SlideShare ist ein Scribd-Unternehmen logo
ICML読み会開会宣⾔言
&
“Learning Spatio-Temporal Structure from RGB-D Videos
for Human Activity Detection and Anticipation”
比戸 将平 (@sla)
株式会社Preferred Infrastructure
ICML2013読み会開会に寄せて
l  こんなに⼈人が集まるとは思ってませんでした!!!
l  T-PRIMALでやってた時も20-30⼈人だった気がします
l  会場が変更更になってすみません(PFIは会社が⼩小さいので…)
l  会場をご⽤用意頂いた中川先⽣生・佐藤先⽣生ありがとうございます
l  NIPS読み会など合わせて継続的に開催できればと思います
l  そうして機械学習といえばPFIという雰囲気を…(シタゴコロ)
2
l  ICML2013概要
l  個⼈人的な感想
l  RGB-‐‑‒D論論⽂文
Agenda
ICML2013: メイン会場
4
ICML2013: ポスター会場
5
ICML2013: 招待講演
1.  Machine Learning at Scale with GraphLab by Carlos Guestrin
l  GAS(Gather-Apply-Scatter)計算モデル
l  GraphLab2でスケールアップ、GraphLab3で可⽤用性アップに挑戦中
2.  High-dimensional Sampling Algorithms and their Applications
by Santosh Vempala
l  Convex, Convex, and Convex
3.  Acoustic Modeling and Deep Learning for Speech Recognition
by Vincent Vanhoucke (Google Voice Search)
l  Deep Learningが爆発的に広がった原因
l  Deep Belief Networks [Bengio+, 2007]からの理理論論的蓄積
l  GPGPUなどの安い計算資源と利利⽤用⽅方法が確⽴立立された
l  Dataが増えた(+dropout)
l  ‘10、’11にHinton系学⽣生がGoogle等でインターン
6
ICML2013まとめ:Sparse, Deep, and Random
論論⽂文中のキーワードランキング
7	
イメージより多いもの イメージより少ないもの
•  Sparse, Random, Multiほにゃらら、Banditなどが多い
•  Kernel、SVM、Reinforcement、Bayesianなどが少ない
http://www.machinedlearnings.com/2013/06/icml-2013-sparse-deep-and-random.html
本⽇日のラインナップ:
バランス良良くばらけてます(強引)
l  @sla : "Learning Spatio-Temporal Structure from RGB-D Videos for Human Activity...”
l  @beam2d: "Local Deep Kernel Learning for Efficient Non-linear SVM Prediction”
l  @conditional: "Vanishing Component Analysis”
l  @jkomiyama_ : "Active Learning for Multi-Objective Optimization”
l  @kisa12012 : "Large-Scale Learning with Less RAM via Randomization”
l  @Quasi_quant2010 : "Topic Discovery through Data Dependent and Random Projections”
l  @tabe2314 : "Fast Image Tagging”
l  @unnonouno : "ELLA: An Efficient Lifelong Learning Algorithm”
l  @sleepy_yoshi : "Distributed Training of Large-scale Logistic Models"
8	
---Sparse
---Deep (?)
---Random
---Others(Spatio-Temporal, Component Analysis, Multi-taskDistributed)
l  ICML2013概要
l  個⼈人的な感想
l  RGB-‐‑‒D論論⽂文
Agenda
個⼈人的な感想:もうi.i.dはいいのではないか
l  特に時系列列的な要素を⼊入れてる論論⽂文が圧倒的に少ない
l  実応⽤用は時系列列的な要素を含む場合がほとんどではないのか
l  「オンラインだけどサンプルはi.i.d」って応⽤用がどれほどあるのか
l  ⾮非i.i.dになるととたんに理理論論解析は難しくなる、のはわかる
l  が、機械学習コミュニティとしてもっとこの⽅方向に進んでほしい
10
違う⽅方向性: 学習時・予測時に何らかの動的特性
l  3つのワークショップで同じような話をしていた
l  Robot Learning
l  Machine Learning with Test-Time Budgets
l  Learning with Sequential Models
l  違うアプローチ
l  Cost-sensitive Learning
l  Imitation Learning / Interactive Learning
l  Reinforcement Learning
l  Imperative Learning (Data Search/Aggregation)
l  違うコスト設定
l  予測にコストがかかる(Anytime化、カスケード化)
l  ラベルを得るのにコストがかかる
l  サンプルを得るのにコストがかかる
l  各Featureを得るのにコストがかかる11
そういう⽅方向におけるマイルストーン的論論⽂文:
DAgger [Ross+, AISTATS’11]
l  Dataset Aggregator
12	
Ross et al., A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning,
AISTATS'11
l  ICML2013概要
l  個⼈人的な感想
l  RGB-‐‑‒D論論⽂文
Agenda
Learning Spatio-Temporal Structure from RGB-D Videos
for Human Activity Detection and Anticipation"
l  著者1: Hemi Koppula (Cornell University)
l  著者2: Ashtosh Saxena (Cornell University)
l  Andrew Ngの弟⼦子、Robot/CV周辺でもりもり成果出してる
l  Robot LearningでもInvited Talkやってた
l  ⼊入⼒力力:RGB-D映像(⾊色+奥⾏行行き)
l  ⽬目的:⼈人とモノの関係の学習と予測
l  Activity Detection: 現在の動きのラベルを予測
l  モノのアフォーダンスラベル、Sub-activityラベルも含む
l  Activity Anticipation: 次の動き⽅方を予測
14
実際には動画をご覧ください
l  http://pr.cs.cornell.edu/anticipation/
15
複数種類のヒト・モノのリレーション
l  Cutting-plane training of structural SVMs [Joachims+, MLJ2009]
16

Weitere ähnliche Inhalte

Was ist angesagt?

企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)
企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)
企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)
Yuya Unno
 
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平
Preferred Networks
 
大規模データ時代に求められる自然言語処理
大規模データ時代に求められる自然言語処理大規模データ時代に求められる自然言語処理
大規模データ時代に求められる自然言語処理
Preferred Networks
 
さらば!データサイエンティスト
さらば!データサイエンティストさらば!データサイエンティスト
さらば!データサイエンティスト
Shohei Hido
 
ディープラーニングで株価予測をやってみた
ディープラーニングで株価予測をやってみたディープラーニングで株価予測をやってみた
ディープラーニングで株価予測をやってみた
卓也 安東
 
Jubatusが目指すインテリジェンス基盤
Jubatusが目指すインテリジェンス基盤Jubatusが目指すインテリジェンス基盤
Jubatusが目指すインテリジェンス基盤
Shohei Hido
 
情報抽出入門 〜非構造化データを構造化させる技術〜
情報抽出入門 〜非構造化データを構造化させる技術〜情報抽出入門 〜非構造化データを構造化させる技術〜
情報抽出入門 〜非構造化データを構造化させる技術〜
Yuya Unno
 
統計的係り受け解析入門
統計的係り受け解析入門統計的係り受け解析入門
統計的係り受け解析入門
Yuya Unno
 
Randomforestで高次元の変数重要度を見る #japanr LT
 Randomforestで高次元の変数重要度を見る #japanr LT Randomforestで高次元の変数重要度を見る #japanr LT
Randomforestで高次元の変数重要度を見る #japanr LT
Akifumi Eguchi
 
機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual Talks機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual Talks
Yuya Unno
 
統計学勉強会#2
統計学勉強会#2統計学勉強会#2
統計学勉強会#2
Hidehisa Arai
 
言語と知識の深層学習@認知科学会サマースクール
言語と知識の深層学習@認知科学会サマースクール言語と知識の深層学習@認知科学会サマースクール
言語と知識の深層学習@認知科学会サマースクール
Yuya Unno
 
本当に知ってる!? リアルなデータ分析の世界~サイカのエンジニアが語る、話題の技術の「いま」と「未来」~
本当に知ってる!? リアルなデータ分析の世界~サイカのエンジニアが語る、話題の技術の「いま」と「未来」~本当に知ってる!? リアルなデータ分析の世界~サイカのエンジニアが語る、話題の技術の「いま」と「未来」~
本当に知ってる!? リアルなデータ分析の世界~サイカのエンジニアが語る、話題の技術の「いま」と「未来」~
Hisao Soyama
 
Chainerのテスト環境とDockerでのCUDAの利用
Chainerのテスト環境とDockerでのCUDAの利用Chainerのテスト環境とDockerでのCUDAの利用
Chainerのテスト環境とDockerでのCUDAの利用
Yuya Unno
 
Pythonによるソーシャルデータ分析―わたしはこうやって修士号を取得しました―
Pythonによるソーシャルデータ分析―わたしはこうやって修士号を取得しました―Pythonによるソーシャルデータ分析―わたしはこうやって修士号を取得しました―
Pythonによるソーシャルデータ分析―わたしはこうやって修士号を取得しました―
Hisao Soyama
 
(道具としての)データサイエンティストのつかい方
(道具としての)データサイエンティストのつかい方(道具としての)データサイエンティストのつかい方
(道具としての)データサイエンティストのつかい方
Shohei Hido
 
形態素解析の過去・現在・未来
形態素解析の過去・現在・未来形態素解析の過去・現在・未来
形態素解析の過去・現在・未来
Preferred Networks
 
Jubatusにおける大規模分散オンライン機械学習@先端金融テクノロジー研究会
Jubatusにおける大規模分散オンライン機械学習@先端金融テクノロジー研究会Jubatusにおける大規模分散オンライン機械学習@先端金融テクノロジー研究会
Jubatusにおける大規模分散オンライン機械学習@先端金融テクノロジー研究会
Yuya Unno
 
データサイエンティストのつくり方
データサイエンティストのつくり方データサイエンティストのつくり方
データサイエンティストのつくり方
Shohei Hido
 

Was ist angesagt? (20)

企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)
企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)
企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)
 
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平
 
大規模データ時代に求められる自然言語処理
大規模データ時代に求められる自然言語処理大規模データ時代に求められる自然言語処理
大規模データ時代に求められる自然言語処理
 
さらば!データサイエンティスト
さらば!データサイエンティストさらば!データサイエンティスト
さらば!データサイエンティスト
 
ディープラーニングで株価予測をやってみた
ディープラーニングで株価予測をやってみたディープラーニングで株価予測をやってみた
ディープラーニングで株価予測をやってみた
 
Jubatusが目指すインテリジェンス基盤
Jubatusが目指すインテリジェンス基盤Jubatusが目指すインテリジェンス基盤
Jubatusが目指すインテリジェンス基盤
 
情報抽出入門 〜非構造化データを構造化させる技術〜
情報抽出入門 〜非構造化データを構造化させる技術〜情報抽出入門 〜非構造化データを構造化させる技術〜
情報抽出入門 〜非構造化データを構造化させる技術〜
 
統計的係り受け解析入門
統計的係り受け解析入門統計的係り受け解析入門
統計的係り受け解析入門
 
Randomforestで高次元の変数重要度を見る #japanr LT
 Randomforestで高次元の変数重要度を見る #japanr LT Randomforestで高次元の変数重要度を見る #japanr LT
Randomforestで高次元の変数重要度を見る #japanr LT
 
機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual Talks機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual Talks
 
統計学勉強会#2
統計学勉強会#2統計学勉強会#2
統計学勉強会#2
 
rcast_20140411
rcast_20140411rcast_20140411
rcast_20140411
 
言語と知識の深層学習@認知科学会サマースクール
言語と知識の深層学習@認知科学会サマースクール言語と知識の深層学習@認知科学会サマースクール
言語と知識の深層学習@認知科学会サマースクール
 
本当に知ってる!? リアルなデータ分析の世界~サイカのエンジニアが語る、話題の技術の「いま」と「未来」~
本当に知ってる!? リアルなデータ分析の世界~サイカのエンジニアが語る、話題の技術の「いま」と「未来」~本当に知ってる!? リアルなデータ分析の世界~サイカのエンジニアが語る、話題の技術の「いま」と「未来」~
本当に知ってる!? リアルなデータ分析の世界~サイカのエンジニアが語る、話題の技術の「いま」と「未来」~
 
Chainerのテスト環境とDockerでのCUDAの利用
Chainerのテスト環境とDockerでのCUDAの利用Chainerのテスト環境とDockerでのCUDAの利用
Chainerのテスト環境とDockerでのCUDAの利用
 
Pythonによるソーシャルデータ分析―わたしはこうやって修士号を取得しました―
Pythonによるソーシャルデータ分析―わたしはこうやって修士号を取得しました―Pythonによるソーシャルデータ分析―わたしはこうやって修士号を取得しました―
Pythonによるソーシャルデータ分析―わたしはこうやって修士号を取得しました―
 
(道具としての)データサイエンティストのつかい方
(道具としての)データサイエンティストのつかい方(道具としての)データサイエンティストのつかい方
(道具としての)データサイエンティストのつかい方
 
形態素解析の過去・現在・未来
形態素解析の過去・現在・未来形態素解析の過去・現在・未来
形態素解析の過去・現在・未来
 
Jubatusにおける大規模分散オンライン機械学習@先端金融テクノロジー研究会
Jubatusにおける大規模分散オンライン機械学習@先端金融テクノロジー研究会Jubatusにおける大規模分散オンライン機械学習@先端金融テクノロジー研究会
Jubatusにおける大規模分散オンライン機械学習@先端金融テクノロジー研究会
 
データサイエンティストのつくり方
データサイエンティストのつくり方データサイエンティストのつくり方
データサイエンティストのつくり方
 

Andere mochten auch

Software for Edge Heavy Computing @ INTEROP 2016 Tokyo
Software for Edge Heavy Computing @ INTEROP 2016 TokyoSoftware for Edge Heavy Computing @ INTEROP 2016 Tokyo
Software for Edge Heavy Computing @ INTEROP 2016 Tokyo
Shohei Hido
 
NIPS2015概要資料
NIPS2015概要資料NIPS2015概要資料
NIPS2015概要資料
Shohei Hido
 
Jubatus Casual Talks #2 異常検知入門
Jubatus Casual Talks #2 異常検知入門Jubatus Casual Talks #2 異常検知入門
Jubatus Casual Talks #2 異常検知入門
Shohei Hido
 
How AI revolutionizes robotics and automotive industries
How AI revolutionizes robotics and automotive industriesHow AI revolutionizes robotics and automotive industries
How AI revolutionizes robotics and automotive industries
Shohei Hido
 
機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA
機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA
機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA
Shohei Hido
 
FIT2012招待講演「異常検知技術のビジネス応用最前線」
FIT2012招待講演「異常検知技術のビジネス応用最前線」FIT2012招待講演「異常検知技術のビジネス応用最前線」
FIT2012招待講演「異常検知技術のビジネス応用最前線」
Shohei Hido
 
ビッグデータはどこまで効率化できるか?
ビッグデータはどこまで効率化できるか?ビッグデータはどこまで効率化できるか?
ビッグデータはどこまで効率化できるか?
Shohei Hido
 
プロダクトマネージャのお仕事
プロダクトマネージャのお仕事プロダクトマネージャのお仕事
プロダクトマネージャのお仕事
Shohei Hido
 
Chainer GTC 2016
Chainer GTC 2016Chainer GTC 2016
Chainer GTC 2016
Shohei Hido
 
あなたの業務に機械学習を活用する5つのポイント
あなたの業務に機械学習を活用する5つのポイントあなたの業務に機械学習を活用する5つのポイント
あなたの業務に機械学習を活用する5つのポイント
Shohei Hido
 
ICML2013読み会: Distributed training of Large-scale Logistic models
ICML2013読み会: Distributed training of Large-scale Logistic modelsICML2013読み会: Distributed training of Large-scale Logistic models
ICML2013読み会: Distributed training of Large-scale Logistic models
sleepy_yoshi
 
ICML2013読み会 Local Deep Kernel Learning for Efficient Non-linear SVM Prediction
ICML2013読み会 Local Deep Kernel Learning for Efficient Non-linear SVM PredictionICML2013読み会 Local Deep Kernel Learning for Efficient Non-linear SVM Prediction
ICML2013読み会 Local Deep Kernel Learning for Efficient Non-linear SVM Prediction
Seiya Tokui
 
ICML2013読み会 Large-Scale Learning with Less RAM via Randomization
ICML2013読み会 Large-Scale Learning with Less RAM via RandomizationICML2013読み会 Large-Scale Learning with Less RAM via Randomization
ICML2013読み会 Large-Scale Learning with Less RAM via Randomization
Hidekazu Oiwa
 
Vanishing Component Analysis
Vanishing Component AnalysisVanishing Component Analysis
Vanishing Component Analysis
Koji Matsuda
 
論文紹介 Fast imagetagging
論文紹介 Fast imagetagging論文紹介 Fast imagetagging
論文紹介 Fast imagetagging
Takashi Abe
 
機械学習を用いた異常検知入門
機械学習を用いた異常検知入門機械学習を用いた異常検知入門
機械学習を用いた異常検知入門
michiaki ito
 
素人がDeep Learningと他の機械学習の性能を比較してみた
素人がDeep Learningと他の機械学習の性能を比較してみた素人がDeep Learningと他の機械学習の性能を比較してみた
素人がDeep Learningと他の機械学習の性能を比較してみた
Toru Imai
 
Align, Disambiguate and Walk : A Unified Approach forMeasuring Semantic Simil...
Align, Disambiguate and Walk  : A Unified Approach forMeasuring Semantic Simil...Align, Disambiguate and Walk  : A Unified Approach forMeasuring Semantic Simil...
Align, Disambiguate and Walk : A Unified Approach forMeasuring Semantic Simil...
Koji Matsuda
 
いまさら聞けない “モデル” の話 @DSIRNLP#5
いまさら聞けない “モデル” の話 @DSIRNLP#5いまさら聞けない “モデル” の話 @DSIRNLP#5
いまさら聞けない “モデル” の話 @DSIRNLP#5
Koji Matsuda
 
Chisq 01
Chisq 01Chisq 01
Chisq 01
akira_11
 

Andere mochten auch (20)

Software for Edge Heavy Computing @ INTEROP 2016 Tokyo
Software for Edge Heavy Computing @ INTEROP 2016 TokyoSoftware for Edge Heavy Computing @ INTEROP 2016 Tokyo
Software for Edge Heavy Computing @ INTEROP 2016 Tokyo
 
NIPS2015概要資料
NIPS2015概要資料NIPS2015概要資料
NIPS2015概要資料
 
Jubatus Casual Talks #2 異常検知入門
Jubatus Casual Talks #2 異常検知入門Jubatus Casual Talks #2 異常検知入門
Jubatus Casual Talks #2 異常検知入門
 
How AI revolutionizes robotics and automotive industries
How AI revolutionizes robotics and automotive industriesHow AI revolutionizes robotics and automotive industries
How AI revolutionizes robotics and automotive industries
 
機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA
機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA
機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA
 
FIT2012招待講演「異常検知技術のビジネス応用最前線」
FIT2012招待講演「異常検知技術のビジネス応用最前線」FIT2012招待講演「異常検知技術のビジネス応用最前線」
FIT2012招待講演「異常検知技術のビジネス応用最前線」
 
ビッグデータはどこまで効率化できるか?
ビッグデータはどこまで効率化できるか?ビッグデータはどこまで効率化できるか?
ビッグデータはどこまで効率化できるか?
 
プロダクトマネージャのお仕事
プロダクトマネージャのお仕事プロダクトマネージャのお仕事
プロダクトマネージャのお仕事
 
Chainer GTC 2016
Chainer GTC 2016Chainer GTC 2016
Chainer GTC 2016
 
あなたの業務に機械学習を活用する5つのポイント
あなたの業務に機械学習を活用する5つのポイントあなたの業務に機械学習を活用する5つのポイント
あなたの業務に機械学習を活用する5つのポイント
 
ICML2013読み会: Distributed training of Large-scale Logistic models
ICML2013読み会: Distributed training of Large-scale Logistic modelsICML2013読み会: Distributed training of Large-scale Logistic models
ICML2013読み会: Distributed training of Large-scale Logistic models
 
ICML2013読み会 Local Deep Kernel Learning for Efficient Non-linear SVM Prediction
ICML2013読み会 Local Deep Kernel Learning for Efficient Non-linear SVM PredictionICML2013読み会 Local Deep Kernel Learning for Efficient Non-linear SVM Prediction
ICML2013読み会 Local Deep Kernel Learning for Efficient Non-linear SVM Prediction
 
ICML2013読み会 Large-Scale Learning with Less RAM via Randomization
ICML2013読み会 Large-Scale Learning with Less RAM via RandomizationICML2013読み会 Large-Scale Learning with Less RAM via Randomization
ICML2013読み会 Large-Scale Learning with Less RAM via Randomization
 
Vanishing Component Analysis
Vanishing Component AnalysisVanishing Component Analysis
Vanishing Component Analysis
 
論文紹介 Fast imagetagging
論文紹介 Fast imagetagging論文紹介 Fast imagetagging
論文紹介 Fast imagetagging
 
機械学習を用いた異常検知入門
機械学習を用いた異常検知入門機械学習を用いた異常検知入門
機械学習を用いた異常検知入門
 
素人がDeep Learningと他の機械学習の性能を比較してみた
素人がDeep Learningと他の機械学習の性能を比較してみた素人がDeep Learningと他の機械学習の性能を比較してみた
素人がDeep Learningと他の機械学習の性能を比較してみた
 
Align, Disambiguate and Walk : A Unified Approach forMeasuring Semantic Simil...
Align, Disambiguate and Walk  : A Unified Approach forMeasuring Semantic Simil...Align, Disambiguate and Walk  : A Unified Approach forMeasuring Semantic Simil...
Align, Disambiguate and Walk : A Unified Approach forMeasuring Semantic Simil...
 
いまさら聞けない “モデル” の話 @DSIRNLP#5
いまさら聞けない “モデル” の話 @DSIRNLP#5いまさら聞けない “モデル” の話 @DSIRNLP#5
いまさら聞けない “モデル” の話 @DSIRNLP#5
 
Chisq 01
Chisq 01Chisq 01
Chisq 01
 

Ähnlich wie ICML2013読み会 開会宣言

Raspberrypitraining20171027
Raspberrypitraining20171027Raspberrypitraining20171027
Raspberrypitraining20171027
Kiyoshi Ogawa
 
🍻(Beer Mug)の読み方を考える(mecab-ipadic-NEologdのUnicode 絵文字対応)
🍻(Beer Mug)の読み方を考える(mecab-ipadic-NEologdのUnicode 絵文字対応)🍻(Beer Mug)の読み方を考える(mecab-ipadic-NEologdのUnicode 絵文字対応)
🍻(Beer Mug)の読み方を考える(mecab-ipadic-NEologdのUnicode 絵文字対応)
Toshinori Sato
 
一般向けのDeep Learning
一般向けのDeep Learning一般向けのDeep Learning
一般向けのDeep Learning
Preferred Networks
 
PredictionIOのPython対応計画
PredictionIOのPython対応計画PredictionIOのPython対応計画
PredictionIOのPython対応計画
Shinsuke Sugaya
 
インフラ部門で働くCプログラマの話
インフラ部門で働くCプログラマの話インフラ部門で働くCプログラマの話
インフラ部門で働くCプログラマの話
雅也 山本
 
【Ltech#11】ディープラーニングで間取り図を3Dにする
【Ltech#11】ディープラーニングで間取り図を3Dにする【Ltech#11】ディープラーニングで間取り図を3Dにする
【Ltech#11】ディープラーニングで間取り図を3Dにする
LIFULL Co., Ltd.
 
2020 0906 acl_2020_reading_shared
2020 0906 acl_2020_reading_shared2020 0906 acl_2020_reading_shared
2020 0906 acl_2020_reading_shared
亮宏 藤井
 
Domain Generalization via Model-Agnostic Learning of Semantic Features
Domain Generalization via Model-Agnostic Learning of Semantic FeaturesDomain Generalization via Model-Agnostic Learning of Semantic Features
Domain Generalization via Model-Agnostic Learning of Semantic Features
Yamato OKAMOTO
 
Tokyo.R女子部発表スライド「Rではじめるデータ解析の超基礎」
Tokyo.R女子部発表スライド「Rではじめるデータ解析の超基礎」Tokyo.R女子部発表スライド「Rではじめるデータ解析の超基礎」
Tokyo.R女子部発表スライド「Rではじめるデータ解析の超基礎」
tokyorgirls
 
LLM+LangChainで特許調査・分析に取り組んでみた
LLM+LangChainで特許調査・分析に取り組んでみたLLM+LangChainで特許調査・分析に取り組んでみた
LLM+LangChainで特許調査・分析に取り組んでみた
KunihiroSugiyama1
 
ICML2019@Long Beach 参加速報(2日目)
ICML2019@Long Beach 参加速報(2日目) ICML2019@Long Beach 参加速報(2日目)
ICML2019@Long Beach 参加速報(2日目)
Yamato OKAMOTO
 
Case study to use MongoDB in middle-class SIer / (中規模) SIerだってMongoDBできたよ!
Case study to use MongoDB in middle-class SIer / (中規模) SIerだってMongoDBできたよ!Case study to use MongoDB in middle-class SIer / (中規模) SIerだってMongoDBできたよ!
Case study to use MongoDB in middle-class SIer / (中規模) SIerだってMongoDBできたよ!
Naruhiko Ogasawara
 
Ciecleci
CiecleciCiecleci
Ciecleci
YosukeHojo
 
160531 IoT LT #15 @ 日本IBM
160531 IoT LT #15 @ 日本IBM160531 IoT LT #15 @ 日本IBM
160531 IoT LT #15 @ 日本IBM
Toshiki Tsuboi
 
Node red for-collecting_information
Node red for-collecting_informationNode red for-collecting_information
Node red for-collecting_information
Harada Kazuki
 
Kof
KofKof
Jupyterで運用やってみた
Jupyterで運用やってみたJupyterで運用やってみた
Jupyterで運用やってみた
Satoshi Yazawa
 
High performance python computing for data science
High performance python computing for data scienceHigh performance python computing for data science
High performance python computing for data science
Takami Sato
 
ICML2019@Long Beach 参加速報(1日目)
ICML2019@Long Beach 参加速報(1日目)ICML2019@Long Beach 参加速報(1日目)
ICML2019@Long Beach 参加速報(1日目)
Yamato OKAMOTO
 
Logcatの話
Logcatの話Logcatの話
Logcatの話
Shinobu Okano
 

Ähnlich wie ICML2013読み会 開会宣言 (20)

Raspberrypitraining20171027
Raspberrypitraining20171027Raspberrypitraining20171027
Raspberrypitraining20171027
 
🍻(Beer Mug)の読み方を考える(mecab-ipadic-NEologdのUnicode 絵文字対応)
🍻(Beer Mug)の読み方を考える(mecab-ipadic-NEologdのUnicode 絵文字対応)🍻(Beer Mug)の読み方を考える(mecab-ipadic-NEologdのUnicode 絵文字対応)
🍻(Beer Mug)の読み方を考える(mecab-ipadic-NEologdのUnicode 絵文字対応)
 
一般向けのDeep Learning
一般向けのDeep Learning一般向けのDeep Learning
一般向けのDeep Learning
 
PredictionIOのPython対応計画
PredictionIOのPython対応計画PredictionIOのPython対応計画
PredictionIOのPython対応計画
 
インフラ部門で働くCプログラマの話
インフラ部門で働くCプログラマの話インフラ部門で働くCプログラマの話
インフラ部門で働くCプログラマの話
 
【Ltech#11】ディープラーニングで間取り図を3Dにする
【Ltech#11】ディープラーニングで間取り図を3Dにする【Ltech#11】ディープラーニングで間取り図を3Dにする
【Ltech#11】ディープラーニングで間取り図を3Dにする
 
2020 0906 acl_2020_reading_shared
2020 0906 acl_2020_reading_shared2020 0906 acl_2020_reading_shared
2020 0906 acl_2020_reading_shared
 
Domain Generalization via Model-Agnostic Learning of Semantic Features
Domain Generalization via Model-Agnostic Learning of Semantic FeaturesDomain Generalization via Model-Agnostic Learning of Semantic Features
Domain Generalization via Model-Agnostic Learning of Semantic Features
 
Tokyo.R女子部発表スライド「Rではじめるデータ解析の超基礎」
Tokyo.R女子部発表スライド「Rではじめるデータ解析の超基礎」Tokyo.R女子部発表スライド「Rではじめるデータ解析の超基礎」
Tokyo.R女子部発表スライド「Rではじめるデータ解析の超基礎」
 
LLM+LangChainで特許調査・分析に取り組んでみた
LLM+LangChainで特許調査・分析に取り組んでみたLLM+LangChainで特許調査・分析に取り組んでみた
LLM+LangChainで特許調査・分析に取り組んでみた
 
ICML2019@Long Beach 参加速報(2日目)
ICML2019@Long Beach 参加速報(2日目) ICML2019@Long Beach 参加速報(2日目)
ICML2019@Long Beach 参加速報(2日目)
 
Case study to use MongoDB in middle-class SIer / (中規模) SIerだってMongoDBできたよ!
Case study to use MongoDB in middle-class SIer / (中規模) SIerだってMongoDBできたよ!Case study to use MongoDB in middle-class SIer / (中規模) SIerだってMongoDBできたよ!
Case study to use MongoDB in middle-class SIer / (中規模) SIerだってMongoDBできたよ!
 
Ciecleci
CiecleciCiecleci
Ciecleci
 
160531 IoT LT #15 @ 日本IBM
160531 IoT LT #15 @ 日本IBM160531 IoT LT #15 @ 日本IBM
160531 IoT LT #15 @ 日本IBM
 
Node red for-collecting_information
Node red for-collecting_informationNode red for-collecting_information
Node red for-collecting_information
 
Kof
KofKof
Kof
 
Jupyterで運用やってみた
Jupyterで運用やってみたJupyterで運用やってみた
Jupyterで運用やってみた
 
High performance python computing for data science
High performance python computing for data scienceHigh performance python computing for data science
High performance python computing for data science
 
ICML2019@Long Beach 参加速報(1日目)
ICML2019@Long Beach 参加速報(1日目)ICML2019@Long Beach 参加速報(1日目)
ICML2019@Long Beach 参加速報(1日目)
 
Logcatの話
Logcatの話Logcatの話
Logcatの話
 

Mehr von Shohei Hido

CuPy: A NumPy-compatible Library for GPU
CuPy: A NumPy-compatible Library for GPUCuPy: A NumPy-compatible Library for GPU
CuPy: A NumPy-compatible Library for GPU
Shohei Hido
 
Deep Learning Lab 異常検知入門
Deep Learning Lab 異常検知入門Deep Learning Lab 異常検知入門
Deep Learning Lab 異常検知入門
Shohei Hido
 
NIPS2017概要
NIPS2017概要NIPS2017概要
NIPS2017概要
Shohei Hido
 
ディープラーニングの産業応用とそれを支える技術
ディープラーニングの産業応用とそれを支える技術ディープラーニングの産業応用とそれを支える技術
ディープラーニングの産業応用とそれを支える技術
Shohei Hido
 
PFIセミナー "「失敗の本質」を読む"発表資料
PFIセミナー "「失敗の本質」を読む"発表資料PFIセミナー "「失敗の本質」を読む"発表資料
PFIセミナー "「失敗の本質」を読む"発表資料
Shohei Hido
 
Travis E. Oliphant, "NumPy and SciPy: History and Ideas for the Future"
Travis E. Oliphant, "NumPy and SciPy: History and Ideas for the Future"Travis E. Oliphant, "NumPy and SciPy: History and Ideas for the Future"
Travis E. Oliphant, "NumPy and SciPy: History and Ideas for the Future"
Shohei Hido
 
111015 tokyo scipy2_ディスカッション
111015 tokyo scipy2_ディスカッション111015 tokyo scipy2_ディスカッション
111015 tokyo scipy2_ディスカッション
Shohei Hido
 
111015 tokyo scipy2_additionaldemo_pandas
111015 tokyo scipy2_additionaldemo_pandas111015 tokyo scipy2_additionaldemo_pandas
111015 tokyo scipy2_additionaldemo_pandas
Shohei Hido
 
111015 tokyo scipy2_discussionquestionaire_i_python
111015 tokyo scipy2_discussionquestionaire_i_python111015 tokyo scipy2_discussionquestionaire_i_python
111015 tokyo scipy2_discussionquestionaire_i_python
Shohei Hido
 
110828 tokyo scipy1_hido_dist
110828 tokyo scipy1_hido_dist110828 tokyo scipy1_hido_dist
110828 tokyo scipy1_hido_dist
Shohei Hido
 
110901 tokyo scipy1_アンケート結果
110901 tokyo scipy1_アンケート結果110901 tokyo scipy1_アンケート結果
110901 tokyo scipy1_アンケート結果
Shohei Hido
 

Mehr von Shohei Hido (11)

CuPy: A NumPy-compatible Library for GPU
CuPy: A NumPy-compatible Library for GPUCuPy: A NumPy-compatible Library for GPU
CuPy: A NumPy-compatible Library for GPU
 
Deep Learning Lab 異常検知入門
Deep Learning Lab 異常検知入門Deep Learning Lab 異常検知入門
Deep Learning Lab 異常検知入門
 
NIPS2017概要
NIPS2017概要NIPS2017概要
NIPS2017概要
 
ディープラーニングの産業応用とそれを支える技術
ディープラーニングの産業応用とそれを支える技術ディープラーニングの産業応用とそれを支える技術
ディープラーニングの産業応用とそれを支える技術
 
PFIセミナー "「失敗の本質」を読む"発表資料
PFIセミナー "「失敗の本質」を読む"発表資料PFIセミナー "「失敗の本質」を読む"発表資料
PFIセミナー "「失敗の本質」を読む"発表資料
 
Travis E. Oliphant, "NumPy and SciPy: History and Ideas for the Future"
Travis E. Oliphant, "NumPy and SciPy: History and Ideas for the Future"Travis E. Oliphant, "NumPy and SciPy: History and Ideas for the Future"
Travis E. Oliphant, "NumPy and SciPy: History and Ideas for the Future"
 
111015 tokyo scipy2_ディスカッション
111015 tokyo scipy2_ディスカッション111015 tokyo scipy2_ディスカッション
111015 tokyo scipy2_ディスカッション
 
111015 tokyo scipy2_additionaldemo_pandas
111015 tokyo scipy2_additionaldemo_pandas111015 tokyo scipy2_additionaldemo_pandas
111015 tokyo scipy2_additionaldemo_pandas
 
111015 tokyo scipy2_discussionquestionaire_i_python
111015 tokyo scipy2_discussionquestionaire_i_python111015 tokyo scipy2_discussionquestionaire_i_python
111015 tokyo scipy2_discussionquestionaire_i_python
 
110828 tokyo scipy1_hido_dist
110828 tokyo scipy1_hido_dist110828 tokyo scipy1_hido_dist
110828 tokyo scipy1_hido_dist
 
110901 tokyo scipy1_アンケート結果
110901 tokyo scipy1_アンケート結果110901 tokyo scipy1_アンケート結果
110901 tokyo scipy1_アンケート結果
 

Kürzlich hochgeladen

第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras
第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras
第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras
Takuya Minagawa
 
「福利厚生をコストから投資へ」AIで社員1人ひとりに最適な支援を届ける 全く新しいカフェテリアプラン
「福利厚生をコストから投資へ」AIで社員1人ひとりに最適な支援を届ける 全く新しいカフェテリアプラン「福利厚生をコストから投資へ」AIで社員1人ひとりに最適な支援を届ける 全く新しいカフェテリアプラン
「福利厚生をコストから投資へ」AIで社員1人ひとりに最適な支援を届ける 全く新しいカフェテリアプラン
shogotaguchi
 
Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)
Natsutani Minoru
 
MOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツール
MOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツールMOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツール
MOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツール
TsuyoshiSaito7
 
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
Sony - Neural Network Libraries
 
MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。
MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。
MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。
iPride Co., Ltd.
 
Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit IntroductionMatsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo Lab
 
Kyndryl Developer Services のご紹介 2024年7月
Kyndryl Developer Services のご紹介  2024年7月Kyndryl Developer Services のご紹介  2024年7月
Kyndryl Developer Services のご紹介 2024年7月
Takayuki Nakayama
 
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ..."ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
たけおか しょうぞう
 
「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析
「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析
「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析
Hironori Washizaki
 
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit IntroductionMatsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo Lab
 
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
Toru Tamaki
 
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit IntroductionMatsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo Lab
 
【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説
【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説
【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説
TsuyoshiSaito7
 

Kürzlich hochgeladen (14)

第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras
第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras
第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras
 
「福利厚生をコストから投資へ」AIで社員1人ひとりに最適な支援を届ける 全く新しいカフェテリアプラン
「福利厚生をコストから投資へ」AIで社員1人ひとりに最適な支援を届ける 全く新しいカフェテリアプラン「福利厚生をコストから投資へ」AIで社員1人ひとりに最適な支援を届ける 全く新しいカフェテリアプラン
「福利厚生をコストから投資へ」AIで社員1人ひとりに最適な支援を届ける 全く新しいカフェテリアプラン
 
Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)
 
MOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツール
MOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツールMOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツール
MOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツール
 
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
 
MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。
MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。
MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。
 
Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit IntroductionMatsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit Introduction
 
Kyndryl Developer Services のご紹介 2024年7月
Kyndryl Developer Services のご紹介  2024年7月Kyndryl Developer Services のご紹介  2024年7月
Kyndryl Developer Services のご紹介 2024年7月
 
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ..."ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
 
「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析
「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析
「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析
 
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit IntroductionMatsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit Introduction
 
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
 
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit IntroductionMatsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit Introduction
 
【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説
【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説
【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説
 

ICML2013読み会 開会宣言