Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

射頻電子 - [第四章] 散射參數網路

2.572 Aufrufe

Veröffentlicht am

https://www.facebook.com/eeRhapsody
散射參數網路

Veröffentlicht in: Ingenieurwesen
  • Als Erste(r) kommentieren

射頻電子 - [第四章] 散射參數網路

  1. 1. Department of Electronic Engineering National Taipei University of Technology
  2. 2. • • • • (Power waves) • (Traveling waves) − Department of Electronic Engineering, NTUT2/25
  3. 3. (Traveling Waves) ( ) ( ) ( ) j x j x V x V x V x Ae Beβ β+ − − = + = + ( ) ( ) ( ) ( ) ( ) 0 0 V x V x I x I x I x Z Z + − + − = − = − ( ) ( ) ( ) V x x V x − + Γ = • • • (Normalized traveling waves) ( ) ( ) 0 V x a x Z + = ( ) ( ) 0 V x b x Z − = ( ) ( ) 2 2 0 V x a x Z +   = ( ) ( ) ( ) 2 10log 10log 20log aP a x a x = = ( ) ( ) ( ) ( ) ( )0 0 1 1 2 2 b x v x i x V x Z I x Z = − = −       ( ) ( ) ( ) ( ) ( )0 0 1 1 2 2 a x v x i x V x Z I x Z = + = +       ( ) ( ) ( ) ( ) 0 V x v x a x b x Z = + = ( ) ( ) ( ) ( )0i x a x b x Z I x= − = ( ) ( ) ( )b x x a x= Γ slide 16, 30 3/25 Department of Electronic Engineering, NTUT
  4. 4. Two-port Network ( )2 2a l ( )2 2b l ( )2 2a x ( )2 2b x ( )1 1a l ( )1 1b l ( )1 1a x ( )1 1b x 1oZ 2oZ Input port Output port Port 1 1 1x = l Port 2 2 2x = l • Port 1 ( ) • Port 2 ( ) ( )1 1a l ( )1 1b l1 1x = l ( )2 2a l ( )2 2b l2 2x = l Incident wave Reflected wave • (Scattering Matrix) ( ) ( ) ( )1 1 11 1 1 12 2 2b S a S a= +l l l ( ) ( ) ( )2 2 21 1 1 22 2 2b S a S a= +l l l ( ) ( ) ( ) ( ) 1 1 1 111 12 2 2 2 221 22 b aS S b aS S      =          l l l l xx 4/25 Department of Electronic Engineering, NTUT
  5. 5. ( ) ( ) ( )2 2 1 1 11 1 1 0a b S a = = l l l Input reflection coefficient with output properly terminated ( ) ( ) ( )1 1 2 2 22 2 2 0a b S a = = l l l Output reflection coefficient with input properly terminated Forward transmission coefficient with output properly terminated ( ) ( ) ( )1 1 1 1 12 2 2 0a b S a = = l l l Reverse transmission coefficient with output properly terminated (measured with port 2 properly terminated) (measured with port 2 properly terminated) (measured with port 1 properly terminated) (measured with port 1 properly terminated) ( ) ( ) ( )2 2 2 2 21 1 1 0a b S a = = l l l 5/25 Department of Electronic Engineering, NTUT
  6. 6. ( ) ( ) ( )2 2 1 1 11 1 1 0a b S a = = l l l • Return Loss (RL) ( ) ( ) ( )2 2 2 2 21 1 1 0a b S a = = l l l ( ) ( ) 2 1 12 1 11 2 1 1 1 b a b P S a P = = l l ( )21 11 11 1 10log 10log 20log (dB)b a P S S P   = =    11Return Loss (RL) 10log 20log (dB)in reft P S P   = = −     ( ) ( ) ( ) 2 2 22 2 21 2 1 1 1 b a b P S a P = = l l ( )22 21 21 1 10log 10log 20log (dB)b a P S S P   = =    21Insertion Loss (IL) 10log 20log (dB)transmit receive P S P   = = −    ( )• Insertion Loss (IL) |S11| −12 dB 12 dB 6/25 Department of Electronic Engineering, NTUT
  7. 7. S11 Two-port Network ( )2 2 0a =l ( )2 2b l ( )1 1a l ( )1 1b l 1oZ 2oZ Port 1 1 1x = l Port 2 2 2x = l 2 2oZ Z=+ − 1E 1 1oZ Z= ( ) ( ) ( )2 2 1 1 11 1 1 0a b S a = = l l l OUTZ • Z2=Zo2 (i.e. Zo1=Zo2) 50 ( )2 2 0a =l ( ) ( ) ( )2 2 1 1 11 1 1 0a b S a = = l l l ( ) ( ) ( )1 1 11 1 1 12 2 2b S a S a= +l l l 0 port 2 ( )2 2 0a =l 7/25 Department of Electronic Engineering, NTUT
  8. 8. • Zoi (i=1 to n) n port [ ] [ ][ ]b S a= n-port Network 1oZ Port 1Port 1' 1TZ ( )1 1a l ( )1 1b l 2oZ Port 2Port 2' ( )2 2a l ( )2 2b l onZ Port nPort n' ( )n na l ( )n nb l [ ] 11 12 1 21 22 2 1 2 n n n n nn S S S S S S S S S S ⋅ ⋅   ⋅ ⋅   = ⋅ ⋅ ⋅ ⋅ ⋅   ⋅ ⋅ ⋅ ⋅ ⋅   ⋅ ⋅  8/25 Department of Electronic Engineering, NTUT
  9. 9. • • (i=1 for port 1 and i=2 for port 2) ( )0iP+ ( )0iP− + 1oZ 2oZ Port 1 1 1x = l Port 2 2 2x = l Port 1' 1 0x = ( )1 1I x Port 2' 2 0x = 2l1l − ( )1 1V x ( )2 2I x + − ( )2 2V x ( )0iP+ ( )0iP− ( )0iP+ ( )0iP− 11 12 21 22 S S S S       ( ) ( ) ( ) ( ) 1 1 1 111 12 2 2 2 221 22 b aS S b aS S      =          l l l l ( )0iP+ ( )0iP− ( )a x ( )b x 9/25 Department of Electronic Engineering, NTUT
  10. 10. ( ) ( ) 21 0 0 2 i iP a+ = ( ) ( ) ( ){ } ( ) ( ) ( ) 2 22 , 01 1 1 0 Re 0 0 0 0 2 2 2 i i i i i i rms oi V P V I b b Z − ∗− − −  = ⋅ = = =  • ith port (x1=0, x2=0) • ( ) ( )0i i iP P+ + = l ( ) ( )0i i iP P− − = l ( ) ( ) 2 21 1 0 2 2 i i ia a x= ( ) ( ) 2 21 1 0 2 2 i i ib b x= ( ) ( ) 21 0 0 2 i iP b− = • ith port (x1=0, x2=0) ( ) ( ) ( ){ } ( ) ( ) ( ) 2 22 , 01 1 1 0 Re 0 0 0 0 2 2 2 i i i i i i rms oi V P V I a a Z + ∗+ + +  = ⋅ = = =  ( ) ( ) 0 V x a x Z + = ( ) ( ) 0 V x b x Z − = 10/25 Department of Electronic Engineering, NTUT
  11. 11. ( ) ( )2 2 20 0oV Z I= − ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2 2 2 1 1 0 0 0 0 0 0 2 2 o o o o o a V Z I Z I Z I Z Z = + = − + =       Two-port Network + 1oZ Port 1 1 1x = l Port 2 2 2x = l Port 1' 1 0x = ( )1 0I Port 2' 2 0x = − ( )1 0V ( )2 0I + − ( )2 2V l 2oZ ( )1 1I l ( )2 2I l ( )1 1V l + − ( )2 2a x ( )2 2b x ( )1 1a x ( )1 1b x + − ( )2 0V + − 1E 1 1oZ Z= 2 2oZ Z= • x2=0 ( ) ( )1 1 1 10 0oV E Z I= − ( ) ( ) ( ) 1 1 1 1 1 1 1 1 0 0 0 2 2 o o o E a V Z I Z Z = + =   ( ) 2 2 1 1 1 0 4 o E a Z =• x1=0 Vpp matched • E1 (available power) x1=0 ( Z1=Zo1 ) ( ) ( ) 2 2 1 1 1 1 1 0 0 2 8 AVS o E P P a Z + = = = ( ) ( ) 2 2 1 1 1 1 1 0 2 2 a a= l matched 11/25 Department of Electronic Engineering, NTUT
  12. 12. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 21 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 01 1 0 0 0 0 0 0 0 2 8 8 o o o o o o o V Z I V Z I a V Z I V Z V I Z I Z Z ∗ ∗ ∗ + +        = = + + +   ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 22 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 2 8 o o o o b V Z I V Z I V Z I Z ∗ ∗ = − − +   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 Re 0 0 2 2 4 2 P P P a b I V I V I V+ − ∗ ∗ ∗  = − = − = + =  • Z1 Zo1 • port 1' ( port 1 ) ( ) ( ) 2 1 1 1 0 0 2 AVSb P P= − ( ) ( ) 2 1 1 1 1 1 2 AVSb P P= −l l• port 1 ( port 1') ( ) ( ) ( ) 2 1 1 1 1 1 0 0 2 AVSP P P b= = −l • ZT1=Zo1 0 ZT1≠Zo1 port 1 ( ) ( ) ( ) ( ) 2 2 2 2 1 1 1 1 11 2 1 1 0 AVS AVS a b P P S Pa = − = = l l l l ( ) ( ) ( )2 1 1 1 110 1AVSP P P S= = −lor 12/25 Department of Electronic Engineering, NTUT
  13. 13. (Power Waves) (I) • • (Z0) Rs s sV E Z I= − LZ + − sE sZ V I + − source impedance load impedance Department of Electronic Engineering, NTUT L s L s Z Z Z Z ∗ − Γ = + • ( )* L sZ Z= Γ = 0 slide 46 13/25
  14. 14. (Power Waves) (II) ( ) 1 2 p s s a V Z I R = + ( )1 2 p s s b V Z I R ∗ = − LZ + − sE sZ pa pb V I + − s p s L s p s L s s V Zb V Z I Z ZI Va V Z I Z ZZ I ∗ ∗ ∗−− − Γ = = = = + ++ p pa bΓ = • (Normalized power waves) 0pb =L sZ Z∗ = • (Available power) ( ) 1 2 p s s a V Z I R = + s sV E Z I= − ( ) 1 2 2 s p s s s s s E a E Z I Z I R R = − + = 2 2 4 s p s E a R = 2 2 2 , 1 2 8 s AVS p p rms s E P a a R = = = • ( ) { } { } 2 21 1 Re Re 2 2 s L L L s L E P I Z Z Z Z = = + 2 ,max 1 8 s L AVS s E P P R = = 14/25 Department of Electronic Engineering, NTUT
  15. 15. ( )( ) ( )( ) { } 2 2 *1 1 1 1 1 Re 2 2 8 8 2 L p p s s s s s s P a b V Z I V Z I V Z I V Z I V I R R ∗∗ ∗ ∗ = − = + + − − − = 2 2 21 1 1 2 2 2 L p p AVS pP a b P b= − = − 21 2 p AVS Lb P P= − = ( – ) • = ( – ) 15/25 Department of Electronic Engineering, NTUT
  16. 16. − (Traveling Waves) 0 0 s s s Z Z Z Z − Γ = + 0 0 L L L Z Z Z Z − Γ = + 1 11 1 12 2b S a S a= + 2 21 1 22 2b S a S a= + Transistor [S] 2a 2b 1a 1b Port 1 Port 2 + − sE sZ outΓ LZ inΓ sΓ LΓ • [S] Z0 sΓ LΓ ? + − sE sZ sΓ LZ LΓ Transistor [S] 1b 1a 2a 2b 16/25 Department of Electronic Engineering, NTUT
  17. 17. 1 1 in b a Γ = 2 2La b= Γ 2 21 1 22 2Lb S a S b= + Γ 21 1 2 221 L S a b S = − Γ • inΓ [ ]SLΓ 1 12 21 11 1 221 L in L b S S S a S Γ Γ = = + − Γ 12 21 1 11 1 12 2 11 1 1 221 L L L S S b S a S b S a a S Γ = + Γ = + − Γ a1 b1 1 11 1 12 2b S a S a= + a1 b1 = a2 a2 = b2 Transistor [S] 2a 2b 1a 1b + − sE sZ outΓ LZ inΓ sΓ LΓ 1 11 1 12 2b S a S a= + 2 21 1 22 2b S a S a= + inΓ 17/25 Department of Electronic Engineering, NTUT
  18. 18. 2 2 0s out E b a = Γ = 1 1sa b= Γ 1 11 1 12 2sb S b S a= Γ + 12 2 1 111 s S a b S = − Γ 12 21 2 21 1 22 2 2 22 2 111 s s s S S b S b S a a S a S Γ = Γ + = + − Γ 12 212 22 2 110 1 s s out sE S Sb S a S= Γ Γ = = + − Γ • outΓ [ ]SsΓ Transistor [S] 2a 2b 1a 1b + − sE sZ outΓ LZ inΓ sΓ LΓ 1 11 1 12 2b S a S a= + 2 21 1 22 2b S a S a= + outΓ outΓ inΓ 2 21 1 22 2b S a S a= +and 18/25 Department of Electronic Engineering, NTUT
  19. 19. + − sE sZ sΓ 1a 1b • inΓ + − 1V 1I • 1 1s sa a b= + Γ inΓ outΓ Pin 1 1inb a= Γ 1 1 1s s s s ina a b a a= + Γ = + Γ Γ 1 1 s s in a a = − Γ Γ ( ) 2 2 2 2 2 2 1 1 1 2 11 1 1 1 1 2 2 2 2 1 in in in s s in P a b a a − Γ = − = − Γ = − Γ Γ • 2 2 2 2 2 2 2 22 2 1 11 1 1 1 2 2 2 11 1 in s s s AVS in s s s ss s P P a a a∗ ∗ Γ =Γ − Γ − Γ = = = = − Γ− Γ − Γ ( )( )2 22 2 2 2 1 111 2 1 1 s inin in s AVS AVS s s in s in P a P P M − Γ − Γ− Γ = = = − Γ Γ − Γ Γ • Ms (source mismatch factor) (mismatch loss) inΓ s o s o so E Z a Z ZZ = + 19/25 Department of Electronic Engineering, NTUT
  20. 20. LZ LΓ outΓ + − thE outZ 2a 2b + − LV LI LZ LΓ outΓ ( )2 2 2 2 2 2 2 1 1 1 1 2 2 2 L LP b a b= − = − Γ • ZL 2 2 2 11 2 1 L L th out L P b − Γ = − Γ Γ • ( source) 2 2 1 1 2 1L out AVN L th out P P b∗ Γ =Γ = = − Γ ( )( )2 2 2 1 1 1 L out L AVN AVN L out L P P P M − Γ − Γ = = − Γ Γ • ML (load mismatch factor) (mismatch loss) ( source) outΓ 2 2La b= Γ 20/25 Department of Electronic Engineering, NTUT
  21. 21. Transistor [S]+ − sE sZ LZ PAVNPAVS PLPin Ms interface interface ML • (power gain) L p in P G P = • (transducer power gain) L T p s AVS P G G M P = = • (available power gain) AVN T A AVS L P G G P M = = p TG G> A TG G> • p T AG G G= = 21/25 Department of Electronic Engineering, NTUT
  22. 22. Gp (Operating Power Gain) ( ) ( ) 2 2 2 2 2 1 1 1 2 1 1 2 L L p in in b P G P a − Γ = = − Γ 21 1 2 221 L S a b S = − Γ 2 2 212 2 22 11 1 1 L p in L G S S − Γ = − Γ − Γ • The Operating Power Gain Gp where Transistor [S]+ − sE sZ LZ PAVNPAVS PLPin Ms interface interface ML slide 17 22/25 Department of Electronic Engineering, NTUT
  23. 23. GT (Transducer Power Gain) • The Transducer Power Gain GT in inL L T p p s AVS in AVS AVS P PP P G G G M P P P P = = = = 2 2 2 2 2 2 21 212 2 2 2 22 11 1 1 1 1 1 1 1 1 s L s L T s in L s out L G S S S S − Γ − Γ − Γ − Γ = = − Γ Γ − Γ − Γ − Γ Γ ( )( )2 2 2 1 1 1 s in s s in M − Γ − Γ = − Γ Γ where Transistor [S]+ − sE sZ LZ PAVNPAVS PLPin Ms interface interface ML slide 19 23/25 Department of Electronic Engineering, NTUT
  24. 24. GA (Available Power Gain) • The Available Power Gain GA AVN AVN AVNL T A T AVS AVS L L L P P PP G G G P P P P M = = = = 2 2 212 2 11 1 1 1 1 s A s out G S S − Γ = − Γ − Γ Transistor [S]+ − sE sZ LZ PAVNPAVS PLPin Ms interface interface ML ( )( )2 2 2 1 1 1 L out L out L M − Γ − Γ = − Γ Γ where slide 20 24/25 Department of Electronic Engineering, NTUT
  25. 25. • (1) ( ) (2) (power waves, [Sp]) (3) (traveling waves, [S]) { }Re 2L L LP V I∗ = • ( ) 2 2 2 , 1 2 8 s AVS p p rms s E P a a R = = = 2 2 21 1 1 2 2 2 L p p AVS pP a b P b= − = − • L p inP G P= L T AVSP G P= • (defined with traveling waves, circuitries are separately measured in a Zo system) : 25/25 Department of Electronic Engineering, NTUT

×