SlideShare a Scribd company logo
1 of 110
Trees and Graph
Dr. M. M. Agarwal
All the material are integrated from the textbook "Fundamentals of Data Structure in C”
Outline
 Introduction (4.1)
 Binary Trees (4.2)
 Binary Tree Traversals (4.3)
 Additional Binary Tree Operations (4.4)
 Threaded Binary Trees (4.5)
 Heaps (4.6) & (Chapter 9)
 Binary Search Trees (4.7)
Outline (2)
 Selection Trees (4.8)
 Forests (4.9)
 Set Representation (4.10)
 Counting Binary Trees (4.11)
 References & Exercises
4.1 Introduction
 What is a “Tree”?
 For Example :
 Figure 4.1 (a)
 An ancestor
binary tree
 Figure 4.1 (b)
 The ancestry of
modern Europe
languages
The Definition of Tree (1)
 A tree is a finite set of one or more
nodes such that :
 (1) There is a specially designated node
called the root.
 (2) The remaining nodes are partitioned into
n ≥ 0 disjoint sets T1, …, Tn, where each of
these sets is a tree.
We call T1, …, Tn, the sub-trees of the root.
root
…
T1 T2 Tn
The Definition of Tree (2)
 The root of this tree is node A. (Fig. 4.2)
 Definitions:
 Parent (A)
 Children (E, F)
 Siblings (C, D)
 Root (A)
 Leaf / Leaves
 K, L, F, G, M, I, J…
The Definition of Tree (3)
 The degree of a node is the number
of sub-trees of the node.
 The level of a node:
 Initially letting the root be at level one
 For all other nodes, the level is the level of
the node’s parent plus one.
 The height or depth of a tree is the
maximum level of any node in the tree.
Representation of Trees (1)
 List Representation
 The root comes first, followed by a list of sub-
trees
 Example: (A(B(E(K,L),F),C(G),D(H(M),I, J)))
data link 1 link 2 ... link n
A node must have a varying number of link
fields depending on the number of branches
Representation of Trees (2)
 Left Child-Right Sibling
Representation
 Fig.4.5
 A Degree Two Tree
 Rotate clockwise by 45°
 A Binary Tree
data
left child right sibling
4.2 Binary Trees
 A binary tree is a finite set of nodes that is
either empty or consists of a root and two
disjoint binary trees called the left sub-tree and
the right sub-tree.
root
The left
sub-tree
The right
sub-tree
 Any tree can be transformed into a
binary tree.
 By using left child-right sibling
representation
 The left and right subtrees are
distinguished
Abstract Data Type
Binary_Tree (structure 4.1)
Structure Binary_Tree (abbreviated BinTree) is:
Objects: a finite set of nodes either empty or
consisting of a root node, left Binary_Tree, and
right Binary_Tree.
Functions:
For all bt, bt1, bt2  BinTree, item  element
Bintree Create()::= creates an empty binary tree
Boolean IsEmpty(bt)::= if (bt==empty binary
tree) return TRUE else return FALSE
BinTree MakeBT(bt1, item, bt2)::= return a binary tree
whose left subtree is bt1, whose right subtree is bt2,
and whose root node contains the data item
Bintree Lchild(bt)::= if (IsEmpty(bt)) return error
else return the left subtree of bt
element Data(bt)::= if (IsEmpty(bt)) return error
else return the data in the root node of bt
Bintree Rchild(bt)::= if (IsEmpty(bt)) return error
else return the right subtree of bt
Special Binary Trees
 Skewed Binary Trees
 Fig.4.9 (a)
 Complete Binary
Trees
 Fig.4.9 (b)
 This will be defined
shortly
Properties of Binary Trees (1)
 Lemma 4.1 [Maximum number of nodes] :
 (1) The maximum number of nodes on level i of
a binary tree is 2i -1, i ≥ 1.
 (2) The maximum number of nodes in a binary
tree of depth k is is 2k -1, k ≥ 1.
 The proof is by induction on i.
 Lemma 4.2 :
 For any nonempty binary tree, T, if n0 is the
number of leaf nodes and n2 the number of
nodes of degree 2, then n0 = n2 +1.
Properties of Binary Trees (2)
 A full binary tree of
depth k is a binary
tree of depth k
having 2k -1 nodes, k
≧ 0.
 A binary tree with n nodes and depth k is
complete iff its nodes correspond to the
nodes numbered from 1 to n in the full
binary tree of depth k.
Binary Tree Representation
 Array Representation (Fig. 4.11)
 Linked Representation (Fig. 4.13)
Array Representation
 Lemma 4.3 : If a complete binary tree with n
nodes (depth = └log2n + 1┘) is represented
sequentially, then for any node with index i,
1 ≦ i ≦ n, we have:
 (1) parent (i) is at └ i / 2 ┘, i ≠ 1.
 (2) left-child (i) is 2i, if 2i ≤ n.
 (3) right-child (i) is 2i+1, if 2i+1 ≤ n.
 For complete binary trees, this representation is
ideal since it wastes no space. However, for the
skewed tree, less than half of the array is utilized.
Linked Representation
typedef struct node *tree_pointer;
typedef struct node {
int data;
tree_pointer left_child,
right_child;
};
4.3 Binary Tree Traversals
 Traversing order : L, V, R
 L : moving left
 V : visiting the node
 R : moving right
 Inorder Traversal : LVR
 Preorder Traversal : VLR
 Postorder Traversal : LRV
For Example
 Inorder Traversal : A / B * C * D + E
 Preorder Traversal : + * * / A B C D E
 Postorder Traversal : A B / C * D * E +
Inorder Traversal (1)
 A recursive function starting from the root
 Move left Visit node Move right
Inorder Traversal (2)
In-order Traversal :
A / B * C * D + E
Preorder Traversal
 A recursive function starting from the root
 Visit node Move left  Move right
Postorder Traversal
 A recursive function starting from the root
 Move left Move right Visit node
Other Traversals
 Iterative Inorder Traversal
 Using a stack to simulate recursion
 Time Complexity: O(n), n is #num of node.
 Level Order Traversal
 Visiting at each new level from the left-
most node to the right-most
 Using Data Structure : Queue
Iterative In-order Traversal (1)
Iterative In-order Traversal (2)
Add “+” in stack
Add “*”
Add “*”
Add “/”
Add “A”
Delete “A” & Print
Delete “/” & Print
Add “B”
Delete “B” & Print
Delete “*” & Print
Add “C”
In-order Traversal :
A / B * C * D + E
Delete “C” & Print
Delete “*” & Print
Add “D”
Delete “D” & Print
Delete “+” & Print
Add “E”
Delete “E” & Print
Level Order Traversal (1)
Level Order Traversal (2)
Add “+” in Queue
Deleteq “+”
Addq “*”
Addq “E”
Deleteq “*”
Addq “*”
Addq “D”
Deleteq “E”
Deleteq “*” Level-order Traversal :
+ * E * D / C A B
Addq “/”
Addq “C”
Deleteq “D”
Deleteq “/”
Addq “A”
Addq “B”
Deleteq “C”
Deleteq “A”
Deleteq “B”
4.4 Additional Binary Tree Operations
 Copying Binary Trees
 Program 4.6
 Testing for Equality of Binary Trees
 Program 4.7
 The Satisfiability Problem (SAT)
Copying Binary Trees
 Modified from postorder traversal program
Testing for Equality of Binary Trees
 Equality: 2 binary trees having identical topology
and data are said to be equivalent.
SAT Problem (1)
 Formulas
 Variables : X1, X2, …, Xn
 Two possible values: True or False
 Operators : And (︿), Or (﹀), Not (﹁)
 A variable is an expression.
 If x and y are expressions,
then ﹁ x, x ︿ y, x ﹀y are expressions.
 Parentheses can be used to alter the normal
order of evaluation,
which is ﹁ before ︿ before ﹀.
SAT Problem (2)
SAT Problem (3)
 The SAT problem
 Is there an assignment of values to the variables
that causes the value of the expression to be true?
 For n variables, there are 2n possible
combinations of true and false.
 The algorithm takes O(g 2n) time
 g is the time required to substitute the true and
false values for variables and to evaluate the
expression.
SAT Problem (4)
 Node Data Structure for SAT in C
SAT Problem (5)
 A Enumerated Algorithm
 Time Complexity : O (2n)
SAT Problem (6)
void post_order_eval(tree_pointer node){
if (node){
post_order_eval(node->left_child);
post_order_eval(node->right_child);
switch(node->data){
case not: node->value=!node->right_child->value;
break;
case and: node->value=node->right_child->value &&
node->left_child->value; break;
case or: node->value=node->right_child->value ||
node->left_child->value; break;
case true: node->value=TRUE; break;
case false: node->value=FALSE; break;
} } }
4.5 Threaded Binary Trees (1)
 Linked Representation of Binary Tree
 more null links than actual pointers (waste!)
 Threaded Binary Tree
 Make use of these null links
 Threads
 Replace the null links by pointers (called threads)
 If ptr -> left_thread = TRUE
 Then ptr -> left_child is a thread (to the node before ptr)
 Else ptr -> left_child is a pointer to left child
 If ptr -> right_thread = TRUE
 Then ptr -> right_child is a thread (to the node after ptr)
 Else ptr -> right_child is a pointer to right child
4.5 Threaded Binary Trees (2)
typedef struct threaded_tree *threaded_pointer;
typedef struct threaded_tree {
short int left_thread;
threaded_pointer left_child;
char data;
short int right_child;
threaded_pointer right_child;
}
4.5 Threaded Binary Trees (3)
Head node of
the tree
Actual
tree
Inorder Traversal of
a Threaded Binary Tree (1)
 Threads simplify inorder traversal algorithm
 An easy O(n) algorithm (Program 4.11.)
 For any node, ptr, in a threaded binary tree
 If ptr -> right_thread = TRUE
 The inorder successor of ptr = ptr -> right_child
 Else (Otherwise, ptr -> right_thread = FALSE)
 Follow a path of left_child links from the right_child of ptr
until finding a node with left_Thread = TRUE
 Function insucc (Program 4.10.)
 Finds the inorder successor of any node (without
using a stack)
Inorder Traversal of
a Threaded Binary Tree (2)
Inorder Traversal of
a Threaded Binary Tree (2)
Inserting a Node into
a Threaded Binary Tree
 Insert a new node as a child of a parent node
 Insert as a left child (left as an exercise)
 Insert as a right child (see examples 1 and 2)
 Is the original child node an empty subtree?
 Empty child node (parent -> child_thread = TRUE)
 See example 1
 Non-empty child node (parent -> child_thread = FALSE)
 See example 2
Inserting a node as the right child of
the parent node (empty case)
 parent(B) -> right_thread = FALSE
 child(D) -> left_thread & right_thread = TURE
 child -> left_child = parent
 child -> right_child = parent -> right_child
 parent -> right_child = child
(1)
(2)
(3)
Inserting a node as the right child of
the parent node (non-empty case)
(1)
(2)
(3)
(4)
Right insertion in a threaded
binary tree
void insert_right(threaded_pointer parent,
threaded_pointer child){
threaded_pointer temp;
child->right_child = parent->right_child;
child->right_thread = parent->right_thread;
child->left_child = parent;
child->left_thread = TRUE;
parent->right_child = child;
parent->right_thread = FALSE;
If (!child->right_thread){/*non-empty child*/
temp = insucc(child);
temp->left_child = child; } }
(1)
(2)
(3)
(4)
4.6 Heaps
 An application of complete binary tree
 Definition
 A max (or min) tree
 a tree in which the key value in each node is no
smaller (or greater) than the key values in its
children (if any).
 A max (or min) heap
 a max (or min) complete binary tree
A max heap
Heap Operations
 Creation of an empty heap
 PS. To build a Heap  O( n log n )
 Insertion of a new element into the heap
 O (log2n)
 Deletion of the largest element from
the (max) heap
 O (log2n)
 Application of Heap
 Priority Queues
Insertion into a Max Heap (1)
(Figure 4.28)
Insertion into a Max Heap (2)
 the height of n node heap = ┌ log2(n+1) ┐
 Time complexity = O (height) = O (log2n)
void insert_max_heap(element item, int *n) {
int i;
if (HEAP_FULL(*n)){
fprintf(stderr, “the heap is full.n); exit(1);
}
i = ++(*n);
while ((i!=1) && (item.key>heap[i/2].key)) {
heap[i] = heap[i/2]; i /= 2;
}
heap[i] = item;
}
Deletion from a Max Heap
 Delete the max (root) from a max heap
 Step 1 : Remove the root
 Step 2 : Replace the last element to the root
 Step 3 : Heapify (Reestablish the heap)
Delete_max_heap (1)
element delete_max_heap(int *n)
{
int parent, child; element item, temp;
if (HEAP_EMPTY(*n)) {
fprintf(stderr, “The heap is emptyn”);
exit(1);
}
/* save value of the element with the
highest key */
item = heap[1];
/* use last element in heap to adjust heap */
temp = heap[(*n)--];
Delete_max_heap (2)
parent = 1; child = 2;
while (child <= *n) {
/* find the larger child of the current
parent */
if ((child < *n) &&
(heap[child].key<heap[child+1].key))
child++;
if (temp.key >= heap[child].key) break;
/* move to the next lower level */
heap[parent] = heap[child];
child *= 2;
}
heap[parent] = temp;
return item;
}
4.7 Binary Search Trees
 Heap : search / delete arbitrary element
 O(n) time
 Binary Search Trees (BST)
 Searching  O(h), h is the height of BST
 Insertion  O(h)
 Deletion  O(h)
 Can be done quickly by both key value and
rank
Definition
 A binary search tree is a binary tree, that
may be empty or satisfies the following
properties :
 (1) every element has a unique key.
 (2&3) The keys in a nonempty left(/right) sub-
tree must be smaller(/larger) than the key in the
root of the sub-tree.
 (4) The left and right sub-trees are also binary
search trees.
Searching a BST (1)
Searching a BST (2)
 Time Complexity
 search  O(h), h is the height of BST.
 search2  O(h)
Inserting into a BST (1)
 Step 1 : Check if the inserting key is
different from those of existing elements
 Run search function  O(h)
 Step 2 : Run insert_node function
 Program 4.17  O(h)
Inserting into a BST (2)
void insert_node(tree_pointer *node, int num) {
tree_pointer ptr, temp = modified_search(*node, num);
if (temp || !(*node)) {
ptr = (tree_pointer) malloc(sizeof(node));
if (IS_FULL(ptr)) {
fprintf(stderr, “The memory is fulln”); exit(1);
}
ptr->data = num;
ptr->left_child = ptr->right_child = NULL;
if (*node)
if (num<temp->data) temp->left_child=ptr;
else temp->right_child = ptr;
else *node = ptr;
}
}
Deletion from a BST
 Delete a non-leaf node with two children
 Replace the largest element in its left sub-tree
 Or Replace the smallest element in its right sub-tree
 Recursively to the leaf  O(h)
Height of a BST
 The Height of the binary search tree is
O(log2n), on the average.
 Worst case (skewed)  O(h) = O(n)
 Balanced Search Trees
 With a worst case height of O(log2n)
 AVL Trees, 2-3 Trees, Red-Black Trees
 Chapter 10
4.8 Selection Trees
 Application Problem
 Merge k ordered sequences into a single
ordered sequence
 Definition: A run is an ordered sequence
 Build a k-run Selection tree
Time Complexity
 Selection Tree’s Level  ┌ log2k ┐+ 1
 Each time to restructure the tree
 O(log2k)
 Total time to merge n records
 O(n log2k)
For Example
Tree of losers
 The previous selection tree is called a winner tree
 Each node records the winner of the two children
 Loser Tree
 Leaf nodes represent the first record in each run
 Each non-leaf node retains a pointer to the loser
 Overall winner is stored in the additional node, node 0
 Each newly inserted record is now compared with its
parent (not its sibling)  loser stays, winner goes up
without storing.
 Slightly faster than winner trees
Loser tree example
10
8
9
9
20
10
6
11
8
12
9
13
90
14
17
15
10
4
20
5
9
6
90
7
9
2
17
3
8
1
6
Run 1 2 3 4 5 6 7 8
overall
winner
*Figure 4.36: Tree of losers corresponding to Figure 4.34 (p.235)
15
15
9
8
15
15
9
4.9 Forests
 A forest is a set of n ≧ 0 disjoint trees.
 T1, …, Tn is a forest of trees
 Transforming a forest into a Binary Tree
B(T1, …, Tn)
 (1) if n = 0, then return empty
 (2) a root (T1);
 Left sub-tree equal to B(T11,T12, …, T1m), where
T11,T12, …, T1m are the sub-trees of root (T1);
 Right sub-tree B(T2, …, Tn)
Transforming a forest into a Binary Tree
Root(T1)
T11,T12, T13
B(T2, T3)
Forest Traversals
Pre-order :
In-order :
Post-order :
4.10 Set Representation
 Elements : 0, 1, …, n -1.
 Sets : S1, S2, …, Sm
 pairwise disjoint
 If Si and Sj are two sets and i ≠ j, then there is no
element that is in both Si and Sj.
 Operations
 Disjoint Set Union
 Ex: S1 ∪ S2
 Find (i )
Union Operation
 Disjoint Set Union
 S1 ∪ S2 = {0, 6, 7, 8, 1, 4, 9}
Implement of Data Structure
Union & Find Operation
 Union(i, j)
 parent(i) = j  let i be the new root of j
 Find(i)
 While (parent[i]≧0)
 i = parent[i]  find the root of the set
 Return i;  return the root of the set
Performance
 Run a sequence of union-find operations
 Total n-1 unions  n-1 times, O(n)
 Time of Finds  Σn
i=2 i = O(n 2)
Weighting rule for union(i, j)
 If # of nodes in i < # of nodes in j
 Then j becomes the parent of i
 Else i becomes the parent of j
New Union Function
 Prevent the tree from growing too high
 To avoid the creation of degenerate trees
 No node in T has level greater than log2n +1
void union2(int i, int j){
int temp = parent[i]+parent[j];
if (parent[i]>parent[j]) {
parent[i]=j; parent[j]=temp;
}
else {
parent[j]=i; parent[i]=temp;
}
}
Figure 4.45 Trees achieving
worst case bound (p.245)
Collapsing Rule (for new find
function)
 Definition: If j is a node on the path
from i to its root then make j a child of
the root
 The new find function (see next slide):
 Roughly doubles the time for an individual
find
 Reduces the worse case time over a
sequence of finds.
New Find Function
 Collapse all nodes form i to root
 To lower the height of tree
Performance of New Algorithm
 Let T(m, n) be the maximum time required to
process an intermixed sequence of m finds
(m≧n) and n -1 unions, we have :
 k1mα(m, n) ≦ T(m, n) ≦ k2mα(m, n)
 k1, k2 : some positive constants
 α(m, n) is a very slowly growing function and is a
functional inverse of Ackermann’s function A(p, q).
 Function A(p, q) is a very rapidly growing function.
Equivalence Classes
 Using union-find algorithms to
processing the equivalence pairs of
Section 4.6 (p.167)
 At most time : O(mα(2m, n))
 Using less space
4.11 Counting Binary Trees
 Three disparate problems :
 Having the same solution
 Determine the number of distinct binary trees
having n nodes (problem 1)
 Determine the number of distinct
permutations of the numbers from 1 to n
obtainable by a stack (problem 2)
 Determine the number of distinct ways of
multiply n + 1 matrices (problem 3)
Distinct binary trees
 N = 1
 only one binary tree
 N = 2
 2 distinct binary trees
 N = 3
 5 distinct binary trees
 N = …
Stack Permutations (1)
 A binary tree traversals
 Pre-order : A B C D E F G H I
 In-order : B C A E D G H F I
 Is this binary tree unique?
 Constructing this binary tree
Stack Permutations (2)
 For a given preorder permutation 1, 2, 3, what are
the possible inorder permutations?
 Possible inorder permutation by a stack 
 (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 2, 1)
 (3, 1, 2) is impossible
 Each inorder permutation represents a distinct binary
tree
Matrix Multiplication (1)
 The product of n matrices
 M1 * M2 * … * Mn
 Matrix multiplication is associative
 Can be performed in any order
 N = 3, 2 ways to perform
 (M1 * M2) * M3
 M1 * (M2 * M3)
 N = 4, 5 possibilities
Matrix Multiplication (2)
 Let bn be the number of different ways
to compute the product of n matrices.
 We have :
number of distinct binary trees
 Approximation by solving the recurrence of
the equation
∵  
Solution : (when x →∞)
Simplification :
∴
Approximation :
Heapsort—An optimal sorting algorithm
 A heap : parent  son
 output the maximum and restore:
 Heapsort: construction
output
Phase 1: construction
 input data: 4, 37, 26, 15, 48  restore the subtree rooted
at A(2):
 restore the tree rooted at
A(1):
Phase 2: output
Implementation
 using a linear array
not a binary tree.
 The sons of A(h) are A(2h) and A(2h+1).
 time complexity: O(n log n)
Time complexity
Phase 1: construction
d = log n : depth
# of comparisons is at most:
L
d



0
1
2(dL)2L
=2d
L
d



0
1
2L
 4
L
d



0
1
L2L-1
(
L
k


0
L2L-1
= 2k
(k1)+1)
=2d(2d
1)  4(2d-1
(d  1  1) + 1)
:
= cn  2log n  4, 2  c  4
d
L
d-L
Time complexity
Phase 2: output
2
i
n



1
1
log i
= :
=2nlog n  4cn + 4, 2  c  4
=O(n log n)
log i
i nodes
給定4個城市的相互距離
1 2
3 4
12
1 8
10
3
2
最小展開樹問題
尋找一個將四個城市最經濟的聯結
1 2
3 4
12
1 8
10
3
2
旅行推銷員問題
Traveling Salesman Problem (TSP)
尋找一個從(1)出發,回到(1)的最短走法
1 2
3 4
12
1 8
10
3
2
TSP是一個公認的難題
NP-Complete
 意義:我們現在無法對所有輸入找到一
個有效率的解法
 避免浪費時間尋求更佳的解法
 Ref: Horowitz & Sahni,
Fundamentals of Computer Algorithms,
P528.
 2n相當可怕
10 30 50
N 0.00001 s 0.00003 s 0.00005 s
N2 0.0001 s 0.0009 s 0.0025 s
2n 0.001 s 17.9 min 34.7 year
 像satisfiabilibility problem
 目前只有exponential algorithm,還沒有人找
到polynomial algorithm (你也不妨放棄!)
這一類問題是NP-Complete Problem
 Garey & Johnson “Computers & Intractability”
窮舉法(Enumerating)
(想想看什麼問題不能窮舉解?)
 旅行推銷員問題:
3!走法 (n-1)!
 最小展開樹問題:
16種樹 n(n-2) Cayley’s Thm.
Ref: Even, Graph Algorithms, PP26~28
12
4
1
1
4
3
2
 Labeled tree  Number sequence
One-to-One Mapping
 N個nodes的labeled tree可以用一個
長度N-2的number sequence來表達。
 Encoding: Data Compression.
Labeled treeNumber sequence
 在每一個iteration裡,切除目前所有leaves中
編號最小的node及其edges,記錄切點,切到
只剩一條edge為止。
例.
Prune-sequence:7,4,4,7,5(切點)
 Label最大者必在最後的edge.
 每個node原先的degree數=此node在
Prune-sqeuence中出現的次數+1.
2
3
4 7
1
5 6
Number sequenceLabeled tree
Prune-sequence: 7,4,4,7,5
k 1 2 3 4 5 6 7
deg(k) 1 1 1 3 2 1 3
Iteration 1 0 1 1 3 2 1 2
Iteration 2 0 0 1 2 2 1 2
Iteration 3 0 0 0 1 2 1 2
Iteration 4 0 0 0 0 2 1 1
Iteration 5 0 0 0 0 1 0 1
Iteration 6 0 0 0 0 0 0 0
 每一個iteration裡,選擇degree為1且編號最小的node,連接prune-sequence中
相對的node,之後兩個nodes的degree均減1.
Iteration 1 Iteration 2
Iteration 3
Iteration 4 Iteration 6
Iteration 5
1 7
1 7 2 4
1 7 2 4 3
1 7 4
1 7 4
3
2
1 7 4
3
2
6 5
3
2
5
6
Minimal spanning tree
Kruskal’a Algorithm
A B
D
C
E
70
65
300
90
50
80 75
200
Begin
T <- null
While T contains less than n-1 edges, the smallest weight,
choose an edge (v, w) form E of smallest weight 【 Using priority queue, heap O (log n) 】,
delete (v, w) form E.
If the adding of (v, w) to T does not create a cycle in T,【 Using union, find O (log m)】
then add (v, w) to T;
else discard (v, w).
Repeat.
End.
O (m log m) m = # of edge
priority queue
heap operation
O(log n)
Initial O(n)
 Tarjan: Union & Find almost linear (Amortized)
 Correctness
 Edge tree minimal
 Edge cycle
 Delete cycle edge cost tree
1
2 4
3 7 5 6
spanning tree
spanning forest link
1. edge(2,3)
2. edge(1,4)
S1={1,2,3}
S2={4,5}
Edge set
Set Find, Union O(log n)
1
3
2
4
5

More Related Content

What's hot (20)

Tree Traversal
Tree TraversalTree Traversal
Tree Traversal
 
Binary Search Tree in Data Structure
Binary Search Tree in Data StructureBinary Search Tree in Data Structure
Binary Search Tree in Data Structure
 
Binary search trees
Binary search treesBinary search trees
Binary search trees
 
Indexing Data Structure
Indexing Data StructureIndexing Data Structure
Indexing Data Structure
 
Discrete Mathematics Tree
Discrete Mathematics  TreeDiscrete Mathematics  Tree
Discrete Mathematics Tree
 
AVL Tree Data Structure
AVL Tree Data StructureAVL Tree Data Structure
AVL Tree Data Structure
 
17. Trees and Graphs
17. Trees and Graphs17. Trees and Graphs
17. Trees and Graphs
 
Graph traversals in Data Structures
Graph traversals in Data StructuresGraph traversals in Data Structures
Graph traversals in Data Structures
 
sparse matrix in data structure
sparse matrix in data structuresparse matrix in data structure
sparse matrix in data structure
 
Tree traversal techniques
Tree traversal techniquesTree traversal techniques
Tree traversal techniques
 
AVL Tree
AVL TreeAVL Tree
AVL Tree
 
Hashing
HashingHashing
Hashing
 
Splay Tree
Splay TreeSplay Tree
Splay Tree
 
Graphs In Data Structure
Graphs In Data StructureGraphs In Data Structure
Graphs In Data Structure
 
Hashing in datastructure
Hashing in datastructureHashing in datastructure
Hashing in datastructure
 
Binary Tree in Data Structure
Binary Tree in Data StructureBinary Tree in Data Structure
Binary Tree in Data Structure
 
Data Structures - Lecture 9 [Stack & Queue using Linked List]
 Data Structures - Lecture 9 [Stack & Queue using Linked List] Data Structures - Lecture 9 [Stack & Queue using Linked List]
Data Structures - Lecture 9 [Stack & Queue using Linked List]
 
Bfs dfs
Bfs dfsBfs dfs
Bfs dfs
 
trees in data structure
trees in data structure trees in data structure
trees in data structure
 
Binary search tree(bst)
Binary search tree(bst)Binary search tree(bst)
Binary search tree(bst)
 

Similar to Chap 5 Tree.ppt

Review session2
Review session2Review session2
Review session2NEEDY12345
 
Admissions in india 2015
Admissions in india 2015Admissions in india 2015
Admissions in india 2015Edhole.com
 
Trees in Data Structure
Trees in Data StructureTrees in Data Structure
Trees in Data StructureOm Prakash
 
Data Structure and Algorithms Binary Tree
Data Structure and Algorithms Binary TreeData Structure and Algorithms Binary Tree
Data Structure and Algorithms Binary TreeManishPrajapati78
 
ds 10-Binary Tree.ppt
ds 10-Binary Tree.pptds 10-Binary Tree.ppt
ds 10-Binary Tree.pptkhitishlpu
 
data_structures_and_applications_-_module-4.ppt
data_structures_and_applications_-_module-4.pptdata_structures_and_applications_-_module-4.ppt
data_structures_and_applications_-_module-4.pptssuser5c874e
 
lecture-i-trees.ppt
lecture-i-trees.pptlecture-i-trees.ppt
lecture-i-trees.pptMouDhara1
 
chapter5.PPT
chapter5.PPTchapter5.PPT
chapter5.PPTSaralaT3
 
CS-102 BST_27_3_14v2.pdf
CS-102 BST_27_3_14v2.pdfCS-102 BST_27_3_14v2.pdf
CS-102 BST_27_3_14v2.pdfssuser034ce1
 
7 chapter4 trees_binary
7 chapter4 trees_binary7 chapter4 trees_binary
7 chapter4 trees_binarySSE_AndyLi
 
Lecture notes data structures tree
Lecture notes data structures   treeLecture notes data structures   tree
Lecture notes data structures treemaamir farooq
 
Chapter 5_Trees.pdf
Chapter 5_Trees.pdfChapter 5_Trees.pdf
Chapter 5_Trees.pdfssuser50179b
 
Fundamentals of data structures
Fundamentals of data structuresFundamentals of data structures
Fundamentals of data structuresNiraj Agarwal
 
C++ ProgramRecursive reversal of a tree.[16] Write a method voi.pdf
C++ ProgramRecursive reversal of a tree.[16] Write a method voi.pdfC++ ProgramRecursive reversal of a tree.[16] Write a method voi.pdf
C++ ProgramRecursive reversal of a tree.[16] Write a method voi.pdffunkybabyindia
 

Similar to Chap 5 Tree.ppt (20)

Review session2
Review session2Review session2
Review session2
 
Trees
TreesTrees
Trees
 
Admissions in india 2015
Admissions in india 2015Admissions in india 2015
Admissions in india 2015
 
Trees in Data Structure
Trees in Data StructureTrees in Data Structure
Trees in Data Structure
 
7.tree
7.tree7.tree
7.tree
 
Data Structure and Algorithms Binary Tree
Data Structure and Algorithms Binary TreeData Structure and Algorithms Binary Tree
Data Structure and Algorithms Binary Tree
 
ds 10-Binary Tree.ppt
ds 10-Binary Tree.pptds 10-Binary Tree.ppt
ds 10-Binary Tree.ppt
 
data_structures_and_applications_-_module-4.ppt
data_structures_and_applications_-_module-4.pptdata_structures_and_applications_-_module-4.ppt
data_structures_and_applications_-_module-4.ppt
 
lecture-i-trees.ppt
lecture-i-trees.pptlecture-i-trees.ppt
lecture-i-trees.ppt
 
chapter5.PPT
chapter5.PPTchapter5.PPT
chapter5.PPT
 
Unit 3.ppt
Unit 3.pptUnit 3.ppt
Unit 3.ppt
 
CS-102 BST_27_3_14v2.pdf
CS-102 BST_27_3_14v2.pdfCS-102 BST_27_3_14v2.pdf
CS-102 BST_27_3_14v2.pdf
 
Binary trees
Binary treesBinary trees
Binary trees
 
7 chapter4 trees_binary
7 chapter4 trees_binary7 chapter4 trees_binary
7 chapter4 trees_binary
 
Lecture notes data structures tree
Lecture notes data structures   treeLecture notes data structures   tree
Lecture notes data structures tree
 
Tree
TreeTree
Tree
 
Chapter 5_Trees.pdf
Chapter 5_Trees.pdfChapter 5_Trees.pdf
Chapter 5_Trees.pdf
 
Fundamentals of data structures
Fundamentals of data structuresFundamentals of data structures
Fundamentals of data structures
 
C++ ProgramRecursive reversal of a tree.[16] Write a method voi.pdf
C++ ProgramRecursive reversal of a tree.[16] Write a method voi.pdfC++ ProgramRecursive reversal of a tree.[16] Write a method voi.pdf
C++ ProgramRecursive reversal of a tree.[16] Write a method voi.pdf
 
Binary trees1
Binary trees1Binary trees1
Binary trees1
 

More from shashankbhadouria4

Artificial Neural Network.pptx
Artificial Neural Network.pptxArtificial Neural Network.pptx
Artificial Neural Network.pptxshashankbhadouria4
 
IT201 Basics of Intelligent Systems-1.pptx
IT201 Basics of Intelligent Systems-1.pptxIT201 Basics of Intelligent Systems-1.pptx
IT201 Basics of Intelligent Systems-1.pptxshashankbhadouria4
 
MO 2020 DS Doubly Linked List 1 AB.ppt
MO 2020 DS Doubly Linked List 1 AB.pptMO 2020 DS Doubly Linked List 1 AB.ppt
MO 2020 DS Doubly Linked List 1 AB.pptshashankbhadouria4
 
A New Multi-Level Inverter Topology With Reduced Switch.pptx
A New Multi-Level Inverter Topology With Reduced Switch.pptxA New Multi-Level Inverter Topology With Reduced Switch.pptx
A New Multi-Level Inverter Topology With Reduced Switch.pptxshashankbhadouria4
 
Birla Institute of Technology Mesra Jaipur.pptx
Birla Institute of Technology Mesra Jaipur.pptxBirla Institute of Technology Mesra Jaipur.pptx
Birla Institute of Technology Mesra Jaipur.pptxshashankbhadouria4
 
III_Data Structure_Module_1.ppt
III_Data Structure_Module_1.pptIII_Data Structure_Module_1.ppt
III_Data Structure_Module_1.pptshashankbhadouria4
 
Chap 2 Arrays and Structures.ppt
Chap 2  Arrays and Structures.pptChap 2  Arrays and Structures.ppt
Chap 2 Arrays and Structures.pptshashankbhadouria4
 
Chap 4 List of Data Structure.ppt
Chap 4 List of Data Structure.pptChap 4 List of Data Structure.ppt
Chap 4 List of Data Structure.pptshashankbhadouria4
 
SUmmer Training PPT FINAL.pptx
SUmmer Training PPT FINAL.pptxSUmmer Training PPT FINAL.pptx
SUmmer Training PPT FINAL.pptxshashankbhadouria4
 
MO 2020 DS Applications of Linked List 1 AB.ppt
MO 2020 DS Applications of Linked List 1 AB.pptMO 2020 DS Applications of Linked List 1 AB.ppt
MO 2020 DS Applications of Linked List 1 AB.pptshashankbhadouria4
 
III_Data Structure_Module_1.pptx
III_Data Structure_Module_1.pptxIII_Data Structure_Module_1.pptx
III_Data Structure_Module_1.pptxshashankbhadouria4
 
Chap 2 Arrays and Structures.pptx
Chap 2  Arrays and Structures.pptxChap 2  Arrays and Structures.pptx
Chap 2 Arrays and Structures.pptxshashankbhadouria4
 

More from shashankbhadouria4 (20)

EC203DSD - Module 5 - 3.ppt
EC203DSD - Module 5 - 3.pptEC203DSD - Module 5 - 3.ppt
EC203DSD - Module 5 - 3.ppt
 
Artificial Neural Network.pptx
Artificial Neural Network.pptxArtificial Neural Network.pptx
Artificial Neural Network.pptx
 
IT201 Basics of Intelligent Systems-1.pptx
IT201 Basics of Intelligent Systems-1.pptxIT201 Basics of Intelligent Systems-1.pptx
IT201 Basics of Intelligent Systems-1.pptx
 
MO 2020 DS Doubly Linked List 1 AB.ppt
MO 2020 DS Doubly Linked List 1 AB.pptMO 2020 DS Doubly Linked List 1 AB.ppt
MO 2020 DS Doubly Linked List 1 AB.ppt
 
MO 2020 DS Stacks 3 AB.ppt
MO 2020 DS Stacks 3 AB.pptMO 2020 DS Stacks 3 AB.ppt
MO 2020 DS Stacks 3 AB.ppt
 
A New Multi-Level Inverter Topology With Reduced Switch.pptx
A New Multi-Level Inverter Topology With Reduced Switch.pptxA New Multi-Level Inverter Topology With Reduced Switch.pptx
A New Multi-Level Inverter Topology With Reduced Switch.pptx
 
Birla Institute of Technology Mesra Jaipur.pptx
Birla Institute of Technology Mesra Jaipur.pptxBirla Institute of Technology Mesra Jaipur.pptx
Birla Institute of Technology Mesra Jaipur.pptx
 
EE306_EXP1.pptx
EE306_EXP1.pptxEE306_EXP1.pptx
EE306_EXP1.pptx
 
III_Data Structure_Module_1.ppt
III_Data Structure_Module_1.pptIII_Data Structure_Module_1.ppt
III_Data Structure_Module_1.ppt
 
Chap 6 Graph.ppt
Chap 6 Graph.pptChap 6 Graph.ppt
Chap 6 Graph.ppt
 
Chap 2 Arrays and Structures.ppt
Chap 2  Arrays and Structures.pptChap 2  Arrays and Structures.ppt
Chap 2 Arrays and Structures.ppt
 
Chap 4 List of Data Structure.ppt
Chap 4 List of Data Structure.pptChap 4 List of Data Structure.ppt
Chap 4 List of Data Structure.ppt
 
SUmmer Training PPT FINAL.pptx
SUmmer Training PPT FINAL.pptxSUmmer Training PPT FINAL.pptx
SUmmer Training PPT FINAL.pptx
 
RVPN TRAINING PPT.pptx
RVPN TRAINING PPT.pptxRVPN TRAINING PPT.pptx
RVPN TRAINING PPT.pptx
 
MODULE 1.pptx
MODULE 1.pptxMODULE 1.pptx
MODULE 1.pptx
 
MODULE 1.pptx
MODULE 1.pptxMODULE 1.pptx
MODULE 1.pptx
 
MO 2020 DS Applications of Linked List 1 AB.ppt
MO 2020 DS Applications of Linked List 1 AB.pptMO 2020 DS Applications of Linked List 1 AB.ppt
MO 2020 DS Applications of Linked List 1 AB.ppt
 
MO 2020 DS Stacks 1 AB.ppt
MO 2020 DS Stacks 1 AB.pptMO 2020 DS Stacks 1 AB.ppt
MO 2020 DS Stacks 1 AB.ppt
 
III_Data Structure_Module_1.pptx
III_Data Structure_Module_1.pptxIII_Data Structure_Module_1.pptx
III_Data Structure_Module_1.pptx
 
Chap 2 Arrays and Structures.pptx
Chap 2  Arrays and Structures.pptxChap 2  Arrays and Structures.pptx
Chap 2 Arrays and Structures.pptx
 

Recently uploaded

Smarteg dropshipping via API with DroFx.pptx
Smarteg dropshipping via API with DroFx.pptxSmarteg dropshipping via API with DroFx.pptx
Smarteg dropshipping via API with DroFx.pptxolyaivanovalion
 
FESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfFESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfMarinCaroMartnezBerg
 
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdf
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdfMarket Analysis in the 5 Largest Economic Countries in Southeast Asia.pdf
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdfRachmat Ramadhan H
 
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779Best VIP Call Girls Noida Sector 22 Call Me: 8448380779
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779Delhi Call girls
 
CebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxCebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxolyaivanovalion
 
Invezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signalsInvezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signalsInvezz1
 
BabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptxBabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptxolyaivanovalion
 
Carero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptxCarero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptxolyaivanovalion
 
BigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptxBigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptxolyaivanovalion
 
BDSM⚡Call Girls in Mandawali Delhi >༒8448380779 Escort Service
BDSM⚡Call Girls in Mandawali Delhi >༒8448380779 Escort ServiceBDSM⚡Call Girls in Mandawali Delhi >༒8448380779 Escort Service
BDSM⚡Call Girls in Mandawali Delhi >༒8448380779 Escort ServiceDelhi Call girls
 
Midocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFxMidocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFxolyaivanovalion
 
Accredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdfAccredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdfadriantubila
 
Determinants of health, dimensions of health, positive health and spectrum of...
Determinants of health, dimensions of health, positive health and spectrum of...Determinants of health, dimensions of health, positive health and spectrum of...
Determinants of health, dimensions of health, positive health and spectrum of...shambhavirathore45
 
Edukaciniai dropshipping via API with DroFx
Edukaciniai dropshipping via API with DroFxEdukaciniai dropshipping via API with DroFx
Edukaciniai dropshipping via API with DroFxolyaivanovalion
 
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...Delhi Call girls
 
100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptx100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptxAnupama Kate
 
Best VIP Call Girls Noida Sector 39 Call Me: 8448380779
Best VIP Call Girls Noida Sector 39 Call Me: 8448380779Best VIP Call Girls Noida Sector 39 Call Me: 8448380779
Best VIP Call Girls Noida Sector 39 Call Me: 8448380779Delhi Call girls
 
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Callshivangimorya083
 

Recently uploaded (20)

Smarteg dropshipping via API with DroFx.pptx
Smarteg dropshipping via API with DroFx.pptxSmarteg dropshipping via API with DroFx.pptx
Smarteg dropshipping via API with DroFx.pptx
 
FESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfFESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdf
 
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdf
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdfMarket Analysis in the 5 Largest Economic Countries in Southeast Asia.pdf
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdf
 
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779Best VIP Call Girls Noida Sector 22 Call Me: 8448380779
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779
 
CebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxCebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptx
 
Invezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signalsInvezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signals
 
BabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptxBabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptx
 
Carero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptxCarero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptx
 
BigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptxBigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptx
 
BDSM⚡Call Girls in Mandawali Delhi >༒8448380779 Escort Service
BDSM⚡Call Girls in Mandawali Delhi >༒8448380779 Escort ServiceBDSM⚡Call Girls in Mandawali Delhi >༒8448380779 Escort Service
BDSM⚡Call Girls in Mandawali Delhi >༒8448380779 Escort Service
 
Midocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFxMidocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFx
 
Accredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdfAccredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdf
 
Determinants of health, dimensions of health, positive health and spectrum of...
Determinants of health, dimensions of health, positive health and spectrum of...Determinants of health, dimensions of health, positive health and spectrum of...
Determinants of health, dimensions of health, positive health and spectrum of...
 
Edukaciniai dropshipping via API with DroFx
Edukaciniai dropshipping via API with DroFxEdukaciniai dropshipping via API with DroFx
Edukaciniai dropshipping via API with DroFx
 
CHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICECHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
 
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
 
100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptx100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptx
 
Best VIP Call Girls Noida Sector 39 Call Me: 8448380779
Best VIP Call Girls Noida Sector 39 Call Me: 8448380779Best VIP Call Girls Noida Sector 39 Call Me: 8448380779
Best VIP Call Girls Noida Sector 39 Call Me: 8448380779
 
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
 
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
 

Chap 5 Tree.ppt

  • 1. Trees and Graph Dr. M. M. Agarwal All the material are integrated from the textbook "Fundamentals of Data Structure in C”
  • 2. Outline  Introduction (4.1)  Binary Trees (4.2)  Binary Tree Traversals (4.3)  Additional Binary Tree Operations (4.4)  Threaded Binary Trees (4.5)  Heaps (4.6) & (Chapter 9)  Binary Search Trees (4.7)
  • 3. Outline (2)  Selection Trees (4.8)  Forests (4.9)  Set Representation (4.10)  Counting Binary Trees (4.11)  References & Exercises
  • 4. 4.1 Introduction  What is a “Tree”?  For Example :  Figure 4.1 (a)  An ancestor binary tree  Figure 4.1 (b)  The ancestry of modern Europe languages
  • 5. The Definition of Tree (1)  A tree is a finite set of one or more nodes such that :  (1) There is a specially designated node called the root.  (2) The remaining nodes are partitioned into n ≥ 0 disjoint sets T1, …, Tn, where each of these sets is a tree. We call T1, …, Tn, the sub-trees of the root. root … T1 T2 Tn
  • 6. The Definition of Tree (2)  The root of this tree is node A. (Fig. 4.2)  Definitions:  Parent (A)  Children (E, F)  Siblings (C, D)  Root (A)  Leaf / Leaves  K, L, F, G, M, I, J…
  • 7. The Definition of Tree (3)  The degree of a node is the number of sub-trees of the node.  The level of a node:  Initially letting the root be at level one  For all other nodes, the level is the level of the node’s parent plus one.  The height or depth of a tree is the maximum level of any node in the tree.
  • 8. Representation of Trees (1)  List Representation  The root comes first, followed by a list of sub- trees  Example: (A(B(E(K,L),F),C(G),D(H(M),I, J))) data link 1 link 2 ... link n A node must have a varying number of link fields depending on the number of branches
  • 9. Representation of Trees (2)  Left Child-Right Sibling Representation  Fig.4.5  A Degree Two Tree  Rotate clockwise by 45°  A Binary Tree data left child right sibling
  • 10. 4.2 Binary Trees  A binary tree is a finite set of nodes that is either empty or consists of a root and two disjoint binary trees called the left sub-tree and the right sub-tree. root The left sub-tree The right sub-tree  Any tree can be transformed into a binary tree.  By using left child-right sibling representation  The left and right subtrees are distinguished
  • 11. Abstract Data Type Binary_Tree (structure 4.1) Structure Binary_Tree (abbreviated BinTree) is: Objects: a finite set of nodes either empty or consisting of a root node, left Binary_Tree, and right Binary_Tree. Functions: For all bt, bt1, bt2  BinTree, item  element Bintree Create()::= creates an empty binary tree Boolean IsEmpty(bt)::= if (bt==empty binary tree) return TRUE else return FALSE
  • 12. BinTree MakeBT(bt1, item, bt2)::= return a binary tree whose left subtree is bt1, whose right subtree is bt2, and whose root node contains the data item Bintree Lchild(bt)::= if (IsEmpty(bt)) return error else return the left subtree of bt element Data(bt)::= if (IsEmpty(bt)) return error else return the data in the root node of bt Bintree Rchild(bt)::= if (IsEmpty(bt)) return error else return the right subtree of bt
  • 13. Special Binary Trees  Skewed Binary Trees  Fig.4.9 (a)  Complete Binary Trees  Fig.4.9 (b)  This will be defined shortly
  • 14. Properties of Binary Trees (1)  Lemma 4.1 [Maximum number of nodes] :  (1) The maximum number of nodes on level i of a binary tree is 2i -1, i ≥ 1.  (2) The maximum number of nodes in a binary tree of depth k is is 2k -1, k ≥ 1.  The proof is by induction on i.  Lemma 4.2 :  For any nonempty binary tree, T, if n0 is the number of leaf nodes and n2 the number of nodes of degree 2, then n0 = n2 +1.
  • 15. Properties of Binary Trees (2)  A full binary tree of depth k is a binary tree of depth k having 2k -1 nodes, k ≧ 0.  A binary tree with n nodes and depth k is complete iff its nodes correspond to the nodes numbered from 1 to n in the full binary tree of depth k.
  • 16. Binary Tree Representation  Array Representation (Fig. 4.11)  Linked Representation (Fig. 4.13)
  • 17. Array Representation  Lemma 4.3 : If a complete binary tree with n nodes (depth = └log2n + 1┘) is represented sequentially, then for any node with index i, 1 ≦ i ≦ n, we have:  (1) parent (i) is at └ i / 2 ┘, i ≠ 1.  (2) left-child (i) is 2i, if 2i ≤ n.  (3) right-child (i) is 2i+1, if 2i+1 ≤ n.  For complete binary trees, this representation is ideal since it wastes no space. However, for the skewed tree, less than half of the array is utilized.
  • 18. Linked Representation typedef struct node *tree_pointer; typedef struct node { int data; tree_pointer left_child, right_child; };
  • 19. 4.3 Binary Tree Traversals  Traversing order : L, V, R  L : moving left  V : visiting the node  R : moving right  Inorder Traversal : LVR  Preorder Traversal : VLR  Postorder Traversal : LRV
  • 20. For Example  Inorder Traversal : A / B * C * D + E  Preorder Traversal : + * * / A B C D E  Postorder Traversal : A B / C * D * E +
  • 21. Inorder Traversal (1)  A recursive function starting from the root  Move left Visit node Move right
  • 22. Inorder Traversal (2) In-order Traversal : A / B * C * D + E
  • 23. Preorder Traversal  A recursive function starting from the root  Visit node Move left  Move right
  • 24. Postorder Traversal  A recursive function starting from the root  Move left Move right Visit node
  • 25. Other Traversals  Iterative Inorder Traversal  Using a stack to simulate recursion  Time Complexity: O(n), n is #num of node.  Level Order Traversal  Visiting at each new level from the left- most node to the right-most  Using Data Structure : Queue
  • 27. Iterative In-order Traversal (2) Add “+” in stack Add “*” Add “*” Add “/” Add “A” Delete “A” & Print Delete “/” & Print Add “B” Delete “B” & Print Delete “*” & Print Add “C” In-order Traversal : A / B * C * D + E Delete “C” & Print Delete “*” & Print Add “D” Delete “D” & Print Delete “+” & Print Add “E” Delete “E” & Print
  • 29. Level Order Traversal (2) Add “+” in Queue Deleteq “+” Addq “*” Addq “E” Deleteq “*” Addq “*” Addq “D” Deleteq “E” Deleteq “*” Level-order Traversal : + * E * D / C A B Addq “/” Addq “C” Deleteq “D” Deleteq “/” Addq “A” Addq “B” Deleteq “C” Deleteq “A” Deleteq “B”
  • 30. 4.4 Additional Binary Tree Operations  Copying Binary Trees  Program 4.6  Testing for Equality of Binary Trees  Program 4.7  The Satisfiability Problem (SAT)
  • 31. Copying Binary Trees  Modified from postorder traversal program
  • 32. Testing for Equality of Binary Trees  Equality: 2 binary trees having identical topology and data are said to be equivalent.
  • 33. SAT Problem (1)  Formulas  Variables : X1, X2, …, Xn  Two possible values: True or False  Operators : And (︿), Or (﹀), Not (﹁)  A variable is an expression.  If x and y are expressions, then ﹁ x, x ︿ y, x ﹀y are expressions.  Parentheses can be used to alter the normal order of evaluation, which is ﹁ before ︿ before ﹀.
  • 35. SAT Problem (3)  The SAT problem  Is there an assignment of values to the variables that causes the value of the expression to be true?  For n variables, there are 2n possible combinations of true and false.  The algorithm takes O(g 2n) time  g is the time required to substitute the true and false values for variables and to evaluate the expression.
  • 36. SAT Problem (4)  Node Data Structure for SAT in C
  • 37. SAT Problem (5)  A Enumerated Algorithm  Time Complexity : O (2n)
  • 38. SAT Problem (6) void post_order_eval(tree_pointer node){ if (node){ post_order_eval(node->left_child); post_order_eval(node->right_child); switch(node->data){ case not: node->value=!node->right_child->value; break; case and: node->value=node->right_child->value && node->left_child->value; break; case or: node->value=node->right_child->value || node->left_child->value; break; case true: node->value=TRUE; break; case false: node->value=FALSE; break; } } }
  • 39. 4.5 Threaded Binary Trees (1)  Linked Representation of Binary Tree  more null links than actual pointers (waste!)  Threaded Binary Tree  Make use of these null links  Threads  Replace the null links by pointers (called threads)  If ptr -> left_thread = TRUE  Then ptr -> left_child is a thread (to the node before ptr)  Else ptr -> left_child is a pointer to left child  If ptr -> right_thread = TRUE  Then ptr -> right_child is a thread (to the node after ptr)  Else ptr -> right_child is a pointer to right child
  • 40. 4.5 Threaded Binary Trees (2) typedef struct threaded_tree *threaded_pointer; typedef struct threaded_tree { short int left_thread; threaded_pointer left_child; char data; short int right_child; threaded_pointer right_child; }
  • 41. 4.5 Threaded Binary Trees (3) Head node of the tree Actual tree
  • 42. Inorder Traversal of a Threaded Binary Tree (1)  Threads simplify inorder traversal algorithm  An easy O(n) algorithm (Program 4.11.)  For any node, ptr, in a threaded binary tree  If ptr -> right_thread = TRUE  The inorder successor of ptr = ptr -> right_child  Else (Otherwise, ptr -> right_thread = FALSE)  Follow a path of left_child links from the right_child of ptr until finding a node with left_Thread = TRUE  Function insucc (Program 4.10.)  Finds the inorder successor of any node (without using a stack)
  • 43. Inorder Traversal of a Threaded Binary Tree (2)
  • 44. Inorder Traversal of a Threaded Binary Tree (2)
  • 45. Inserting a Node into a Threaded Binary Tree  Insert a new node as a child of a parent node  Insert as a left child (left as an exercise)  Insert as a right child (see examples 1 and 2)  Is the original child node an empty subtree?  Empty child node (parent -> child_thread = TRUE)  See example 1  Non-empty child node (parent -> child_thread = FALSE)  See example 2
  • 46. Inserting a node as the right child of the parent node (empty case)  parent(B) -> right_thread = FALSE  child(D) -> left_thread & right_thread = TURE  child -> left_child = parent  child -> right_child = parent -> right_child  parent -> right_child = child (1) (2) (3)
  • 47. Inserting a node as the right child of the parent node (non-empty case) (1) (2) (3) (4)
  • 48. Right insertion in a threaded binary tree void insert_right(threaded_pointer parent, threaded_pointer child){ threaded_pointer temp; child->right_child = parent->right_child; child->right_thread = parent->right_thread; child->left_child = parent; child->left_thread = TRUE; parent->right_child = child; parent->right_thread = FALSE; If (!child->right_thread){/*non-empty child*/ temp = insucc(child); temp->left_child = child; } } (1) (2) (3) (4)
  • 49. 4.6 Heaps  An application of complete binary tree  Definition  A max (or min) tree  a tree in which the key value in each node is no smaller (or greater) than the key values in its children (if any).  A max (or min) heap  a max (or min) complete binary tree A max heap
  • 50. Heap Operations  Creation of an empty heap  PS. To build a Heap  O( n log n )  Insertion of a new element into the heap  O (log2n)  Deletion of the largest element from the (max) heap  O (log2n)  Application of Heap  Priority Queues
  • 51. Insertion into a Max Heap (1) (Figure 4.28)
  • 52. Insertion into a Max Heap (2)  the height of n node heap = ┌ log2(n+1) ┐  Time complexity = O (height) = O (log2n) void insert_max_heap(element item, int *n) { int i; if (HEAP_FULL(*n)){ fprintf(stderr, “the heap is full.n); exit(1); } i = ++(*n); while ((i!=1) && (item.key>heap[i/2].key)) { heap[i] = heap[i/2]; i /= 2; } heap[i] = item; }
  • 53. Deletion from a Max Heap  Delete the max (root) from a max heap  Step 1 : Remove the root  Step 2 : Replace the last element to the root  Step 3 : Heapify (Reestablish the heap)
  • 54. Delete_max_heap (1) element delete_max_heap(int *n) { int parent, child; element item, temp; if (HEAP_EMPTY(*n)) { fprintf(stderr, “The heap is emptyn”); exit(1); } /* save value of the element with the highest key */ item = heap[1]; /* use last element in heap to adjust heap */ temp = heap[(*n)--];
  • 55. Delete_max_heap (2) parent = 1; child = 2; while (child <= *n) { /* find the larger child of the current parent */ if ((child < *n) && (heap[child].key<heap[child+1].key)) child++; if (temp.key >= heap[child].key) break; /* move to the next lower level */ heap[parent] = heap[child]; child *= 2; } heap[parent] = temp; return item; }
  • 56. 4.7 Binary Search Trees  Heap : search / delete arbitrary element  O(n) time  Binary Search Trees (BST)  Searching  O(h), h is the height of BST  Insertion  O(h)  Deletion  O(h)  Can be done quickly by both key value and rank
  • 57. Definition  A binary search tree is a binary tree, that may be empty or satisfies the following properties :  (1) every element has a unique key.  (2&3) The keys in a nonempty left(/right) sub- tree must be smaller(/larger) than the key in the root of the sub-tree.  (4) The left and right sub-trees are also binary search trees.
  • 59. Searching a BST (2)  Time Complexity  search  O(h), h is the height of BST.  search2  O(h)
  • 60. Inserting into a BST (1)  Step 1 : Check if the inserting key is different from those of existing elements  Run search function  O(h)  Step 2 : Run insert_node function  Program 4.17  O(h)
  • 61. Inserting into a BST (2) void insert_node(tree_pointer *node, int num) { tree_pointer ptr, temp = modified_search(*node, num); if (temp || !(*node)) { ptr = (tree_pointer) malloc(sizeof(node)); if (IS_FULL(ptr)) { fprintf(stderr, “The memory is fulln”); exit(1); } ptr->data = num; ptr->left_child = ptr->right_child = NULL; if (*node) if (num<temp->data) temp->left_child=ptr; else temp->right_child = ptr; else *node = ptr; } }
  • 62. Deletion from a BST  Delete a non-leaf node with two children  Replace the largest element in its left sub-tree  Or Replace the smallest element in its right sub-tree  Recursively to the leaf  O(h)
  • 63. Height of a BST  The Height of the binary search tree is O(log2n), on the average.  Worst case (skewed)  O(h) = O(n)  Balanced Search Trees  With a worst case height of O(log2n)  AVL Trees, 2-3 Trees, Red-Black Trees  Chapter 10
  • 64. 4.8 Selection Trees  Application Problem  Merge k ordered sequences into a single ordered sequence  Definition: A run is an ordered sequence  Build a k-run Selection tree
  • 65.
  • 66. Time Complexity  Selection Tree’s Level  ┌ log2k ┐+ 1  Each time to restructure the tree  O(log2k)  Total time to merge n records  O(n log2k)
  • 68. Tree of losers  The previous selection tree is called a winner tree  Each node records the winner of the two children  Loser Tree  Leaf nodes represent the first record in each run  Each non-leaf node retains a pointer to the loser  Overall winner is stored in the additional node, node 0  Each newly inserted record is now compared with its parent (not its sibling)  loser stays, winner goes up without storing.  Slightly faster than winner trees
  • 69. Loser tree example 10 8 9 9 20 10 6 11 8 12 9 13 90 14 17 15 10 4 20 5 9 6 90 7 9 2 17 3 8 1 6 Run 1 2 3 4 5 6 7 8 overall winner *Figure 4.36: Tree of losers corresponding to Figure 4.34 (p.235) 15 15 9 8 15 15 9
  • 70. 4.9 Forests  A forest is a set of n ≧ 0 disjoint trees.  T1, …, Tn is a forest of trees  Transforming a forest into a Binary Tree B(T1, …, Tn)  (1) if n = 0, then return empty  (2) a root (T1);  Left sub-tree equal to B(T11,T12, …, T1m), where T11,T12, …, T1m are the sub-trees of root (T1);  Right sub-tree B(T2, …, Tn)
  • 71. Transforming a forest into a Binary Tree Root(T1) T11,T12, T13 B(T2, T3)
  • 73. 4.10 Set Representation  Elements : 0, 1, …, n -1.  Sets : S1, S2, …, Sm  pairwise disjoint  If Si and Sj are two sets and i ≠ j, then there is no element that is in both Si and Sj.  Operations  Disjoint Set Union  Ex: S1 ∪ S2  Find (i )
  • 74. Union Operation  Disjoint Set Union  S1 ∪ S2 = {0, 6, 7, 8, 1, 4, 9}
  • 75. Implement of Data Structure
  • 76. Union & Find Operation  Union(i, j)  parent(i) = j  let i be the new root of j  Find(i)  While (parent[i]≧0)  i = parent[i]  find the root of the set  Return i;  return the root of the set
  • 77. Performance  Run a sequence of union-find operations  Total n-1 unions  n-1 times, O(n)  Time of Finds  Σn i=2 i = O(n 2)
  • 78. Weighting rule for union(i, j)  If # of nodes in i < # of nodes in j  Then j becomes the parent of i  Else i becomes the parent of j
  • 79. New Union Function  Prevent the tree from growing too high  To avoid the creation of degenerate trees  No node in T has level greater than log2n +1 void union2(int i, int j){ int temp = parent[i]+parent[j]; if (parent[i]>parent[j]) { parent[i]=j; parent[j]=temp; } else { parent[j]=i; parent[i]=temp; } }
  • 80. Figure 4.45 Trees achieving worst case bound (p.245)
  • 81. Collapsing Rule (for new find function)  Definition: If j is a node on the path from i to its root then make j a child of the root  The new find function (see next slide):  Roughly doubles the time for an individual find  Reduces the worse case time over a sequence of finds.
  • 82. New Find Function  Collapse all nodes form i to root  To lower the height of tree
  • 83. Performance of New Algorithm  Let T(m, n) be the maximum time required to process an intermixed sequence of m finds (m≧n) and n -1 unions, we have :  k1mα(m, n) ≦ T(m, n) ≦ k2mα(m, n)  k1, k2 : some positive constants  α(m, n) is a very slowly growing function and is a functional inverse of Ackermann’s function A(p, q).  Function A(p, q) is a very rapidly growing function.
  • 84. Equivalence Classes  Using union-find algorithms to processing the equivalence pairs of Section 4.6 (p.167)  At most time : O(mα(2m, n))  Using less space
  • 85. 4.11 Counting Binary Trees  Three disparate problems :  Having the same solution  Determine the number of distinct binary trees having n nodes (problem 1)  Determine the number of distinct permutations of the numbers from 1 to n obtainable by a stack (problem 2)  Determine the number of distinct ways of multiply n + 1 matrices (problem 3)
  • 86. Distinct binary trees  N = 1  only one binary tree  N = 2  2 distinct binary trees  N = 3  5 distinct binary trees  N = …
  • 87. Stack Permutations (1)  A binary tree traversals  Pre-order : A B C D E F G H I  In-order : B C A E D G H F I  Is this binary tree unique?  Constructing this binary tree
  • 88. Stack Permutations (2)  For a given preorder permutation 1, 2, 3, what are the possible inorder permutations?  Possible inorder permutation by a stack   (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 2, 1)  (3, 1, 2) is impossible  Each inorder permutation represents a distinct binary tree
  • 89. Matrix Multiplication (1)  The product of n matrices  M1 * M2 * … * Mn  Matrix multiplication is associative  Can be performed in any order  N = 3, 2 ways to perform  (M1 * M2) * M3  M1 * (M2 * M3)  N = 4, 5 possibilities
  • 90. Matrix Multiplication (2)  Let bn be the number of different ways to compute the product of n matrices.  We have :
  • 91. number of distinct binary trees  Approximation by solving the recurrence of the equation ∵   Solution : (when x →∞) Simplification : ∴ Approximation :
  • 92. Heapsort—An optimal sorting algorithm  A heap : parent  son
  • 93.  output the maximum and restore:  Heapsort: construction output
  • 94. Phase 1: construction  input data: 4, 37, 26, 15, 48  restore the subtree rooted at A(2):  restore the tree rooted at A(1):
  • 96. Implementation  using a linear array not a binary tree.  The sons of A(h) are A(2h) and A(2h+1).  time complexity: O(n log n)
  • 97. Time complexity Phase 1: construction d = log n : depth # of comparisons is at most: L d    0 1 2(dL)2L =2d L d    0 1 2L  4 L d    0 1 L2L-1 ( L k   0 L2L-1 = 2k (k1)+1) =2d(2d 1)  4(2d-1 (d  1  1) + 1) : = cn  2log n  4, 2  c  4 d L d-L
  • 98. Time complexity Phase 2: output 2 i n    1 1 log i = : =2nlog n  4cn + 4, 2  c  4 =O(n log n) log i i nodes
  • 101. 旅行推銷員問題 Traveling Salesman Problem (TSP) 尋找一個從(1)出發,回到(1)的最短走法 1 2 3 4 12 1 8 10 3 2
  • 103.  2n相當可怕 10 30 50 N 0.00001 s 0.00003 s 0.00005 s N2 0.0001 s 0.0009 s 0.0025 s 2n 0.001 s 17.9 min 34.7 year  像satisfiabilibility problem  目前只有exponential algorithm,還沒有人找 到polynomial algorithm (你也不妨放棄!) 這一類問題是NP-Complete Problem  Garey & Johnson “Computers & Intractability”
  • 104. 窮舉法(Enumerating) (想想看什麼問題不能窮舉解?)  旅行推銷員問題: 3!走法 (n-1)!  最小展開樹問題: 16種樹 n(n-2) Cayley’s Thm. Ref: Even, Graph Algorithms, PP26~28 12 4 1 1 4 3 2
  • 105.  Labeled tree  Number sequence One-to-One Mapping  N個nodes的labeled tree可以用一個 長度N-2的number sequence來表達。  Encoding: Data Compression.
  • 106. Labeled treeNumber sequence  在每一個iteration裡,切除目前所有leaves中 編號最小的node及其edges,記錄切點,切到 只剩一條edge為止。 例. Prune-sequence:7,4,4,7,5(切點)  Label最大者必在最後的edge.  每個node原先的degree數=此node在 Prune-sqeuence中出現的次數+1. 2 3 4 7 1 5 6
  • 107. Number sequenceLabeled tree Prune-sequence: 7,4,4,7,5 k 1 2 3 4 5 6 7 deg(k) 1 1 1 3 2 1 3 Iteration 1 0 1 1 3 2 1 2 Iteration 2 0 0 1 2 2 1 2 Iteration 3 0 0 0 1 2 1 2 Iteration 4 0 0 0 0 2 1 1 Iteration 5 0 0 0 0 1 0 1 Iteration 6 0 0 0 0 0 0 0  每一個iteration裡,選擇degree為1且編號最小的node,連接prune-sequence中 相對的node,之後兩個nodes的degree均減1. Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 6 Iteration 5 1 7 1 7 2 4 1 7 2 4 3 1 7 4 1 7 4 3 2 1 7 4 3 2 6 5 3 2 5 6
  • 108. Minimal spanning tree Kruskal’a Algorithm A B D C E 70 65 300 90 50 80 75 200 Begin T <- null While T contains less than n-1 edges, the smallest weight, choose an edge (v, w) form E of smallest weight 【 Using priority queue, heap O (log n) 】, delete (v, w) form E. If the adding of (v, w) to T does not create a cycle in T,【 Using union, find O (log m)】 then add (v, w) to T; else discard (v, w). Repeat. End. O (m log m) m = # of edge
  • 109. priority queue heap operation O(log n) Initial O(n)  Tarjan: Union & Find almost linear (Amortized)  Correctness  Edge tree minimal  Edge cycle  Delete cycle edge cost tree 1 2 4 3 7 5 6
  • 110. spanning tree spanning forest link 1. edge(2,3) 2. edge(1,4) S1={1,2,3} S2={4,5} Edge set Set Find, Union O(log n) 1 3 2 4 5