Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Future of Data - Big Data

3.656 Aufrufe

Veröffentlicht am

Veröffentlicht in: Technologie, Business
  • Als Erste(r) kommentieren

Future of Data - Big Data

  1. 1. Future of Data : Big Data Shankar Radhakrishnan Cognizant
  2. 2. Topics How did we get here ? Data Explosion Big Data Big Data in an Enterprise Big Data Platform - Hadoop Big Data AdoptionQ&A
  3. 3. How did we get here? Familiar World Data Integration Problems  EDW  Datamarts Data Processing Problems  Familiar Problems Data warehouse Storage Management Performance Problems Limitations out of Complexity New World  Newer type of data to integrate  Increase in volume  Newer analytical requirements
  4. 4. Data Explosion
  5. 5. Newer Interests Social Intelligence  DBIM, Sentiment Analysis, Social Customer Care Predictive Analytics  Propensity, Price Elasticity, Anti-Fraud Analytics Segmentation Insights  Funnel Analysis, Behavioral Patterns, Cohort Analysis Mobile Analytics  Ad-Targeting, Geo-spatial Analytics
  6. 6. Categories Structured Data  Enterprise Data (CRM, ERP, Data Stores, Reference Data) Semi-structured Data  Machine Generated Data (Sensor Data, RFIDs) Unstructured Data  Social Data (Comments, Tweets), Blog posts
  7. 7. Big Data“Big Data” refers to high volume, velocity, variety and complex information assets thatdemand cost-effective, innovative forms of information processing for enhanced insightand decision making
  8. 8. Big Data Platforms• Data Integration o Informatica, Infosphere o talenD, Pentaho, Karmasphere, Apache Sqoop, Apache Flume• Database Framework o Hadoop (Distributions: Cloudera, Hortonworks, MapR) o Hbase o Hive• NoSQL Databases o MongoDB, CouchDB• Machine Data Processing o Splunk, Mahout• Text Analytics o Clarabridge, Lexanalytics
  9. 9. Big Data in an Enterprise Big Data Big Data ETL Sources Platform Datamarts ETL Analytical Datamarts Applications Datamarts Data ETL Data warehouse Sources
  10. 10. Hadoop - Ecosystem
  11. 11. Big Data : Adoption Drivers
  12. 12. Big Data – Adoption Scenarios Replatforming to Big Data (Hadoop, MapR) Archival Solution (Hadoop) Offloading Data warehouse, EDW (Hadoop, Hive) Social Media Integration Machine Data Analysis (Splunk, Mahout) Complex Analytical Requirements (Hbase)
  13. 13. Q&A

×