2. El centro geográfico de origen y dispersión se ubica en el
Valle San Juan de Tehuacán, en la denominada Mesa
Central de México a 2.500 m. Sobre el nivel del mar. En
este lugar se han encontrado restos arqueológicos de
plantas de maíz que, se estima, datan del 7.000 a.C.
No se descarta la posibilidad de centros secundarios de
origen y/o adaptación en Sud América, si bien es cierto
que las evidencias arqueológicas sobre la domesticación
son escasas y están centradas en el Perú, donde los
materiales mas antiguos datan del año 1.000 a.C. Espigas
completas encontradas del 500 a.C. son muy parecidas a
las razas andinas que aun se encuentran en Perú y Bolivia
y muy distintas de los restos arqueológicos.
3. en su mano izquierda. Crédito: MaizeWall
Yuum Kaax, uno de los
dioses del maiz,
literalmente significa
“Señor del Maíz
Joven”, miren la
panocha de maíz en su
mano izquierda.
4. erna de maíz. Muse Amano, Lima, Peru. Crédito: Ref. 4
Molde de cerámica
formado por una
mazorca moderna
de maíz. Museo
Amano, Lima, Peru.
5. Tarro de la cultura
Moche que representa
al Dios Ai-apaec el
Creador, el
Decapitador; véase su
asociación al maíz.
7. Existen una serie de evidencias sobre la descendencia
del maíz a partir del teocinte:
1.Igualdad en el numero de cromosomas (2n=20) y
homología cromosómica.
2.Muchos genes del teocinte están presentes en el maíz.
3.Los cruzamientos entre teocinte y maíz dan
descendencia fértil, en cambio maíz por tripsacum son
estériles.
4.El teocinte se parece bastante a los mas antiguos
maíces que se tienen registrados: plantas con varios
tallos, yemas laterales que desarrollan espigas, espigas
pequeñas, etc.
EL TEOCINTE Y EL MAIZEL TEOCINTE Y EL MAIZ
8. Árbol genealógico del maíz yÁrbol genealógico del maíz y
especies parentadasespecies parentadas
10. A) Planta de teocinte (Zea mays spp. mexicana). C) Ejemplar de maíz
cultivado (Zea mays ssp. mays); E) Espécimen de maíz cultivado
11. Otro esquema comparativo
entre el maíz y el teocinte:
A)Diferencias en las
ramificaciones laterales, en el
caso del teocinte coronadas por
espigas masculinas;
B)Comparación entre la espiga y
la mazorca;
C)Comparación entre las
espiguillas “spikelets” y cubiertas
protectoras “cupule”
12. Nombre común: Maíz
Nombre científico: Zea mays L.L.
Familia: Gramíneas
Género: Zea
Plantas monoicas: con flores
masculinas y femeninas en el mismo pie.
15. 1.1.Tº:Tº: 25 a 30 ºC; Mínima 8 ºC, Máxima 38 ºC.
Para la germinación en la semilla la
temperatura debe situarse entre los 15 a
20ºC; para la fructificación se requieren
temperaturas de 20 a 32 ºC.
2.2.Luz:Luz: Alto requerimiento
3.3.Suelo:Suelo: De textura franco; profundos; de buen
drenaje y pH 6 a 7
4.4.Agua:Agua: En periodos de crecimiento en unos
contenido de 40 a 65 cm.; riegos 5 mm al día.
se recomienda dar un riego unos 10 a 15
días antes de la floración.
19. Planta de maízPlanta de maíz
tropical, alta y contropical, alta y con
mucha hojamucha hoja
Es una planta C4
IAF 4
De días cortos y de
alta luminosidad
Su altura puede
alcanzar hasta los 2.60 m
Índice prolífico de 1,5
El maíz amarillo duro
es de clima tropical
GENERALIDADESGENERALIDADES
20. Solo 3% de la radiación total que incide sobre el
cultivo es usada para la fotosíntesis.
Un cultivo de maíz bien irrigado transpira cerca de
350 gramos de agua por cada gramo de materia
seca producida sobre la tierra (Hay y Walker,
1989).
Un cultivo de maíz que transpire libremente,
transpira alrededor del 80 al 90% de la evaporación
potencial.
El Índice de cosecha del maíz cultivado en
condiciones favorables varía de 0,2 en cultivares
locales no mejorados a cerca de 0,3-0,4 en
cultivares tropicales mejorados y a mas de 0,5 en
cultivares precoces de zonas templadas
21. Factor Rango deRango de
incremento linear deincremento linear de
CECE
Umbral para nivel oUmbral para nivel o
declinacióndeclinación
ReferenciaReferencia
Temperatura 20°-40°C 40°-44°C Fischer & Palmer,
1984; Hay & Walker,
1989
Irradiación 0 a completa luz
solar
Visto a temperaturas
<15°C
Hay & Walker, 1989
Contenido
específico de N de
la hoja
0,5-1,50,5-1,5 g m-2 >1,5 g m-2 Muchow & Sinclair,
1994
Disponibilidad de
agua
Niveles críticos dependientes de las
precondiciones. Ciertos estudios informan
que la declinación inicia a -0,35 MPa.
Fischer & Palmer,
1984
Algunos factores ambientales que afectan la eficiencia de
conversión (CE) en el maíz tropical de zonas bajas
46. Un cultivar bien adaptado que al momento de la floración interceptó masUn cultivar bien adaptado que al momento de la floración interceptó mas
del 85% de la radiación solar diaria incidiendo sobre el cultivo.del 85% de la radiación solar diaria incidiendo sobre el cultivo.
47. Un cultivar bajo de madurez temprana que interceptó menos delUn cultivar bajo de madurez temprana que interceptó menos del
45% de la radiación solar diaria incidiendo sobre el cultivo45% de la radiación solar diaria incidiendo sobre el cultivo
58. Un cultivo de maíz que produce 4 000 kg/ha de grano
requiere alrededor de 100 kg/ha de nitrógeno (N), 18
kg/ha de fósforo (P) y 68 kg/ha de potasio (K).
La concentración de nitrógeno en las hojas del maíz
tropical tiende a ser baja (1-4%) comparado con los
cereales C3 como el trigo.
La eficiencia del uso del nitrógeno en la fotosíntesis es
mayor en el maíz.
La cantidad de nitrógeno que se mueve de los tejidos
vegetativos a la mazorca durante el proceso de llenado
del grano varía considerablemente, habiéndose
informado de un rango de 20 a 60% del nitrógeno total
del grano derivado de la absorción antes de la antesis.
59. El nitrógeno depositado en el tallo es el que se
moviliza primero hacia la mazorca y la cantidad de
nitrógeno movilizado depende del cultivar y de la
cantidad y del momento de la aplicación del
nitrógeno.
Los índices de nitrógeno en la cosecha (kg de
nitrógeno en el grano/kg de nitrógeno en la biomasa
sobre la tierra) son mayores que los índices de
materia seca en ese mismo momento, alrededor de
0,6 a 0,8 en el pleno de la estación en cultivares
tropicales cultivados bajo condiciones favorables.
El fósforo tiene una distribución similar al nitrógeno,
salvo que una mayor proporción de los
requerimientos del cultivo son absorbidos después
de la floración.
60. La mayor parte del potasio requerida por el cultivo
es absorbida antes de la floración y mucho de este
termina en la parte aérea en la madurez.
No parece haber diferencias importantes en la
nutrición mineral de los cultivares de maíz
templados o tropicales, por lo que los
fitomejoradores que trabajan en maíz tropical tienen
la ventaja de contar además con los datos que se
han recolectado en los trabajos con maíces de zona
templada.
61. La parcela a la izquierda de la lámina recibió 200 kg/N/ha,La parcela a la izquierda de la lámina recibió 200 kg/N/ha,
mientras que la parcela a la derecha no recibió fertilizante.mientras que la parcela a la derecha no recibió fertilizante.
62. Contraste entre la aplicación de cal y fósforo aplicados a un cultivarContraste entre la aplicación de cal y fósforo aplicados a un cultivar
tolerante a los suelos ácidos (izquierda, atrás) y una parcela de control.tolerante a los suelos ácidos (izquierda, atrás) y una parcela de control.
Cal
+
P2O5
Testigo
63. El maíz es una de las pocas especies diploides de
cultivos alimenticios y tiene un juego básico de diez
cromosomas. Otras especies del
género Zea también son diploides con 2n=20. La
especie Zea diploperennis, como su nombre lo indica
es perenne. Zea perennis, otra especie perenne, es
un tetraploide con 2n=40. La otra especie
emparentada con el maíz, Tripsacum, tiene un
número básico de cromosomas de n=18. Tripsacum
dactyloides es un diploide con 2n=36. En las
Maydeas orientales, el género Coix tiene el número
de cromosomas básico mas bajo de n=5.
64. Número de cromosomasNúmero de cromosomas
(2n)(2n)
Nombre de las especiesNombre de las especies
10 Coix aquatica; C. poilanei
20 Zea mays; Z. diploperennis; Z. luxurians; Z. mexicana; Z.
parviglumis; Coix lacryma-jobi; C. gigantia; Chionachne
koenigii; Ch.. semiteres; Sclerachne punctata; Polytoca
macrophylla; Trilobachne cookei
32 Coix spp.
36 Tripsacum australe; T. bravum; T. dactyloides; T.
floridanum; T. latifolium; T. laxum; T. pilosum; T. maizar; T.
manisuroides; T. zopilotense
40 Zea perennis; Coix gigantia
54 Tripsacum bravum; T. dactyloides; T. intermedium; T.
latifolium; T maizar; T. pilosum; T. zopilotense
64 Tripsacum andersonii
72 Tripsacum bravum; T. dactyloides; T. intermedium; T.
lanceolatum; T. latifolium; T. maizar; T. pilosum
90 o + T. dactyloides; T. intermedium;T. pilosum
Número de cromosomas en varias especies de la
tribu Maydeae
65. Se han hecho intentos durante un cierto tiempo para
usar la haploidía en el maíz como forma de obtener
líneas puras, un campo en el que Chase (1952) fue un
pionero. Los genes Coe-stock 6 (Coe, 1959) y el gen
mutante ig (gametofito indeterminado, Kermicle, 1969),
han sido usados para incrementar la frecuencia de
haploides y su interés se ha revivido con las nuevas
técnicas que permiten un aumento de la frecuencia de
recuperación de la haploidía. Se han seguido muchas
líneas de trabajo, la primera de ellas es el uso de la
cultura del polen o de las anteras.
El maíz no responde fácilmente a la cultura in vitro de
estos elementos.
66. Con los marcadores genéticos, la frecuencia de la
haploidía materna aumenta a mas de 5% con el uso
de líneas inductoras del parental masculino.
El uso de una amplia hibridación seguida por la
completa eliminación de los cromosomas de uno de
los progenitores es otra posibilidad para la
producción de haploides.
67. HíbridoHíbrido
Maíz x Tripsacum
Maíz en tierras altasMaíz en tierras altas
con tallo colorcon tallo color
púrpura y panojaspúrpura y panojas
grandes.grandes.
69. Tipos de maíz Área sembrada
(millones de ha )
Amarillo duro 20,0
Blanco duro 12,5
Blanco dentado 19,0
Amarillo dentado 9,5
Harinoso y Morocho 0,6
Reventón, dulce y
ceroso
Muy limitada
70. Las zonas con mayor superficie sembrada de maiz
amarillo duro, son San Martín, Loreto y Ucayali y las
zonas de Lima y La Libertad en la Costa.
En cuanto a rendimientos por ha. las zonas de Selva
presentan los rendimientos más bajos (Amazonas,
Loreto, Ucayali y Madre de Dios). En las zonas de
Costa se ubican los rendimientos promedios más altos
( Lima, La Libertad e Ica).
75. TECNOLOGÍA DEL MAIZTECNOLOGÍA DEL MAIZ
1.1.PREPARACIÓN DEL TERRENOPREPARACIÓN DEL TERRENO
2.2.SIEMBRASIEMBRA
3.3.APORQUEAPORQUE
4.4.FERTILIZACIÓNFERTILIZACIÓN
5.5.SANIDADSANIDAD
6.6.COSECHACOSECHA
7.7.MANEJO DE POS COSECHAMANEJO DE POS COSECHA
76. DEMANDA DE AGUA SEGÚN ETAPA DEDEMANDA DE AGUA SEGÚN ETAPA DE
77. Una sembradora multi-surco usada para la siembraUna sembradora multi-surco usada para la siembra
convencional y la labranza cero.convencional y la labranza cero.
87. Tizón del Norte causado porTizón del Norte causado por
Helminthosporium turcicum..
Tizón del Sur causado porTizón del Sur causado por
Helminthosporium maydis.
Línea T deLínea T de
Tizón del SurTizón del Sur
88. Mancha de la hoja causada porMancha de la hoja causada por Curvularia sp.Curvularia sp.
97. El endospermo del grano de maíz es la zona
mas importante de almacenamiento de los
carbohidratos y de las proteínas sintetizadas
por esta especie fotosintéticamente eficiente.
En los tipos de maíces comunes, el
endospermo comprende cerca del 84% del
peso seco del grano, el embrión abarca el 10%
y el pericarpio y el escutelo componen el
restante 6%. Si bien la producción de grano es
la razón principal del cultivo del maíz, todas las
partes de la planta -hojas, tallos, panojas y
olotes- son utilizadas para diversos fines.
98. Contenido
Maíz, harina
molida
Arroz, grano
pulido
(por 100 g)
Agua (%) 12,00 13,00
Calorías 362 360
Proteínas (g) 9,00 6,80
Grasas (g) 3,40 0,70
Carbohidratos (g) 74,50 78,90
Almidón, fibra (g) 1,00 0,20
Cenizas (g) 1,10 0,60
Calcio (mg) 6,00 6,00
Hierro (mg) 1,80 0,80
Fósforo (mg) 178 140
Tiamina (mg) 0,30 0,12
Riboflavina (mg) 0,08 0,03
Niacina (mg) 1,90 1,501,50
Composición nutricional de los granos de maíz y arrozComposición nutricional de los granos de maíz y arroz
99. Peso y composición de las distintasPeso y composición de las distintas
partes del grano de maízpartes del grano de maíz
ComposiciónComposición
((%%))
EndospermoEndospermo EmbriónEmbrión PericarpioPericarpio EscuteloEscutelo
AlmidónAlmidón 87,6 8,3 7,3 5,3
GrasasGrasas 0,8 33,2 1,0 3,8
ProteínasProteínas 8,0 18,4 3,7 9,1
CenizasCenizas 0,3 10,5 0,8 1,6
AzúcaresAzúcares 0,6 10,8 0,3 1,6
RestoResto 2,7 18,8 86,9 78,6
% materia seca% materia seca 83,0 11,0 5,2 0,8
100. FACTORES LIMITANTES YFACTORES LIMITANTES Y
PRINCIPALES PROBLEMAS PARA ELPRINCIPALES PROBLEMAS PARA EL
MADMADEN LA COSTA:EN LA COSTA:
Uso de híbridos con poca estabilidad
productiva, con 16% de semilla con calidad
Deficiencias en el Manejo integrado del
cultivo, como densidad, fertilización, sanidad,
manejo de agua y siembra.
Suelos arenosos y/o salinos.
Altos costos de producción.
101. EN SELVA:EN SELVA:
90% en ladera
Siembra en secano favorecido
Distribución de lluvias erráticas
Deficiencia del manejo agronómico
Uso de semilla de baja calidad
Falta de cultivares para restingas.
Suelos ácidos con mas del 60% de saturación
de aluminio y con baja disponibilidad de P2O5.
Suelos inundables.
104. PARA EL MAÍZ AMILÁCEOPARA EL MAÍZ AMILÁCEO
80% del cultivo en suelos marginales
Siembra en secano favorecido
Tecnología tradicional
En Minifundio
Riesgo de heladas y granizo
Cultivares de bajo rendimiento
Susceptibles a plagas y enfermedades.