SlideShare ist ein Scribd-Unternehmen logo

さらば!データサイエンティスト

Shohei Hido
Shohei Hido
Shohei HidoChief Research Officer um Preferred Networks America, Inc.

2013/03/28 PFIセミナー「(道具としての)データサイエンティストのつかい方」資料 Ustreamの録画はこちらです→http://www.ustream.tv/recorded/37645309

さらば!データサイエンティスト

1 von 45
Downloaden Sie, um offline zu lesen
さらば!
データサイエンティスト
PFIセミナー 2013/08/22
株式会社Preferred Infrastructure
リサーチャー&Jubatusチームリーダー
比戸 将平
自己紹介
 比戸将平(HIDO Shohei)
 TwitterID: @sla
 専門:データマイニング、機械学習
 経歴:
 2006-2012: IBM東京基礎研究所データ解析グループ
 機械学習(特に異常検知)のアルゴリズム研究開発
 お客様案件でデータ解析プロジェクトに従事
 2012-: 株式会社プリファードインフラストラクチャー
 大規模オンライン分散機械学習基盤Jubatusチームリーダー
 2013-: Preferred Infrastructure America, Inc.
 Chief Research Officer
2
IT Leaders様にインタビュー記事掲載:
数日間Google検索のトップにいた(?)
http://it.impressbm.co.jp/e/2013/08/01/5054
データサイエンティスト三部作・完結編
「さらば!データサイエンティスト」
 つくり方:データサイエンティストグループの構築
 つかい方:仕事を依頼する側のリテラシーの話
 今回は定義論もあるあるも活用方法も無し
Slideshareにて公開中
 続:データサイエンティストブーム
 なぜ「さらば」なのか?
 具体例
 まとめ
 作者のあとがき
Agenda
データサイエンティスト
うおおおおおお
NHKクローズアップ現代で統計ブーム特集
 “統計学を使いこなす「データサイエンティスト」と呼
ばれる専門職は「最もセクシーな(魅力的な)職業」だ
として、多くの企業から引く手あまたの状況だ。”
http://www.nhk.or.jp/gendai/yotei/index_yotei_3375.html
Anzeige

Recomendados

データサイエンティストのつくり方
データサイエンティストのつくり方データサイエンティストのつくり方
データサイエンティストのつくり方Shohei Hido
 
計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo Webmining
計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo Webmining計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo Webmining
計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo WebminingTakashi J OZAKI
 
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)RyuichiKanoh
 
画像処理AIを用いた異常検知
画像処理AIを用いた異常検知画像処理AIを用いた異常検知
画像処理AIを用いた異常検知Hideo Terada
 
SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​
SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​
SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​SSII
 
21世紀で最もセクシーな職業!?「データサイエンティスト」の実像に迫る
21世紀で最もセクシーな職業!?「データサイエンティスト」の実像に迫る21世紀で最もセクシーな職業!?「データサイエンティスト」の実像に迫る
21世紀で最もセクシーな職業!?「データサイエンティスト」の実像に迫るTakashi J OZAKI
 
Data-centricなML開発
Data-centricなML開発Data-centricなML開発
Data-centricなML開発Takeshi Suzuki
 
XAI (説明可能なAI) の必要性
XAI (説明可能なAI) の必要性XAI (説明可能なAI) の必要性
XAI (説明可能なAI) の必要性西岡 賢一郎
 

Más contenido relacionado

Was ist angesagt?

第10章後半「ブースティングと加法的木」
第10章後半「ブースティングと加法的木」第10章後半「ブースティングと加法的木」
第10章後半「ブースティングと加法的木」T T
 
テキストマイニング講義資料
テキストマイニング講義資料テキストマイニング講義資料
テキストマイニング講義資料Kosuke Sato
 
先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15Yoichi Ochiai
 
backbone としての timm 入門
backbone としての timm 入門backbone としての timm 入門
backbone としての timm 入門Takuji Tahara
 
【DL輪読会】Mastering Diverse Domains through World Models
【DL輪読会】Mastering Diverse Domains through World Models【DL輪読会】Mastering Diverse Domains through World Models
【DL輪読会】Mastering Diverse Domains through World ModelsDeep Learning JP
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明Satoshi Hara
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!TransformerArithmer Inc.
 
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)Shota Imai
 
Active Learning の基礎と最近の研究
Active Learning の基礎と最近の研究Active Learning の基礎と最近の研究
Active Learning の基礎と最近の研究Fumihiko Takahashi
 
ChatGPT 人間のフィードバックから強化学習した対話AI
ChatGPT 人間のフィードバックから強化学習した対話AIChatGPT 人間のフィードバックから強化学習した対話AI
ChatGPT 人間のフィードバックから強化学習した対話AIShota Imai
 
Anomaly detection 系の論文を一言でまとめた
Anomaly detection 系の論文を一言でまとめたAnomaly detection 系の論文を一言でまとめた
Anomaly detection 系の論文を一言でまとめたぱんいち すみもと
 
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings  (EMNLP 2021)【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings  (EMNLP 2021)
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)Deep Learning JP
 
レコメンドアルゴリズムの基本と周辺知識と実装方法
レコメンドアルゴリズムの基本と周辺知識と実装方法レコメンドアルゴリズムの基本と周辺知識と実装方法
レコメンドアルゴリズムの基本と周辺知識と実装方法Takeshi Mikami
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised LearningまとめDeep Learning JP
 
DRIVE CHARTを支えるAI技術
DRIVE CHARTを支えるAI技術DRIVE CHARTを支えるAI技術
DRIVE CHARTを支えるAI技術Yusuke Uchida
 
CV分野におけるサーベイ方法
CV分野におけるサーベイ方法CV分野におけるサーベイ方法
CV分野におけるサーベイ方法Hirokatsu Kataoka
 
Triplet Loss 徹底解説
Triplet Loss 徹底解説Triplet Loss 徹底解説
Triplet Loss 徹底解説tancoro
 
ブレインパッドにおける機械学習プロジェクトの進め方
ブレインパッドにおける機械学習プロジェクトの進め方ブレインパッドにおける機械学習プロジェクトの進め方
ブレインパッドにおける機械学習プロジェクトの進め方BrainPad Inc.
 
第8回Language and Robotics研究会20221010_AkiraTaniguchi
第8回Language and Robotics研究会20221010_AkiraTaniguchi第8回Language and Robotics研究会20221010_AkiraTaniguchi
第8回Language and Robotics研究会20221010_AkiraTaniguchiAkira Taniguchi
 

Was ist angesagt? (20)

第10章後半「ブースティングと加法的木」
第10章後半「ブースティングと加法的木」第10章後半「ブースティングと加法的木」
第10章後半「ブースティングと加法的木」
 
テキストマイニング講義資料
テキストマイニング講義資料テキストマイニング講義資料
テキストマイニング講義資料
 
先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15
 
backbone としての timm 入門
backbone としての timm 入門backbone としての timm 入門
backbone としての timm 入門
 
【DL輪読会】Mastering Diverse Domains through World Models
【DL輪読会】Mastering Diverse Domains through World Models【DL輪読会】Mastering Diverse Domains through World Models
【DL輪読会】Mastering Diverse Domains through World Models
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!Transformer
 
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
 
Active Learning の基礎と最近の研究
Active Learning の基礎と最近の研究Active Learning の基礎と最近の研究
Active Learning の基礎と最近の研究
 
ChatGPT 人間のフィードバックから強化学習した対話AI
ChatGPT 人間のフィードバックから強化学習した対話AIChatGPT 人間のフィードバックから強化学習した対話AI
ChatGPT 人間のフィードバックから強化学習した対話AI
 
Anomaly detection 系の論文を一言でまとめた
Anomaly detection 系の論文を一言でまとめたAnomaly detection 系の論文を一言でまとめた
Anomaly detection 系の論文を一言でまとめた
 
一般向けのDeep Learning
一般向けのDeep Learning一般向けのDeep Learning
一般向けのDeep Learning
 
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings  (EMNLP 2021)【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings  (EMNLP 2021)
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)
 
レコメンドアルゴリズムの基本と周辺知識と実装方法
レコメンドアルゴリズムの基本と周辺知識と実装方法レコメンドアルゴリズムの基本と周辺知識と実装方法
レコメンドアルゴリズムの基本と周辺知識と実装方法
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ
 
DRIVE CHARTを支えるAI技術
DRIVE CHARTを支えるAI技術DRIVE CHARTを支えるAI技術
DRIVE CHARTを支えるAI技術
 
CV分野におけるサーベイ方法
CV分野におけるサーベイ方法CV分野におけるサーベイ方法
CV分野におけるサーベイ方法
 
Triplet Loss 徹底解説
Triplet Loss 徹底解説Triplet Loss 徹底解説
Triplet Loss 徹底解説
 
ブレインパッドにおける機械学習プロジェクトの進め方
ブレインパッドにおける機械学習プロジェクトの進め方ブレインパッドにおける機械学習プロジェクトの進め方
ブレインパッドにおける機械学習プロジェクトの進め方
 
第8回Language and Robotics研究会20221010_AkiraTaniguchi
第8回Language and Robotics研究会20221010_AkiraTaniguchi第8回Language and Robotics研究会20221010_AkiraTaniguchi
第8回Language and Robotics研究会20221010_AkiraTaniguchi
 

Ähnlich wie さらば!データサイエンティスト

Jubatus Casual Talks #2 異常検知入門
Jubatus Casual Talks #2 異常検知入門Jubatus Casual Talks #2 異常検知入門
Jubatus Casual Talks #2 異常検知入門Shohei Hido
 
プロダクトマネージャのお仕事
プロダクトマネージャのお仕事プロダクトマネージャのお仕事
プロダクトマネージャのお仕事Shohei Hido
 
今年のKDDベストペーパーを実装・公開しました
今年のKDDベストペーパーを実装・公開しました今年のKDDベストペーパーを実装・公開しました
今年のKDDベストペーパーを実装・公開しましたShohei Hido
 
データ分析基盤を支えるエンジニアリング
データ分析基盤を支えるエンジニアリングデータ分析基盤を支えるエンジニアリング
データ分析基盤を支えるエンジニアリングRecruit Lifestyle Co., Ltd.
 
課題解決エンジンを支えるデータ処理システムと利活用事例
課題解決エンジンを支えるデータ処理システムと利活用事例課題解決エンジンを支えるデータ処理システムと利活用事例
課題解決エンジンを支えるデータ処理システムと利活用事例Yahoo!デベロッパーネットワーク
 
「ドキュメント見つからない問題」をなんとかしたい - 横断検索エンジン導入の取り組みについて-
「ドキュメント見つからない問題」をなんとかしたい - 横断検索エンジン導入の取り組みについて-「ドキュメント見つからない問題」をなんとかしたい - 横断検索エンジン導入の取り組みについて-
「ドキュメント見つからない問題」をなんとかしたい - 横断検索エンジン導入の取り組みについて-gree_tech
 
プロトタイプで終わらせない死の谷を超える機械学習プロジェクトの進め方 #MLCT4
プロトタイプで終わらせない死の谷を超える機械学習プロジェクトの進め方 #MLCT4プロトタイプで終わらせない死の谷を超える機械学習プロジェクトの進め方 #MLCT4
プロトタイプで終わらせない死の谷を超える機械学習プロジェクトの進め方 #MLCT4shakezo
 
「今後現場で求められるAIエンジニア像とは?」株式会社ホットリンク 榊 剛史
「今後現場で求められるAIエンジニア像とは?」株式会社ホットリンク  榊 剛史「今後現場で求められるAIエンジニア像とは?」株式会社ホットリンク  榊 剛史
「今後現場で求められるAIエンジニア像とは?」株式会社ホットリンク 榊 剛史Leading Edge Co.,Ltd.
 
大規模サイトを支えるビッグデータプラットフォーム技術
大規模サイトを支えるビッグデータプラットフォーム技術大規模サイトを支えるビッグデータプラットフォーム技術
大規模サイトを支えるビッグデータプラットフォーム技術Yahoo!デベロッパーネットワーク
 
2014/06/13 若手Webエンジニア交流会発表資料「博士課程の新卒エンジニアがデータ分析環境を作った話」
2014/06/13 若手Webエンジニア交流会発表資料「博士課程の新卒エンジニアがデータ分析環境を作った話」2014/06/13 若手Webエンジニア交流会発表資料「博士課程の新卒エンジニアがデータ分析環境を作った話」
2014/06/13 若手Webエンジニア交流会発表資料「博士課程の新卒エンジニアがデータ分析環境を作った話」圭輔 大曽根
 
リクルートライフスタイル流!分析基盤との賢い付き合い方
リクルートライフスタイル流!分析基盤との賢い付き合い方リクルートライフスタイル流!分析基盤との賢い付き合い方
リクルートライフスタイル流!分析基盤との賢い付き合い方Recruit Lifestyle Co., Ltd.
 
構造化データをツールで簡単に分析
構造化データをツールで簡単に分析構造化データをツールで簡単に分析
構造化データをツールで簡単に分析Yoshitaka Seo
 
20190606_ml_and_buisiness
20190606_ml_and_buisiness20190606_ml_and_buisiness
20190606_ml_and_buisinessYoichi Tokita
 
People analyticsをアカデミックの視点で見る~組織行動論とpeople analyticsの違い~
People analyticsをアカデミックの視点で見る~組織行動論とpeople analyticsの違い~People analyticsをアカデミックの視点で見る~組織行動論とpeople analyticsの違い~
People analyticsをアカデミックの視点で見る~組織行動論とpeople analyticsの違い~KeiHasegawa2
 
ビッグデータとクラウドソーシング
ビッグデータとクラウドソーシングビッグデータとクラウドソーシング
ビッグデータとクラウドソーシングtokyowebmining-common
 
DBREから始めるデータベースプラットフォーム
DBREから始めるデータベースプラットフォームDBREから始めるデータベースプラットフォーム
DBREから始めるデータベースプラットフォームInsight Technology, Inc.
 
エッジヘビーコンピューティングと機械学習
エッジヘビーコンピューティングと機械学習エッジヘビーコンピューティングと機械学習
エッジヘビーコンピューティングと機械学習Preferred Networks
 

Ähnlich wie さらば!データサイエンティスト (20)

Jubatus Casual Talks #2 異常検知入門
Jubatus Casual Talks #2 異常検知入門Jubatus Casual Talks #2 異常検知入門
Jubatus Casual Talks #2 異常検知入門
 
プロダクトマネージャのお仕事
プロダクトマネージャのお仕事プロダクトマネージャのお仕事
プロダクトマネージャのお仕事
 
今年のKDDベストペーパーを実装・公開しました
今年のKDDベストペーパーを実装・公開しました今年のKDDベストペーパーを実装・公開しました
今年のKDDベストペーパーを実装・公開しました
 
Yahoo! JAPANを支えるビッグデータプラットフォーム技術
Yahoo! JAPANを支えるビッグデータプラットフォーム技術Yahoo! JAPANを支えるビッグデータプラットフォーム技術
Yahoo! JAPANを支えるビッグデータプラットフォーム技術
 
データ分析基盤を支えるエンジニアリング
データ分析基盤を支えるエンジニアリングデータ分析基盤を支えるエンジニアリング
データ分析基盤を支えるエンジニアリング
 
課題解決エンジンを支えるデータ処理システムと利活用事例
課題解決エンジンを支えるデータ処理システムと利活用事例課題解決エンジンを支えるデータ処理システムと利活用事例
課題解決エンジンを支えるデータ処理システムと利活用事例
 
「ドキュメント見つからない問題」をなんとかしたい - 横断検索エンジン導入の取り組みについて-
「ドキュメント見つからない問題」をなんとかしたい - 横断検索エンジン導入の取り組みについて-「ドキュメント見つからない問題」をなんとかしたい - 横断検索エンジン導入の取り組みについて-
「ドキュメント見つからない問題」をなんとかしたい - 横断検索エンジン導入の取り組みについて-
 
プロトタイプで終わらせない死の谷を超える機械学習プロジェクトの進め方 #MLCT4
プロトタイプで終わらせない死の谷を超える機械学習プロジェクトの進め方 #MLCT4プロトタイプで終わらせない死の谷を超える機械学習プロジェクトの進め方 #MLCT4
プロトタイプで終わらせない死の谷を超える機械学習プロジェクトの進め方 #MLCT4
 
「今後現場で求められるAIエンジニア像とは?」株式会社ホットリンク 榊 剛史
「今後現場で求められるAIエンジニア像とは?」株式会社ホットリンク  榊 剛史「今後現場で求められるAIエンジニア像とは?」株式会社ホットリンク  榊 剛史
「今後現場で求められるAIエンジニア像とは?」株式会社ホットリンク 榊 剛史
 
大規模サイトを支えるビッグデータプラットフォーム技術
大規模サイトを支えるビッグデータプラットフォーム技術大規模サイトを支えるビッグデータプラットフォーム技術
大規模サイトを支えるビッグデータプラットフォーム技術
 
2014/06/13 若手Webエンジニア交流会発表資料「博士課程の新卒エンジニアがデータ分析環境を作った話」
2014/06/13 若手Webエンジニア交流会発表資料「博士課程の新卒エンジニアがデータ分析環境を作った話」2014/06/13 若手Webエンジニア交流会発表資料「博士課程の新卒エンジニアがデータ分析環境を作った話」
2014/06/13 若手Webエンジニア交流会発表資料「博士課程の新卒エンジニアがデータ分析環境を作った話」
 
リクルートライフスタイル流!分析基盤との賢い付き合い方
リクルートライフスタイル流!分析基盤との賢い付き合い方リクルートライフスタイル流!分析基盤との賢い付き合い方
リクルートライフスタイル流!分析基盤との賢い付き合い方
 
構造化データをツールで簡単に分析
構造化データをツールで簡単に分析構造化データをツールで簡単に分析
構造化データをツールで簡単に分析
 
WebDB Forum 2013
WebDB Forum 2013 WebDB Forum 2013
WebDB Forum 2013
 
20190606_ml_and_buisiness
20190606_ml_and_buisiness20190606_ml_and_buisiness
20190606_ml_and_buisiness
 
People analyticsをアカデミックの視点で見る~組織行動論とpeople analyticsの違い~
People analyticsをアカデミックの視点で見る~組織行動論とpeople analyticsの違い~People analyticsをアカデミックの視点で見る~組織行動論とpeople analyticsの違い~
People analyticsをアカデミックの視点で見る~組織行動論とpeople analyticsの違い~
 
ビッグデータとクラウドソーシング
ビッグデータとクラウドソーシングビッグデータとクラウドソーシング
ビッグデータとクラウドソーシング
 
DBREから始めるデータベースプラットフォーム
DBREから始めるデータベースプラットフォームDBREから始めるデータベースプラットフォーム
DBREから始めるデータベースプラットフォーム
 
エッジヘビーコンピューティングと機械学習
エッジヘビーコンピューティングと機械学習エッジヘビーコンピューティングと機械学習
エッジヘビーコンピューティングと機械学習
 
「Data Infrastructure at Scale 」#yjdsw4
「Data Infrastructure at Scale 」#yjdsw4「Data Infrastructure at Scale 」#yjdsw4
「Data Infrastructure at Scale 」#yjdsw4
 

Mehr von Shohei Hido

CuPy: A NumPy-compatible Library for GPU
CuPy: A NumPy-compatible Library for GPUCuPy: A NumPy-compatible Library for GPU
CuPy: A NumPy-compatible Library for GPUShohei Hido
 
Deep Learning Lab 異常検知入門
Deep Learning Lab 異常検知入門Deep Learning Lab 異常検知入門
Deep Learning Lab 異常検知入門Shohei Hido
 
ディープラーニングの産業応用とそれを支える技術
ディープラーニングの産業応用とそれを支える技術ディープラーニングの産業応用とそれを支える技術
ディープラーニングの産業応用とそれを支える技術Shohei Hido
 
機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA
機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA
機械学習モデルフォーマットの話:さようならPMML、こんにちはPFAShohei Hido
 
Software for Edge Heavy Computing @ INTEROP 2016 Tokyo
Software for Edge Heavy Computing @ INTEROP 2016 TokyoSoftware for Edge Heavy Computing @ INTEROP 2016 Tokyo
Software for Edge Heavy Computing @ INTEROP 2016 TokyoShohei Hido
 
Chainer GTC 2016
Chainer GTC 2016Chainer GTC 2016
Chainer GTC 2016Shohei Hido
 
How AI revolutionizes robotics and automotive industries
How AI revolutionizes robotics and automotive industriesHow AI revolutionizes robotics and automotive industries
How AI revolutionizes robotics and automotive industriesShohei Hido
 
NIPS2015概要資料
NIPS2015概要資料NIPS2015概要資料
NIPS2015概要資料Shohei Hido
 
あなたの業務に機械学習を活用する5つのポイント
あなたの業務に機械学習を活用する5つのポイントあなたの業務に機械学習を活用する5つのポイント
あなたの業務に機械学習を活用する5つのポイントShohei Hido
 
PFIセミナー "「失敗の本質」を読む"発表資料
PFIセミナー "「失敗の本質」を読む"発表資料PFIセミナー "「失敗の本質」を読む"発表資料
PFIセミナー "「失敗の本質」を読む"発表資料Shohei Hido
 
NIPS2013読み会: More Effective Distributed ML via a Stale Synchronous Parallel P...
NIPS2013読み会: More Effective Distributed ML via a Stale Synchronous Parallel P...NIPS2013読み会: More Effective Distributed ML via a Stale Synchronous Parallel P...
NIPS2013読み会: More Effective Distributed ML via a Stale Synchronous Parallel P...Shohei Hido
 
機械学習CROSS 後半資料
機械学習CROSS 後半資料機械学習CROSS 後半資料
機械学習CROSS 後半資料Shohei Hido
 
機械学習CROSS 前半資料
機械学習CROSS 前半資料機械学習CROSS 前半資料
機械学習CROSS 前半資料Shohei Hido
 
Jubatusが目指すインテリジェンス基盤
Jubatusが目指すインテリジェンス基盤Jubatusが目指すインテリジェンス基盤
Jubatusが目指すインテリジェンス基盤Shohei Hido
 
ICML2013読み会 開会宣言
ICML2013読み会 開会宣言ICML2013読み会 開会宣言
ICML2013読み会 開会宣言Shohei Hido
 
ビッグデータはどこまで効率化できるか?
ビッグデータはどこまで効率化できるか?ビッグデータはどこまで効率化できるか?
ビッグデータはどこまで効率化できるか?Shohei Hido
 
(道具としての)データサイエンティストのつかい方
(道具としての)データサイエンティストのつかい方(道具としての)データサイエンティストのつかい方
(道具としての)データサイエンティストのつかい方Shohei Hido
 
FIT2012招待講演「異常検知技術のビジネス応用最前線」
FIT2012招待講演「異常検知技術のビジネス応用最前線」FIT2012招待講演「異常検知技術のビジネス応用最前線」
FIT2012招待講演「異常検知技術のビジネス応用最前線」Shohei Hido
 
Travis E. Oliphant, "NumPy and SciPy: History and Ideas for the Future"
Travis E. Oliphant, "NumPy and SciPy: History and Ideas for the Future"Travis E. Oliphant, "NumPy and SciPy: History and Ideas for the Future"
Travis E. Oliphant, "NumPy and SciPy: History and Ideas for the Future"Shohei Hido
 

Mehr von Shohei Hido (20)

CuPy: A NumPy-compatible Library for GPU
CuPy: A NumPy-compatible Library for GPUCuPy: A NumPy-compatible Library for GPU
CuPy: A NumPy-compatible Library for GPU
 
Deep Learning Lab 異常検知入門
Deep Learning Lab 異常検知入門Deep Learning Lab 異常検知入門
Deep Learning Lab 異常検知入門
 
NIPS2017概要
NIPS2017概要NIPS2017概要
NIPS2017概要
 
ディープラーニングの産業応用とそれを支える技術
ディープラーニングの産業応用とそれを支える技術ディープラーニングの産業応用とそれを支える技術
ディープラーニングの産業応用とそれを支える技術
 
機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA
機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA
機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA
 
Software for Edge Heavy Computing @ INTEROP 2016 Tokyo
Software for Edge Heavy Computing @ INTEROP 2016 TokyoSoftware for Edge Heavy Computing @ INTEROP 2016 Tokyo
Software for Edge Heavy Computing @ INTEROP 2016 Tokyo
 
Chainer GTC 2016
Chainer GTC 2016Chainer GTC 2016
Chainer GTC 2016
 
How AI revolutionizes robotics and automotive industries
How AI revolutionizes robotics and automotive industriesHow AI revolutionizes robotics and automotive industries
How AI revolutionizes robotics and automotive industries
 
NIPS2015概要資料
NIPS2015概要資料NIPS2015概要資料
NIPS2015概要資料
 
あなたの業務に機械学習を活用する5つのポイント
あなたの業務に機械学習を活用する5つのポイントあなたの業務に機械学習を活用する5つのポイント
あなたの業務に機械学習を活用する5つのポイント
 
PFIセミナー "「失敗の本質」を読む"発表資料
PFIセミナー "「失敗の本質」を読む"発表資料PFIセミナー "「失敗の本質」を読む"発表資料
PFIセミナー "「失敗の本質」を読む"発表資料
 
NIPS2013読み会: More Effective Distributed ML via a Stale Synchronous Parallel P...
NIPS2013読み会: More Effective Distributed ML via a Stale Synchronous Parallel P...NIPS2013読み会: More Effective Distributed ML via a Stale Synchronous Parallel P...
NIPS2013読み会: More Effective Distributed ML via a Stale Synchronous Parallel P...
 
機械学習CROSS 後半資料
機械学習CROSS 後半資料機械学習CROSS 後半資料
機械学習CROSS 後半資料
 
機械学習CROSS 前半資料
機械学習CROSS 前半資料機械学習CROSS 前半資料
機械学習CROSS 前半資料
 
Jubatusが目指すインテリジェンス基盤
Jubatusが目指すインテリジェンス基盤Jubatusが目指すインテリジェンス基盤
Jubatusが目指すインテリジェンス基盤
 
ICML2013読み会 開会宣言
ICML2013読み会 開会宣言ICML2013読み会 開会宣言
ICML2013読み会 開会宣言
 
ビッグデータはどこまで効率化できるか?
ビッグデータはどこまで効率化できるか?ビッグデータはどこまで効率化できるか?
ビッグデータはどこまで効率化できるか?
 
(道具としての)データサイエンティストのつかい方
(道具としての)データサイエンティストのつかい方(道具としての)データサイエンティストのつかい方
(道具としての)データサイエンティストのつかい方
 
FIT2012招待講演「異常検知技術のビジネス応用最前線」
FIT2012招待講演「異常検知技術のビジネス応用最前線」FIT2012招待講演「異常検知技術のビジネス応用最前線」
FIT2012招待講演「異常検知技術のビジネス応用最前線」
 
Travis E. Oliphant, "NumPy and SciPy: History and Ideas for the Future"
Travis E. Oliphant, "NumPy and SciPy: History and Ideas for the Future"Travis E. Oliphant, "NumPy and SciPy: History and Ideas for the Future"
Travis E. Oliphant, "NumPy and SciPy: History and Ideas for the Future"
 

さらば!データサイエンティスト