tool Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  18. 18. 18 Implementation Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  19. 19. 19 Implementation Approach authentication using SOAP library from LearningLab android OS level higher than 26 model-view-controller notification scheduling alarmManager notificationManager threads Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  20. 20. 20 Implementation Login Screen Home Screen Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  21. 21. 21 Implementation Trainer selection Time interval selection Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  22. 22. 22 Implementation Toast for a correct answer Toast for a wrong answer Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  23. 23. 23 Implementation Trainers 1x1 trainer multiplication basics two game modes plus minus trainer subtraction and addition two game modes Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  24. 24. 24 Implementation Questions numbers and result for mathematical operations provided from LearningLab API chosen randomly from a pool of questions answer is checked with the API as well Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  25. 25. 25 Results Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  26. 26. 26 Results Review of the children feedback I 18 participants thumb rating system How satisfied are you with the app? 12 very satisfied, 5 satisfied, 1 not so satisfied, 0 not satisfied at all Was the app helpful? 4 very helpful, 2 helpful, 6 not so helpful, 6 not helpful at all Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  27. 27. 27 Results Review of the feedback II Was the app easy to use? 18 very easy Was the app interesting? 3 very interesting, 2 interesting, 6 not so interesting, 7 not interesting at all Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  28. 28. 28 Results Thumb rating system Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  29. 29. 29 Results Teacher feedback Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  30. 30. 30 Results Statistics every square box is a student star rating system full green star - very good/correct half green star - good/correct red star - wrong empty star - not answered Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  31. 31. 31 Results Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  32. 32. 32 Results Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  33. 33. 33 Results Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  34. 34. 34 Results Review of statistics good correct to wrong ratio high number of unanswered questions possible API timeout Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  35. 35. 35 Conclusion Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  36. 36. 36 Conclusion Lessons learned chatbots are still an evolving technology improvement of children’s math skills educational applications could be the new learning standard Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  37. 37. 37 Conclusion Improvements and further work new questions new trainers improved user interface sound effects haptic feedback vibration screen shake data base Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022
  38. 38. 38 Thank you! Questions? Mirza Kabiljagic, Institute of Interactive Systems and Data Science 26. Juni 2022

×