Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Spss basic1

1.503 Aufrufe

Veröffentlicht am

Veröffentlicht in: Bildung, Technologie
  • Als Erste(r) kommentieren

  • Gehören Sie zu den Ersten, denen das gefällt!

Spss basic1

  1. 1. SPSS ACTIVITY
  2. 2. <ul><li>SPSS is the most commonly used statistical software for social sciences. </li></ul><ul><li>It is powerful (perhaps too powerful) but makes it easy to compute the scores from a set of data and do the statistical analysis. </li></ul><ul><li>Let’s start with a quick run through of the things you should know. </li></ul>
  3. 3. 1. We will start by using the SPSS DATA EDITOR To define and enter data
  4. 4. <ul><li>Variable view </li></ul><ul><li>Define IVs & DVs here. </li></ul><ul><li>Use separate line for each & give sensible names. </li></ul><ul><li>Decide format of data: String = text, numeric = numbers. Numeric is generally the best format. </li></ul>
  5. 5. <ul><li>Data view </li></ul><ul><li>Insert data for variables here. </li></ul><ul><li>Data is input in columns under appropriate variable names. </li></ul>
  6. 6. <ul><li>You should be able to calculate descriptive statistics with the Frequency..., Descriptives..., Explore... And Crosstabs... function. </li></ul>
  7. 7. 1. SPSS DATA EDITOR To define and enter data
  8. 9. <ul><li>Use to check on errors in typing the data and for screening to detect out of range data. </li></ul><ul><li>Select Analyze menu, click on Descriptive Statistics and then Frequencies </li></ul><ul><li>You will get a Frequency dialog box </li></ul><ul><li>Select the variables and send to variables box </li></ul><ul><li>Click OK </li></ul>
  9. 10. <ul><li>Checking on normality: histogram, stem-and-leaf plot, boxplot, and others </li></ul><ul><li>Select Analyze menu, click on Descriptive Statistics and then Explore to get the Explore dialog box </li></ul><ul><li>Select the variables you require and click on to the dependent list </li></ul><ul><li>Click on the plots to obtain the Explore Plots sub-dialogue box </li></ul><ul><li>Click on the Histogram check box and the normality-plots with tests </li></ul>
  10. 11. <ul><li>Variables maybe distributed in varying degrees of skewness hence need to transformed. </li></ul><ul><li>Variables also need to be transform as intended by the researcher as stated in the objectives. </li></ul><ul><li>TRANSFORM- COMPUTE </li></ul><ul><li>TRANSFORM – RECODE </li></ul><ul><ul><li>Recoding negatively worded scale items </li></ul></ul><ul><ul><li>Collapsing continuous variables </li></ul></ul><ul><ul><li>Replacing missing values </li></ul></ul>
  11. 12. <ul><li>Frequency/percentage table, </li></ul><ul><li>Pie or bar Charts, </li></ul><ul><li>Histogram </li></ul><ul><li>Frequency Polygon, </li></ul><ul><li>Cross-tabulation </li></ul><ul><li>Scatter diagram </li></ul><ul><li>Mean, Median, Mode, Maximum, Minimum </li></ul><ul><li>Range, Variance, Standard Deviation, Coefficient of variation, Standard Scores </li></ul>
  12. 13. GENDER MATHS-PMR MATHS-FINAL PRETEST SCORE POSTTEST SCORE PROC CONC 2 B A 6.0 14.0 19.0 8.0 2 B C 7.0 14.0 19.0 8.0 2 A A 1.0 14.5 17.0 9.0 2 A C 7.0 14.5 19.0 9.0 2 B C 7.0 13.5 18.0 8.0 2 B C 10.0 12.0 20.0 6.0 2 A A 8.0 15.0 19.0 9.0 2 C B 6.0 9.0 18.0 3.0 2 B B 8.0 10.0 17.0 5.0 2 A A 10.0 15.0 19.0 10.0 1 C D 1.0 17.0 18.0 11.0 1 B C 6.0 16.0 18.0 10.0 1 A C 4.0 12.0 18.0 8.0 1 D D .0 12.0 17.0 7.0 1 D C 8.0 15.0 15.0 8.0 1 C A 4.0 14.0 20.0 8.0 1 B A 8.0 12.0 15.0 7.0 1 B B 7.0 11.0 17.0 5.0 1 C B 8.0 15.0 18.0 10.0 1 A A 6.0 16.0 18.0 11.0 1 D C 6.0 15.0 17.0 9.0 1 C C 6.0 14.0 20.0 8.0 1 A A 15.0 18.0 20.0 12.0 1 A A 7.0 16.0 17.0 10.0 1 A B 9.0 18.0 18.0 12.0 1 A A 16.0 20.0 20.0 14.0 1 A B 7.0 15.0 16.0 9.0 1 A A 20.0 20.0 19.0 14.0 1 B B 9.0 19.5 18.0 14.0 1 A B 12.0 19.0 17.0 13.0 1 A A 16.0 18.0 15.0 12.0 2 B A 6.0 8.0 19.0 2.0 2 A B 7.0 10.0 19.0 4.0 2 A B 9.0 10.0 18.0 4.0 2 B B 9.0 10.0 19.0 4.0 2 B C 4.0 8.0 19.0 2.0 2 C C 4.0 8.0 18.0 2.0 2 B B 7.0 12.0 19.0 6.0
  13. 14. <ul><li>Plot graphs – you should be able to plot bar charts for sets of scores & plot scattergrams of relationships between the two sets of scores. </li></ul><ul><li>Remember: Select Graphs then explore the alternatives. </li></ul>
  14. 23. <ul><li>Examine descriptive statistics first. </li></ul>Quantitative Statistics: correlation & t-test Results suggest that males could eat more chillies than females. But need to conduct t-test to determine if this difference is significant.

×