ICML2013: 招待講演
1. Machine Learning at Scale with GraphLab by Carlos Guestrin
l GAS(Gather-Apply-Scatter)計算モデル
l GraphLab2でスケールアップ、GraphLab3で可⽤用性アップに挑戦中
2. High-dimensional Sampling Algorithms and their Applications
by Santosh Vempala
l Convex, Convex, and Convex
3. Acoustic Modeling and Deep Learning for Speech Recognition
by Vincent Vanhoucke (Google Voice Search)
l Deep Learningが爆発的に広がった原因
l Deep Belief Networks [Bengio+, 2007]からの理理論論的蓄積
l GPGPUなどの安い計算資源と利利⽤用⽅方法が確⽴立立された
l Dataが増えた(+dropout)
l ‘10、’11にHinton系学⽣生がGoogle等でインターン
6
ICML2013まとめ:Sparse, Deep, and Random
論論⽂文中のキーワードランキング
7
イメージより多いもの イメージより少ないもの
• Sparse, Random, Multiほにゃらら、Banditなどが多い
• Kernel、SVM、Reinforcement、Bayesianなどが少ない
http://www.machinedlearnings.com/2013/06/icml-2013-sparse-deep-and-random.html
本⽇日のラインナップ:
バランス良良くばらけてます(強引)
l @sla : "Learning Spatio-Temporal Structure from RGB-D Videos for Human Activity...”
l @beam2d: "Local Deep Kernel Learning for Efficient Non-linear SVM Prediction”
l @conditional: "Vanishing Component Analysis”
l @jkomiyama_ : "Active Learning for Multi-Objective Optimization”
l @kisa12012 : "Large-Scale Learning with Less RAM via Randomization”
l @Quasi_quant2010 : "Topic Discovery through Data Dependent and Random Projections”
l @tabe2314 : "Fast Image Tagging”
l @unnonouno : "ELLA: An Efficient Lifelong Learning Algorithm”
l @sleepy_yoshi : "Distributed Training of Large-scale Logistic Models"
8
---Sparse
---Deep (?)
---Random
---Others(Spatio-Temporal, Component Analysis, Multi-taskDistributed)