Anzeige
Anzeige

Más contenido relacionado

Anzeige

Pr1

  1. Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors and the publisher
  2. Chapter 2 (part 3) Bayesian Decision Theory (Sections 2-6,2-9) • Discriminant Functions for the Normal Density • Bayes Decision Theory – Discrete Features
  3. 3 Discriminant Functions for the Normal Density • We saw that the minimum error-rate classification can be achieved by the discriminant function gi(x) = ln P(x | ωi) + ln P(ωi) • Case of multivariate normal −1 1 d 1 g i ( x ) = − ( x − µ i ) ∑ ( x − µ i ) − ln 2π − ln Σ i + ln P ( ω i ) t 2 i 2 2 Pattern Classification, Chapter 2 (Part 3)
  4. 4 • Case Σi = σ2.I (I stands for the identity matrix) g i ( x ) = w it x + w i 0 (linear discrimina nt function) where : µi 1 wi = 2 ; wi 0 = − µ it µ i + ln P ( ω i ) σ 2σ 2 ( ω i 0 is called the threshold for the ith category! ) Pattern Classification, Chapter 2 (Part 3)
  5. 5 • A classifier that uses linear discriminant functions is called “a linear machine” • The decision surfaces for a linear machine are pieces of hyperplanes defined by: gi(x) = gj(x) Pattern Classification, Chapter 2 (Part 3)
  6. 6 Pattern Classification, Chapter 2 (Part 3)
  7. 7 • The hyperplane separating R and R i j 1 σ2 P( ωi ) x0 = ( µ i + µ j ) − ln ( µi − µ j ) 2 µi − µ j 2 P( ω j ) always orthogonal to the line linking the means! 1 if P ( ω i ) = P ( ω j ) then x0 = ( µ i + µ j ) 2 Pattern Classification, Chapter 2 (Part 3)
  8. 8 Pattern Classification, Chapter 2 (Part 3)
  9. 9 Pattern Classification, Chapter 2 (Part 3)
  10. 10 • Case Σ = Σ (covariance of all classes are i identical but arbitrary!) • Hyperplane separating R and R i j 1 x0 = ( µ i + µ j ) − [ ] ln P ( ω i ) / P ( ω j ) .( µ i − µ j ) 2 ( µi − µ j ) Σ ( µi − µ j ) t −1 (the hyperplane separating Ri and Rj is generally not orthogonal to the line between the means!) Pattern Classification, Chapter 2 (Part 3)
  11. 11 Pattern Classification, Chapter 2 (Part 3)
  12. 12 Pattern Classification, Chapter 2 (Part 3)
  13. 13 • Case Σ = arbitrary i • The covariance matrices are different for each category g i ( x ) = x tW i x + w it x = w i 0 where : 1 −1 Wi = − Σ i 2 w i = Σ i−1 µ i 1 t −1 1 w i 0 = − µ i Σ i µ i − ln Σ i + ln P ( ω i ) 2 2 (Hyperquadrics which are: hyperplanes, pairs of hyperplanes, hyperspheres, hyperellipsoids, hyperparaboloids, hyperhyperboloids) Pattern Classification, Chapter 2 (Part 3)
  14. 14 Pattern Classification, Chapter 2 (Part 3)
  15. 15 Pattern Classification, Chapter 2 (Part 3)
  16. 16 Bayes Decision Theory – Discrete Features • Components of x are binary or integer valued, x can take only one of m discrete values v1, v2, …, vm • Case of independent binary features in 2 category problem Let x = [x1, x2, …, xd ]t where each xi is either 0 or 1, with probabilities: pi = P(xi = 1 | ω1) qi = P(xi = 1 | ω2) Pattern Classification, Chapter 2 (Part 3)
  17. 17 • The discriminant function in this case is: d g ( x ) = ∑ w i x i + w0 i =1 where : pi ( 1 − q i ) w i = ln i = 1 ,..., d q i ( 1 − pi ) and : 1 − pi d P( ω1 ) w0 = ∑ ln + ln i =1 1 − qi P( ω 2 ) decide ω 1 if g(x) > 0 and ω 2 if g(x) ≤ 0 Pattern Classification, Chapter 2 (Part 3)
Anzeige