A single stage photo voltaic grid-connected inverter using spwm

SHAIK AMANULLA
SHAIK AMANULLAElectrical, Solar PV Engineer um Krishi Technologies Pvt Ltd & Krishi Sunpower Pvt Ltd

A Single-stage PhotoVoltaic Grid-Connected Inverter using SPWM. It was simulated and modeled with MATLAB/SIMULINK. It was simulated with constant and variable irradiation profiles. I got the results with variations in PV characteristics with different irradiation with SPWM technique.

GJTE-Vol(1)-Issue(3) Oct 2014 ISSN: 2393-9923
Global Journal of Trends in Engineering
www.gjte.in 22
A Single-stage Photovoltaic Grid-Connected Inverter using SPWM
Shaik.Amanulla
P.G.Student, Dept. of EEE, G. Pulla Reddy Engineering College, Kurnool, Andhra Pradesh, India
ABSTRACT: Now a day’s solar energy gain its importance due to its vast availability in environment and Eco-friendly.
Solar power is gaining its trend for the use of solar cells in industry and domestic applications, because solar energy is
expected to play important role in future smart grids as a distributed power generation. Grid connected PV Inverters are
basically implemented with two-stage and single-stage conversion. Among this Single-stage conversion has more
advantageous than two-stage with improved efficiency, less weight and reduced losses. In this paper, a generalized solar
photo Voltaic (SPV) system for Matlab/Simulink model with constant and variable irradiation has been developed. Solar
PV cell is modelled using Matlab/Simulink. Solar PV cell behaviour under environmental changes is also considered.
Single-stage Grid integrated Solar PV system with VSI has been explained with Matlab/Simulink model. Sinusoidal
Pulse Width Modulation (SPWM) is used to generate the pulses for Voltage Source Inverter (VSI).
Keywords: Solar Photo Voltaic (SPV), Constant Irradiation, Variable Irradiation Voltage Source Inverter (VSI), SPWM,
Grid-Tie Inverter.
I. INTRODUCTION
Energy harvesting from Solar Photo Voltaic (SPV) system is the most essential and sustainable way because of its vast
availability and eco-friendly. The fundamental power generation units of solar power generation are PV modules. The P-V
and I-V characteristics of SPV cells are depend on the solar irradiation and cell temperature. The Matlab/Simulink provides a
user-friendly environment for the analysis of Power Electronic converters with PV modules. Generally, Grid connected PV
inverters are modeled with two-stage and single-stage conversion. In two-stage conversion, the first Boost converter is used to
boost up the PV output voltage; second allows the conversion of this power into high-quality ac voltage. The presence of
several power stages undermines the overall efficiency, reliability and increased cost. The single-stage has numerous
advantages, such as simple topology, high efficiency, etc. The single-stage conversion of Grid connected PV inverter is
shown in Fig. 1.Typically, simple inductor L is used to get the reduced ripples in the Inverter output.
Fig. 1 Typical configuration of a single-stage grid-connected PV system.
In Fig.1, It has PV panel, capacitor, VSI, inductor and finally Grid. Here Capacitor(C) is used to maintain the constant
voltage which is coming from PV panel. Generally the output of VSI will be stepped waveform with the presence of ripples.
To get the reduced ripples at the Inverter output side L is used as shown in Fig.1. Sinusoidal Pulse Width Modulation
(SPWM) is used to give the pulses to VSI. This study aims to develop a general purpose Simulink SPV module with Grid-Tie
Inverter system. This module can be easily reconfigured for the electrical response of PV panels in a wide range. In this the
behavior of SPV module with constant and variable irradiation are discussed. In solar based Grid-Tie Inverter system, PV
module itself is modeled to give desired open circuit voltage (Voc). Solar based Grid-Tie Inverters are useful for large-scale
solar power generation. Solar array modeling is first explained with mathematical equations and then, simulation results are
provided for constant and variable irradiation. VSI with SPWM is also explained. Grid-Tie Inverters are explained with some
basic theory. Finally Matlab Simulation of Grid connected PV inverter system for two different irradiation of PV has been
explained.
II. SOLAR PV ARRAY MODELING
PV Array is a combination of solar cells, connections, protective parts, supports, etc. In the present modeling, the focus is
only on cells. Solar cells consist of a p-n junction; various modeling of solar cells have been proposed in the literature.
Thus, the simplest equivalent circuit of a solar cell is a current source in parallel with a diode. The output of the current
GJTE-Vol(1)-Issue(3) Oct 2014 ISSN: 2393-9923
Global Journal of Trends in Engineering
www.gjte.in 23
source is directly proportional to the light falling on the cell (photocurrent). Thus, the diode determines the I–V
characteristics of the cell. The electrical equivalent circuit of a solar cell is shown in Fig. 2
Fig. 2 Solar cell electrically equivalent circuit
The output current I and the output voltage of a solar cell are given by
I =Iph− Ido – Vdo/Rsh (1)
=Iph−Io*(exp (q.Vdo/n.k.T) −1) −Vdo/Rsh (2)
V=Vdo−Rs*I (3)
Here, Ipv is the photocurrent, I0 is the reverse saturation current, Id0 is the average current through the diode, n is the
diode factor, q is the electron charge (q = 1.6˟10−19), k is the Boltzmann’s constant (k = 1.38∗10−23), and T is the solar
array panel temperature. Rs, the intrinsic series resistance of the solar cell; this value is normally very small. Rsh is the
equivalent shunt resistance of the solar array, and its value is very large. In general, the output current of a solar cell is
expressed by
I= Iph−Io*(exp (q*(V+Rs*I)/n.k.T) −1) –(V+Rs*I)Rsh (4)
In the above equation, the resistances can be generally neglected, and thus, it can be simplified to
I=ph−Io*(exp (q*V/n.k.T)−1) (5)
If the circuit is shorted, the output voltage V = 0, the average current through the diode is generally neglected, and the
short circuit current Isc is expressed by using
Isc=I= Iph−Ido− (Vdo/Rsh) (6)
Finally, the output power P is expressed as below,
P=V*I=V*(Iph−Ido−Vdo/Rsh) (7)
The below table is having the parameters and its values, which are used in the equivalent circuit of PV. To maximize the
short circuit current to 9.4A, 2PV panels are connected in parallel. The following parameters are useful to design Matlab
code with above equations, which is shown in Table1.
Table1. PV panel parameters used in simulation
Parameter Value
Short circuit Current(A) Isc=4.7
Open circuit Voltage(V) Voc=230
Shunt Resistance(Ω) Rsh=2000
Series Resistance(Ω) Rse=0.25
Amps/Kelvin(A/k) Ki=78*10-6
Volts/Kelvin(V/k) Kv=2.3*10-6
Temperature(°C) T=25
Diode factor n=1.3
Series connected cells Ns=384
The National Renewable Energy Laboratory (NREL) in their technical report used Matlab/Simulink since it presents
unique capabilities for developing control algorithms and power electronics modeling. In the research for a platform to
model a PV array or cell, many different programs were proposed but at the end the choice was clear in that
Matlab/Simulink and Simpowersystems would be the ideal modeling system since it offered accurate computations and
eased up on the power system block diagram design. Solar cell is acts as current source, so current source is taken from
Simpowersystems. Irradiation (insolation) and Temperature are taken as the input parameters for the panel. Generally
irradiation can be varied from 100W/m² to 1000W/m². The standard temperature condition (STC) for the panel is taken
as 25°c (298kelvins). For an ideal PV cell Rs is negligible and Rsh will be infinite but in a practical solar cell series
resistance (Rs) is taken as small and shunt resistance (Rsh) is taken as large.
A. PV cell characteristics under Constant Irradiation(constant insolation)
As shown in Fig.3 signal1 is having constant irradiation profile with 1000W/m² Irradiation. Here temperature is also
constant with 25°c.
GJTE-Vol(1)-Issue(3) Oct 2014 ISSN: 2393-9923
Global Journal of Trends in Engineering
www.gjte.in 24
Fig. 3 Constant irradiation profile with 1000 W/m² Irradiation.
When the irradiation profile with 1000W/m² is applied to the PV, the following Power-Voltage and Current-Voltage
characteristics are obtained. Here Voc=230V, Isc=9.4A and T=25°c (Standard Temperature condition). P-V and I-V
characteristics of PV are shown in Fig. 4.
Fig. 4 P-V and I-V characteristics of PV module with 1000W/m² irradiation.
From the Simulation results, it can observe that Vmax= 200V and Imax=8.5A and Pmax is around 1700W. These values
are useful to determine the Maximum Power Point (MPP). Pmax= Vmax*Imax. These values can be changed by solar
irradiation and cell temperature. In this paper, we can see how above parameters are changed during Variable irradiation.
Irradiation (insolation) will not be constant in practical world. Irradiation will be moderate in morning and evening times
and maximum during mid-day. If the irradiation is maximum, then we have maximum open circuit voltage and if the
irradiation is minimum, then we will have less open circuit voltage compare to previous.
B. PV cell characteristics under Variable Irradiation(Variable insolation)
As shown in Fig.5 signal2 is having variable irradiation profile with 600W/m² to1000W/m² Irradiation with Trapezoidal
signal. Here temperature is constant with 25°c (STC).
Fig. 5 Variable Irradiation profile with 600 W/m² to 1000 W/m².
The corresponding P-V and I-V characteristic of above irradiation profile is given below Fig. 6.
Fig. 6.P-V and I-V characteristics of PV module with 600W/m² to 1000W/m² irradiation.
From the Simulation results, it can observer that Vmax=210V, Imax= 7A and Pmax is around 1480W. Hence we can say
that PV module can be changed by the Irradiation changes. Vmax, Imax and Pmax are changed from previous one. PV
cell can also be changed by temperature but it is not considered here.
GJTE-Vol(1)-Issue(3) Oct 2014 ISSN: 2393-9923
Global Journal of Trends in Engineering
www.gjte.in 25
III. VOLTAGE SOURCE INVERTER MODEL
Fig. 7 Three phase-VSI
Three-phase VSI is shown in Fig. 7. Normally 180° mode of operation is preferred over 120° mode of operation due to it
better utilization of switches. In 180° mode of operation, there are six modes of operation in a cycle and the duration of
each mode is 60°. To avoid the short circuit in any mode switches are on without conducting in same leg. If S1 is ON,
then S4 will be OFF and if S3 is OFF, and then S6 will be ON. Here logic 1 is taken when switch is ON and logic 0 is
taken when switch is OFF. In mode1 and mode8, all upper leg switches are OFF and ON respectively. So there is no
output Voltage. From mode2 to mode6, we will have +Vdc and –Vdc which is explained in Table2.
Table2.Switching operations of VSI with 180° mode
mode S
1
S
3
S
5
S
4
S
6
S
2
Van Vbn Vcn Va
b
V
bc
Vca
mode1 0 0 0 1 1 1 0 0 0 0 0 0
mode2 1 0 0 0 1 1 2/3 -1/3 -1/3 1 0 -1
mode3 1 1 0 0 0 1 1/3 1/3 -2/3 0 1 -1
mode4 0 1 0 1 0 1 -1/3 2/3 -1/3 -1 1 0
mode5 0 1 1 1 0 0 -2/3 1/3 1/3 -1 0 1
mode6 0 0 1 1 1 0 -1/3 -1/3 2/3 0 -1 1
miode7 1 0 1 0 1 0 1/3 -2/3 1/3 1 -1 0
mode8 1 1 1 0 0 0 0 0 0 0 0 0
In above table, Van, Vbn and Vcn are pole voltages. Vab, Vbc and Vca are line voltages. When upper leg switch is ON,
then Pole Voltage will be 2/3Vdc. If lower leg switch is ON, then Pole Voltage will be -1/3Vdc. Line Voltages are
calibrated as given below,
Vab= Van-Vbn
Vbc=Vbn-Vcn
Vca=Vcn-Van
They are various techniques to vary the inverter gain. The most effective method of controlling gain and output voltage is
to incorporate Pulse Width Modulation (PWM) control within the inverters. Sinusoidal Pulse Width Modulation
(SPWM) is one of the PWM techniques. In this method, there are three sinusoidal reference waves each shifted by 120°.
A carrier wave is compared with the reference signal corresponding to a phase to generate the gating signals to that
phase. Comparing the carrier signal Vcr with the reference phases Vra, Vrb and Vrc produces the gating pulses g1, g3
and g5 for the switches S1, S3 and S5 respectively, as shown in Fig. 8. The instantaneous line-to-line voltage is Vab=
Vs*(g1-g3). The output voltage Vab is generated by eliminating the condition that two switches in the same arm cannot
operate at the same time.
GJTE-Vol(1)-Issue(3) Oct 2014 ISSN: 2393-9923
Global Journal of Trends in Engineering
www.gjte.in 26
Fig. 8 SPWM for VSI.
The phase-voltages (Van, Vbn, and Vcn) are identical, but 120° out of phase without even harmonics; moreover,
harmonics at frequencies multiple of three are identical in amplitude and phase in all phases.
IV. GRID-TIE INVERTER
Generally, Grid-Tie Inverter (GTI) is a power converter that converts direct current (DC) to alternating current (AC) with
ability to synchronize to interface with a utility line. The GTI must synchronize its frequency with that of the grid (e.g.
50 Hz) using a local oscillator and limit the voltage to no higher than the grid voltage. A high-quality modern GTI has a
fixed unity power factor, which means its output voltage and current are perfectly lined up. As we already discussed in
Introduction, Grid connected PV Inverters are implemented with single-stage than two-stage due to its reliability and
simple topology. In developed countries like United States and Germany are implementing this type of Grids with PV. In
this paper, simple inductor L is used to reduce the ripples in Inverter output. Capacitor is placed across the inverter input
side to maintain PV voltage as constant. The overall Matlab simulation setup for Grid connected PV Inverters are
explained as follows.
V.SIMULATION WORK
The Matlab simulation set up is shown in Fig. 9. It is consist of PV and Capacitor to the input side of Inverter.
PV with equivalent circuit is designed with Irradiation and Temperature as input parameters. The gate pulses are
generated by SPWM technique. An Inductor with parasitic resistance was added to give approximate sinusoidal output of
inverter. Three-phase load is connected across the inverter and then, it is fed to the infinite bus bar (GRID). Pi-section is
also added between load and Grid. Here Active and Reactive power blocks are also added to observe the Active and
Reactive powers before and after load. Here phase to phase Rms values of load and grid are selected as same as inverter
to observe the accurate results.
Fig. 9 Grid connected PV Inverter with simulation set up in Matlab.
GJTE-Vol(1)-Issue(3) Oct 2014 ISSN: 2393-9923
Global Journal of Trends in Engineering
www.gjte.in 27
A. The following simulation results are related to Grid connected PV with Irradiation 1000W/m².
Fig. 10.PV and Inverter output waveforms.
.
Fig. 11 Inverter phase currents and voltages waveforms before and after Load (GRID).
Fig. 12 Active and Reactive power waveforms before and after load.
In practical environment irradiation is not going to be constant throughout the day. In morning and evening sessions, it
will be moderate. Irradiation will be high during afternoon session. The average irradiation throughout the day will be
600W/m², but not 1000W/m².
B. The following simulation results are related to PV with grid-inverter with irradiation of 600W/m².
Fig. 13.PV and Inverter output waveforms.
GJTE-Vol(1)-Issue(3) Oct 2014 ISSN: 2393-9923
Global Journal of Trends in Engineering
www.gjte.in 28
Fig. 14.Inverter phase voltage and current waveforms before and after load (GRID).
Fig. 15.Active and Reactive power waveforms before and after load.
PV Panel output voltage can be varied by varying the external load connected to the PV. PV panel current and
power can be varied by varying the Irradiation. Hence there is a change in PV output current but not in PV output
voltage. The simulation results shows, there is a change in Active and Reactive powers before and after the load. If we
change the load then there will be change in PV output voltage. Here Irradiation is varied, so there is change in PV
current and power. There by active and reactive powers are changed with reduced manner which are shown Fig. 15 (after
load) when compared with Fig. 12 (before load). This Simulink model not uses transformer so it can be called as
Transformer less Grid-connected PV inverter. This is advantageous than Grid-connected PV inverters with transformers.
VI. CONCLUSION
This paper studies about the PV simulation under constant and variable irradiation. PV with grid-tie inverter system is
simulated for different irradiation. This PV system has been studied about the PV output voltages and currents with
different irradiation profiles. Also this system will be useful to simulate the high rated grids with PV. This system is
closely related to single-stage conversion of solar power without tracking Maximum Power Point from PV panel. Single-
stage conversion has several advantages than two-stage conversion without including Boost-converter. This can be
further extended to improved Grid connected PV Inverters with single-stage topology.
REFERENCES
[1] GMT Research, “U.S. solar market insight: 2010 year in review,” Solar Energy Industries Association, Washington,
D.C., 2010.
[2] Sera, S; Teodoresu, R.; Rodriguez.: PV panel model based on datasheet values, IEEE international Symposium on
Industrial Electronics, ISIE 2007, 4-7, Pp. 2392-2396, June 2007.
[3] S. Liu, R.A. Dugal, Dynamic Multiphysics Model for Solar Array, IEEE Trans. On Energy Conversion, Vol. 17, No.
2, Pp. 285-294, June 2002.
[4] E. Roman, R. Alonso,, P. Ibanze, S.Elorduizapatarietxe, and D. Goitia, “Intelligent PV module for grid-connected
PV systems , IEEE trans. Ind. Electron., Vol. 53, No. 4, Pp. 1066-1073, June 2006.
GJTE-Vol(1)-Issue(3) Oct 2014 ISSN: 2393-9923
Global Journal of Trends in Engineering
www.gjte.in 29
[5] Mohammad Ahmad and B. H. Khan, “Evaluation of New Grid connected Solar Inverter”, Aligarh Muslim
Technical University.
[6] Marcelo G. Molina, and Luis E. Juanico, “Dynamic modeling and control design of advanced photovoltaic solar
system for distributed generation applications”, Journal of Electrical Engineering, Vol.1, Issue. 3, Pp. 141-150,
2010.
[7] A. F. Williams, The hand book of Photo Voltaic applications: Building Applications and System design
considerations. Atlanta, GA: Fairmont Press., 1986.
[8] Sung-Hun Ko and Seong- Ryong Lee Hooman Dehbonei and C. V Nayar, ― A grid connected photovoltaic system
with direct coupled power quality control‖ Conference on IEEE Industrial Electronics, IECON 2006, pp. 5203-5208.
[9] Ryan C. Campbell. A circuit-based Photovoltaic Array model for Power system studies.
[10]M.P.Kazmierkowski, and L.Malesani, “Current control techniques for three-phase voltage-source PWM converters:
A Servey”, IEEE Transactions on Industrial Electronics, Vol. 45, No. 5, pp. 691-703, October 1998.
[11]W. Xiao.M. G. J. Lind W. G. Dunford, and A. Capel, “Real-time identification of optimal operating points in
photovoltaic power systems,” IEEE Trans. Ind. Electron. , Vol. 53, No. 4, pp. 1017-1026, June 2006.
Biography
Shaik Amanulla was completed his B.Tech in electrical and electronics engineering from KORM engineering college,
kadapa, A.P. in the year 2012. He is doing his post graduation study in G Pulla Reddy Engineering College, Kurnool
with specialization in Power Electronics. His area of research includes renewable energy systems and Power electronic
converters. Email id- aman.gprec@gmail.com.

Recomendados

PV Hybrid System with DSTATCOM for Residential Applications von
PV Hybrid System with DSTATCOM for Residential ApplicationsPV Hybrid System with DSTATCOM for Residential Applications
PV Hybrid System with DSTATCOM for Residential ApplicationsIDES Editor
839 views6 Folien
IRJET- Simulation and Analysis of Photovoltaic Solar System for Different Wea... von
IRJET- Simulation and Analysis of Photovoltaic Solar System for Different Wea...IRJET- Simulation and Analysis of Photovoltaic Solar System for Different Wea...
IRJET- Simulation and Analysis of Photovoltaic Solar System for Different Wea...IRJET Journal
21 views4 Folien
Development of PV array configuration under different partial shading condition von
Development of PV array configuration under different partial shading conditionDevelopment of PV array configuration under different partial shading condition
Development of PV array configuration under different partial shading conditionInternational Journal of Power Electronics and Drive Systems
29 views7 Folien
Modeling and Simulation of Solar Photovoltaic module using Matlab/Simulink von
Modeling and Simulation of Solar Photovoltaic module using Matlab/SimulinkModeling and Simulation of Solar Photovoltaic module using Matlab/Simulink
Modeling and Simulation of Solar Photovoltaic module using Matlab/SimulinkIOSR Journals
1.1K views8 Folien
solar panel mathematical modelling using simulink von
solar panel mathematical modelling using simulinksolar panel mathematical modelling using simulink
solar panel mathematical modelling using simulinkgraphic era university
3.5K views6 Folien
International Journal of Engineering Research and Development von
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
283 views8 Folien

Más contenido relacionado

Was ist angesagt?

Drive Applications of Fuzzy Logic Controlled Interleaved Boost Converter for ... von
Drive Applications of Fuzzy Logic Controlled Interleaved Boost Converter for ...Drive Applications of Fuzzy Logic Controlled Interleaved Boost Converter for ...
Drive Applications of Fuzzy Logic Controlled Interleaved Boost Converter for ...EECJOURNAL
24 views7 Folien
Performance Analysis of CSI Based PV system During LL and TPG faults von
Performance Analysis of CSI Based PV system During LL and TPG faultsPerformance Analysis of CSI Based PV system During LL and TPG faults
Performance Analysis of CSI Based PV system During LL and TPG faultsIOSR Journals
346 views7 Folien
F1102033540 von
F1102033540F1102033540
F1102033540IOSR Journals
222 views6 Folien
Design and validation of piezoelectric energy harvesting systems von
Design and validation of piezoelectric energy harvesting systemsDesign and validation of piezoelectric energy harvesting systems
Design and validation of piezoelectric energy harvesting systemsIlyas Caluwé
4.7K views25 Folien
Performance analysis of hybrid photovoltaic/wind energy system using KY boost... von
Performance analysis of hybrid photovoltaic/wind energy system using KY boost...Performance analysis of hybrid photovoltaic/wind energy system using KY boost...
Performance analysis of hybrid photovoltaic/wind energy system using KY boost...International Journal of Power Electronics and Drive Systems
18 views11 Folien
A Novel Approach on Photovoltaic Technologies for Power Injection in Grid Usi... von
A Novel Approach on Photovoltaic Technologies for Power Injection in Grid Usi...A Novel Approach on Photovoltaic Technologies for Power Injection in Grid Usi...
A Novel Approach on Photovoltaic Technologies for Power Injection in Grid Usi...IJERA Editor
189 views5 Folien

Was ist angesagt?(20)

Drive Applications of Fuzzy Logic Controlled Interleaved Boost Converter for ... von EECJOURNAL
Drive Applications of Fuzzy Logic Controlled Interleaved Boost Converter for ...Drive Applications of Fuzzy Logic Controlled Interleaved Boost Converter for ...
Drive Applications of Fuzzy Logic Controlled Interleaved Boost Converter for ...
EECJOURNAL24 views
Performance Analysis of CSI Based PV system During LL and TPG faults von IOSR Journals
Performance Analysis of CSI Based PV system During LL and TPG faultsPerformance Analysis of CSI Based PV system During LL and TPG faults
Performance Analysis of CSI Based PV system During LL and TPG faults
IOSR Journals346 views
Design and validation of piezoelectric energy harvesting systems von Ilyas Caluwé
Design and validation of piezoelectric energy harvesting systemsDesign and validation of piezoelectric energy harvesting systems
Design and validation of piezoelectric energy harvesting systems
Ilyas Caluwé4.7K views
A Novel Approach on Photovoltaic Technologies for Power Injection in Grid Usi... von IJERA Editor
A Novel Approach on Photovoltaic Technologies for Power Injection in Grid Usi...A Novel Approach on Photovoltaic Technologies for Power Injection in Grid Usi...
A Novel Approach on Photovoltaic Technologies for Power Injection in Grid Usi...
IJERA Editor189 views
A Review on Impact of Solar Panels on Power Quality of Distribution Networks ... von IRJET Journal
A Review on Impact of Solar Panels on Power Quality of Distribution Networks ...A Review on Impact of Solar Panels on Power Quality of Distribution Networks ...
A Review on Impact of Solar Panels on Power Quality of Distribution Networks ...
IRJET Journal36 views
Modeling of solar array and analyze the current transient von Editor Jacotech
Modeling of solar array and analyze the current transientModeling of solar array and analyze the current transient
Modeling of solar array and analyze the current transient
Editor Jacotech333 views
1 s2.0-s187661021301103 x-main von AhmedAljabari
1 s2.0-s187661021301103 x-main1 s2.0-s187661021301103 x-main
1 s2.0-s187661021301103 x-main
AhmedAljabari78 views
The main factors affecting on value of maximum power point photovoltaic model... von Ali Mahmood
The main factors affecting on value of maximum power point photovoltaic model...The main factors affecting on value of maximum power point photovoltaic model...
The main factors affecting on value of maximum power point photovoltaic model...
Ali Mahmood377 views
Mathematical modeling and simulation of solar panel von Somu Gupta
Mathematical modeling and simulation of solar panelMathematical modeling and simulation of solar panel
Mathematical modeling and simulation of solar panel
Somu Gupta1.1K views
Bk2421742180 von IJMER
Bk2421742180Bk2421742180
Bk2421742180
IJMER424 views
New Structure for Photovoltaic SystemApplications with Maximum Power Point Tr... von IAES-IJPEDS
New Structure for Photovoltaic SystemApplications with Maximum Power Point Tr...New Structure for Photovoltaic SystemApplications with Maximum Power Point Tr...
New Structure for Photovoltaic SystemApplications with Maximum Power Point Tr...
IAES-IJPEDS61 views
Solar Photo Voltaic Water Pumping: Harnessing Maximum Power von IDES Editor
Solar Photo Voltaic Water Pumping: Harnessing Maximum PowerSolar Photo Voltaic Water Pumping: Harnessing Maximum Power
Solar Photo Voltaic Water Pumping: Harnessing Maximum Power
IDES Editor604 views

Similar a A single stage photo voltaic grid-connected inverter using spwm

A. attou ajbas issn 1991-8178-pv mppt von
A. attou ajbas issn 1991-8178-pv mpptA. attou ajbas issn 1991-8178-pv mppt
A. attou ajbas issn 1991-8178-pv mpptAttou
664 views8 Folien
Analysis and Modeling of Transformerless Photovoltaic Inverter Systems von
Analysis and Modeling of Transformerless Photovoltaic Inverter SystemsAnalysis and Modeling of Transformerless Photovoltaic Inverter Systems
Analysis and Modeling of Transformerless Photovoltaic Inverter SystemsIJMER
811 views7 Folien
Z - Source Multi Level Inverter Based PV Generation System von
Z - Source Multi Level Inverter Based PV Generation SystemZ - Source Multi Level Inverter Based PV Generation System
Z - Source Multi Level Inverter Based PV Generation SystemIJERA Editor
598 views5 Folien
Maximum Power Point Tracking Method for Single Phase Grid Connected PV System... von
Maximum Power Point Tracking Method for Single Phase Grid Connected PV System...Maximum Power Point Tracking Method for Single Phase Grid Connected PV System...
Maximum Power Point Tracking Method for Single Phase Grid Connected PV System...Ali Mahmood
313 views15 Folien
Nine Level Inverter with Boost Converter from Renewable Energy Source von
Nine Level Inverter with Boost Converter from Renewable Energy SourceNine Level Inverter with Boost Converter from Renewable Energy Source
Nine Level Inverter with Boost Converter from Renewable Energy SourceIJERA Editor
375 views10 Folien
Pj3426922696 von
Pj3426922696Pj3426922696
Pj3426922696IJERA Editor
279 views5 Folien

Similar a A single stage photo voltaic grid-connected inverter using spwm(20)

A. attou ajbas issn 1991-8178-pv mppt von Attou
A. attou ajbas issn 1991-8178-pv mpptA. attou ajbas issn 1991-8178-pv mppt
A. attou ajbas issn 1991-8178-pv mppt
Attou664 views
Analysis and Modeling of Transformerless Photovoltaic Inverter Systems von IJMER
Analysis and Modeling of Transformerless Photovoltaic Inverter SystemsAnalysis and Modeling of Transformerless Photovoltaic Inverter Systems
Analysis and Modeling of Transformerless Photovoltaic Inverter Systems
IJMER811 views
Z - Source Multi Level Inverter Based PV Generation System von IJERA Editor
Z - Source Multi Level Inverter Based PV Generation SystemZ - Source Multi Level Inverter Based PV Generation System
Z - Source Multi Level Inverter Based PV Generation System
IJERA Editor598 views
Maximum Power Point Tracking Method for Single Phase Grid Connected PV System... von Ali Mahmood
Maximum Power Point Tracking Method for Single Phase Grid Connected PV System...Maximum Power Point Tracking Method for Single Phase Grid Connected PV System...
Maximum Power Point Tracking Method for Single Phase Grid Connected PV System...
Ali Mahmood313 views
Nine Level Inverter with Boost Converter from Renewable Energy Source von IJERA Editor
Nine Level Inverter with Boost Converter from Renewable Energy SourceNine Level Inverter with Boost Converter from Renewable Energy Source
Nine Level Inverter with Boost Converter from Renewable Energy Source
IJERA Editor375 views
Performance Investigation of Grid Connected Photovoltaic System Modelling Bas... von IJECEIAES
Performance Investigation of Grid Connected Photovoltaic System Modelling Bas...Performance Investigation of Grid Connected Photovoltaic System Modelling Bas...
Performance Investigation of Grid Connected Photovoltaic System Modelling Bas...
IJECEIAES9 views
Design of Isolated DC Solar Powered Microgrid with Storage System von IRJET Journal
Design of Isolated DC Solar Powered Microgrid with Storage SystemDesign of Isolated DC Solar Powered Microgrid with Storage System
Design of Isolated DC Solar Powered Microgrid with Storage System
IRJET Journal3 views
Multilevel Inverters for PV Applications von Ehab Al hamayel
Multilevel Inverters for PV ApplicationsMultilevel Inverters for PV Applications
Multilevel Inverters for PV Applications
Ehab Al hamayel4.6K views
Modeling and Simulation of a Photovoltaic Field for 13 KW von IJECEIAES
Modeling and Simulation of a Photovoltaic Field for 13 KW Modeling and Simulation of a Photovoltaic Field for 13 KW
Modeling and Simulation of a Photovoltaic Field for 13 KW
IJECEIAES17 views
A New Simulation Approach of 3-Φ Transformer-less Grid Connected PV Inverter ... von IRJET Journal
A New Simulation Approach of 3-Φ Transformer-less Grid Connected PV Inverter ...A New Simulation Approach of 3-Φ Transformer-less Grid Connected PV Inverter ...
A New Simulation Approach of 3-Φ Transformer-less Grid Connected PV Inverter ...
IRJET Journal33 views
IJSETR-VOL-2-ISSUE-7-1526-1530 von Vijay Kannan
IJSETR-VOL-2-ISSUE-7-1526-1530IJSETR-VOL-2-ISSUE-7-1526-1530
IJSETR-VOL-2-ISSUE-7-1526-1530
Vijay Kannan218 views
Design, modeling and performance investigation of gc von Alexander Decker
Design, modeling and performance investigation of gcDesign, modeling and performance investigation of gc
Design, modeling and performance investigation of gc
Alexander Decker504 views
11.design, modeling and performance investigation of gc von Alexander Decker
11.design, modeling and performance investigation of gc11.design, modeling and performance investigation of gc
11.design, modeling and performance investigation of gc
Alexander Decker470 views
Mathematical Modelling of PV Module With multilevel 3-Ø inverter using SPWM t... von IOSR Journals
Mathematical Modelling of PV Module With multilevel 3-Ø inverter using SPWM t...Mathematical Modelling of PV Module With multilevel 3-Ø inverter using SPWM t...
Mathematical Modelling of PV Module With multilevel 3-Ø inverter using SPWM t...
IOSR Journals594 views
Modeling and Simulation of Fuzzy Logic based Maximum Power Point Tracking (MP... von IJECEIAES
Modeling and Simulation of Fuzzy Logic based Maximum Power Point Tracking (MP...Modeling and Simulation of Fuzzy Logic based Maximum Power Point Tracking (MP...
Modeling and Simulation of Fuzzy Logic based Maximum Power Point Tracking (MP...
IJECEIAES273 views
Modeling Combined Effect of Temperature, Irradiance, Series Resistance (Rs) a... von IJLT EMAS
Modeling Combined Effect of Temperature, Irradiance, Series Resistance (Rs) a...Modeling Combined Effect of Temperature, Irradiance, Series Resistance (Rs) a...
Modeling Combined Effect of Temperature, Irradiance, Series Resistance (Rs) a...
IJLT EMAS365 views

Último

CloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlue von
CloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlueCloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlue
CloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlueShapeBlue
46 views13 Folien
NTGapps NTG LowCode Platform von
NTGapps NTG LowCode Platform NTGapps NTG LowCode Platform
NTGapps NTG LowCode Platform Mustafa Kuğu
141 views30 Folien
KVM Security Groups Under the Hood - Wido den Hollander - Your.Online von
KVM Security Groups Under the Hood - Wido den Hollander - Your.OnlineKVM Security Groups Under the Hood - Wido den Hollander - Your.Online
KVM Security Groups Under the Hood - Wido den Hollander - Your.OnlineShapeBlue
102 views19 Folien
Network Source of Truth and Infrastructure as Code revisited von
Network Source of Truth and Infrastructure as Code revisitedNetwork Source of Truth and Infrastructure as Code revisited
Network Source of Truth and Infrastructure as Code revisitedNetwork Automation Forum
42 views45 Folien
Migrating VMware Infra to KVM Using CloudStack - Nicolas Vazquez - ShapeBlue von
Migrating VMware Infra to KVM Using CloudStack - Nicolas Vazquez - ShapeBlueMigrating VMware Infra to KVM Using CloudStack - Nicolas Vazquez - ShapeBlue
Migrating VMware Infra to KVM Using CloudStack - Nicolas Vazquez - ShapeBlueShapeBlue
96 views20 Folien
What’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlue von
What’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlueWhat’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlue
What’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlueShapeBlue
131 views23 Folien

Último(20)

CloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlue von ShapeBlue
CloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlueCloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlue
CloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlue
ShapeBlue46 views
NTGapps NTG LowCode Platform von Mustafa Kuğu
NTGapps NTG LowCode Platform NTGapps NTG LowCode Platform
NTGapps NTG LowCode Platform
Mustafa Kuğu141 views
KVM Security Groups Under the Hood - Wido den Hollander - Your.Online von ShapeBlue
KVM Security Groups Under the Hood - Wido den Hollander - Your.OnlineKVM Security Groups Under the Hood - Wido den Hollander - Your.Online
KVM Security Groups Under the Hood - Wido den Hollander - Your.Online
ShapeBlue102 views
Migrating VMware Infra to KVM Using CloudStack - Nicolas Vazquez - ShapeBlue von ShapeBlue
Migrating VMware Infra to KVM Using CloudStack - Nicolas Vazquez - ShapeBlueMigrating VMware Infra to KVM Using CloudStack - Nicolas Vazquez - ShapeBlue
Migrating VMware Infra to KVM Using CloudStack - Nicolas Vazquez - ShapeBlue
ShapeBlue96 views
What’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlue von ShapeBlue
What’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlueWhat’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlue
What’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlue
ShapeBlue131 views
PharoJS - Zürich Smalltalk Group Meetup November 2023 von Noury Bouraqadi
PharoJS - Zürich Smalltalk Group Meetup November 2023PharoJS - Zürich Smalltalk Group Meetup November 2023
PharoJS - Zürich Smalltalk Group Meetup November 2023
Noury Bouraqadi141 views
Hypervisor Agnostic DRS in CloudStack - Brief overview & demo - Vishesh Jinda... von ShapeBlue
Hypervisor Agnostic DRS in CloudStack - Brief overview & demo - Vishesh Jinda...Hypervisor Agnostic DRS in CloudStack - Brief overview & demo - Vishesh Jinda...
Hypervisor Agnostic DRS in CloudStack - Brief overview & demo - Vishesh Jinda...
ShapeBlue63 views
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院 von IttrainingIttraining
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院
2FA and OAuth2 in CloudStack - Andrija Panić - ShapeBlue von ShapeBlue
2FA and OAuth2 in CloudStack - Andrija Panić - ShapeBlue2FA and OAuth2 in CloudStack - Andrija Panić - ShapeBlue
2FA and OAuth2 in CloudStack - Andrija Panić - ShapeBlue
ShapeBlue50 views
Why and How CloudStack at weSystems - Stephan Bienek - weSystems von ShapeBlue
Why and How CloudStack at weSystems - Stephan Bienek - weSystemsWhy and How CloudStack at weSystems - Stephan Bienek - weSystems
Why and How CloudStack at weSystems - Stephan Bienek - weSystems
ShapeBlue111 views
Keynote Talk: Open Source is Not Dead - Charles Schulz - Vates von ShapeBlue
Keynote Talk: Open Source is Not Dead - Charles Schulz - VatesKeynote Talk: Open Source is Not Dead - Charles Schulz - Vates
Keynote Talk: Open Source is Not Dead - Charles Schulz - Vates
ShapeBlue119 views
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N... von James Anderson
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
James Anderson133 views
Backroll, News and Demo - Pierre Charton, Matthias Dhellin, Ousmane Diarra - ... von ShapeBlue
Backroll, News and Demo - Pierre Charton, Matthias Dhellin, Ousmane Diarra - ...Backroll, News and Demo - Pierre Charton, Matthias Dhellin, Ousmane Diarra - ...
Backroll, News and Demo - Pierre Charton, Matthias Dhellin, Ousmane Diarra - ...
ShapeBlue83 views
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLive von Network Automation Forum
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLiveAutomating a World-Class Technology Conference; Behind the Scenes of CiscoLive
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLive

A single stage photo voltaic grid-connected inverter using spwm

  • 1. GJTE-Vol(1)-Issue(3) Oct 2014 ISSN: 2393-9923 Global Journal of Trends in Engineering www.gjte.in 22 A Single-stage Photovoltaic Grid-Connected Inverter using SPWM Shaik.Amanulla P.G.Student, Dept. of EEE, G. Pulla Reddy Engineering College, Kurnool, Andhra Pradesh, India ABSTRACT: Now a day’s solar energy gain its importance due to its vast availability in environment and Eco-friendly. Solar power is gaining its trend for the use of solar cells in industry and domestic applications, because solar energy is expected to play important role in future smart grids as a distributed power generation. Grid connected PV Inverters are basically implemented with two-stage and single-stage conversion. Among this Single-stage conversion has more advantageous than two-stage with improved efficiency, less weight and reduced losses. In this paper, a generalized solar photo Voltaic (SPV) system for Matlab/Simulink model with constant and variable irradiation has been developed. Solar PV cell is modelled using Matlab/Simulink. Solar PV cell behaviour under environmental changes is also considered. Single-stage Grid integrated Solar PV system with VSI has been explained with Matlab/Simulink model. Sinusoidal Pulse Width Modulation (SPWM) is used to generate the pulses for Voltage Source Inverter (VSI). Keywords: Solar Photo Voltaic (SPV), Constant Irradiation, Variable Irradiation Voltage Source Inverter (VSI), SPWM, Grid-Tie Inverter. I. INTRODUCTION Energy harvesting from Solar Photo Voltaic (SPV) system is the most essential and sustainable way because of its vast availability and eco-friendly. The fundamental power generation units of solar power generation are PV modules. The P-V and I-V characteristics of SPV cells are depend on the solar irradiation and cell temperature. The Matlab/Simulink provides a user-friendly environment for the analysis of Power Electronic converters with PV modules. Generally, Grid connected PV inverters are modeled with two-stage and single-stage conversion. In two-stage conversion, the first Boost converter is used to boost up the PV output voltage; second allows the conversion of this power into high-quality ac voltage. The presence of several power stages undermines the overall efficiency, reliability and increased cost. The single-stage has numerous advantages, such as simple topology, high efficiency, etc. The single-stage conversion of Grid connected PV inverter is shown in Fig. 1.Typically, simple inductor L is used to get the reduced ripples in the Inverter output. Fig. 1 Typical configuration of a single-stage grid-connected PV system. In Fig.1, It has PV panel, capacitor, VSI, inductor and finally Grid. Here Capacitor(C) is used to maintain the constant voltage which is coming from PV panel. Generally the output of VSI will be stepped waveform with the presence of ripples. To get the reduced ripples at the Inverter output side L is used as shown in Fig.1. Sinusoidal Pulse Width Modulation (SPWM) is used to give the pulses to VSI. This study aims to develop a general purpose Simulink SPV module with Grid-Tie Inverter system. This module can be easily reconfigured for the electrical response of PV panels in a wide range. In this the behavior of SPV module with constant and variable irradiation are discussed. In solar based Grid-Tie Inverter system, PV module itself is modeled to give desired open circuit voltage (Voc). Solar based Grid-Tie Inverters are useful for large-scale solar power generation. Solar array modeling is first explained with mathematical equations and then, simulation results are provided for constant and variable irradiation. VSI with SPWM is also explained. Grid-Tie Inverters are explained with some basic theory. Finally Matlab Simulation of Grid connected PV inverter system for two different irradiation of PV has been explained. II. SOLAR PV ARRAY MODELING PV Array is a combination of solar cells, connections, protective parts, supports, etc. In the present modeling, the focus is only on cells. Solar cells consist of a p-n junction; various modeling of solar cells have been proposed in the literature. Thus, the simplest equivalent circuit of a solar cell is a current source in parallel with a diode. The output of the current
  • 2. GJTE-Vol(1)-Issue(3) Oct 2014 ISSN: 2393-9923 Global Journal of Trends in Engineering www.gjte.in 23 source is directly proportional to the light falling on the cell (photocurrent). Thus, the diode determines the I–V characteristics of the cell. The electrical equivalent circuit of a solar cell is shown in Fig. 2 Fig. 2 Solar cell electrically equivalent circuit The output current I and the output voltage of a solar cell are given by I =Iph− Ido – Vdo/Rsh (1) =Iph−Io*(exp (q.Vdo/n.k.T) −1) −Vdo/Rsh (2) V=Vdo−Rs*I (3) Here, Ipv is the photocurrent, I0 is the reverse saturation current, Id0 is the average current through the diode, n is the diode factor, q is the electron charge (q = 1.6˟10−19), k is the Boltzmann’s constant (k = 1.38∗10−23), and T is the solar array panel temperature. Rs, the intrinsic series resistance of the solar cell; this value is normally very small. Rsh is the equivalent shunt resistance of the solar array, and its value is very large. In general, the output current of a solar cell is expressed by I= Iph−Io*(exp (q*(V+Rs*I)/n.k.T) −1) –(V+Rs*I)Rsh (4) In the above equation, the resistances can be generally neglected, and thus, it can be simplified to I=ph−Io*(exp (q*V/n.k.T)−1) (5) If the circuit is shorted, the output voltage V = 0, the average current through the diode is generally neglected, and the short circuit current Isc is expressed by using Isc=I= Iph−Ido− (Vdo/Rsh) (6) Finally, the output power P is expressed as below, P=V*I=V*(Iph−Ido−Vdo/Rsh) (7) The below table is having the parameters and its values, which are used in the equivalent circuit of PV. To maximize the short circuit current to 9.4A, 2PV panels are connected in parallel. The following parameters are useful to design Matlab code with above equations, which is shown in Table1. Table1. PV panel parameters used in simulation Parameter Value Short circuit Current(A) Isc=4.7 Open circuit Voltage(V) Voc=230 Shunt Resistance(Ω) Rsh=2000 Series Resistance(Ω) Rse=0.25 Amps/Kelvin(A/k) Ki=78*10-6 Volts/Kelvin(V/k) Kv=2.3*10-6 Temperature(°C) T=25 Diode factor n=1.3 Series connected cells Ns=384 The National Renewable Energy Laboratory (NREL) in their technical report used Matlab/Simulink since it presents unique capabilities for developing control algorithms and power electronics modeling. In the research for a platform to model a PV array or cell, many different programs were proposed but at the end the choice was clear in that Matlab/Simulink and Simpowersystems would be the ideal modeling system since it offered accurate computations and eased up on the power system block diagram design. Solar cell is acts as current source, so current source is taken from Simpowersystems. Irradiation (insolation) and Temperature are taken as the input parameters for the panel. Generally irradiation can be varied from 100W/m² to 1000W/m². The standard temperature condition (STC) for the panel is taken as 25°c (298kelvins). For an ideal PV cell Rs is negligible and Rsh will be infinite but in a practical solar cell series resistance (Rs) is taken as small and shunt resistance (Rsh) is taken as large. A. PV cell characteristics under Constant Irradiation(constant insolation) As shown in Fig.3 signal1 is having constant irradiation profile with 1000W/m² Irradiation. Here temperature is also constant with 25°c.
  • 3. GJTE-Vol(1)-Issue(3) Oct 2014 ISSN: 2393-9923 Global Journal of Trends in Engineering www.gjte.in 24 Fig. 3 Constant irradiation profile with 1000 W/m² Irradiation. When the irradiation profile with 1000W/m² is applied to the PV, the following Power-Voltage and Current-Voltage characteristics are obtained. Here Voc=230V, Isc=9.4A and T=25°c (Standard Temperature condition). P-V and I-V characteristics of PV are shown in Fig. 4. Fig. 4 P-V and I-V characteristics of PV module with 1000W/m² irradiation. From the Simulation results, it can observe that Vmax= 200V and Imax=8.5A and Pmax is around 1700W. These values are useful to determine the Maximum Power Point (MPP). Pmax= Vmax*Imax. These values can be changed by solar irradiation and cell temperature. In this paper, we can see how above parameters are changed during Variable irradiation. Irradiation (insolation) will not be constant in practical world. Irradiation will be moderate in morning and evening times and maximum during mid-day. If the irradiation is maximum, then we have maximum open circuit voltage and if the irradiation is minimum, then we will have less open circuit voltage compare to previous. B. PV cell characteristics under Variable Irradiation(Variable insolation) As shown in Fig.5 signal2 is having variable irradiation profile with 600W/m² to1000W/m² Irradiation with Trapezoidal signal. Here temperature is constant with 25°c (STC). Fig. 5 Variable Irradiation profile with 600 W/m² to 1000 W/m². The corresponding P-V and I-V characteristic of above irradiation profile is given below Fig. 6. Fig. 6.P-V and I-V characteristics of PV module with 600W/m² to 1000W/m² irradiation. From the Simulation results, it can observer that Vmax=210V, Imax= 7A and Pmax is around 1480W. Hence we can say that PV module can be changed by the Irradiation changes. Vmax, Imax and Pmax are changed from previous one. PV cell can also be changed by temperature but it is not considered here.
  • 4. GJTE-Vol(1)-Issue(3) Oct 2014 ISSN: 2393-9923 Global Journal of Trends in Engineering www.gjte.in 25 III. VOLTAGE SOURCE INVERTER MODEL Fig. 7 Three phase-VSI Three-phase VSI is shown in Fig. 7. Normally 180° mode of operation is preferred over 120° mode of operation due to it better utilization of switches. In 180° mode of operation, there are six modes of operation in a cycle and the duration of each mode is 60°. To avoid the short circuit in any mode switches are on without conducting in same leg. If S1 is ON, then S4 will be OFF and if S3 is OFF, and then S6 will be ON. Here logic 1 is taken when switch is ON and logic 0 is taken when switch is OFF. In mode1 and mode8, all upper leg switches are OFF and ON respectively. So there is no output Voltage. From mode2 to mode6, we will have +Vdc and –Vdc which is explained in Table2. Table2.Switching operations of VSI with 180° mode mode S 1 S 3 S 5 S 4 S 6 S 2 Van Vbn Vcn Va b V bc Vca mode1 0 0 0 1 1 1 0 0 0 0 0 0 mode2 1 0 0 0 1 1 2/3 -1/3 -1/3 1 0 -1 mode3 1 1 0 0 0 1 1/3 1/3 -2/3 0 1 -1 mode4 0 1 0 1 0 1 -1/3 2/3 -1/3 -1 1 0 mode5 0 1 1 1 0 0 -2/3 1/3 1/3 -1 0 1 mode6 0 0 1 1 1 0 -1/3 -1/3 2/3 0 -1 1 miode7 1 0 1 0 1 0 1/3 -2/3 1/3 1 -1 0 mode8 1 1 1 0 0 0 0 0 0 0 0 0 In above table, Van, Vbn and Vcn are pole voltages. Vab, Vbc and Vca are line voltages. When upper leg switch is ON, then Pole Voltage will be 2/3Vdc. If lower leg switch is ON, then Pole Voltage will be -1/3Vdc. Line Voltages are calibrated as given below, Vab= Van-Vbn Vbc=Vbn-Vcn Vca=Vcn-Van They are various techniques to vary the inverter gain. The most effective method of controlling gain and output voltage is to incorporate Pulse Width Modulation (PWM) control within the inverters. Sinusoidal Pulse Width Modulation (SPWM) is one of the PWM techniques. In this method, there are three sinusoidal reference waves each shifted by 120°. A carrier wave is compared with the reference signal corresponding to a phase to generate the gating signals to that phase. Comparing the carrier signal Vcr with the reference phases Vra, Vrb and Vrc produces the gating pulses g1, g3 and g5 for the switches S1, S3 and S5 respectively, as shown in Fig. 8. The instantaneous line-to-line voltage is Vab= Vs*(g1-g3). The output voltage Vab is generated by eliminating the condition that two switches in the same arm cannot operate at the same time.
  • 5. GJTE-Vol(1)-Issue(3) Oct 2014 ISSN: 2393-9923 Global Journal of Trends in Engineering www.gjte.in 26 Fig. 8 SPWM for VSI. The phase-voltages (Van, Vbn, and Vcn) are identical, but 120° out of phase without even harmonics; moreover, harmonics at frequencies multiple of three are identical in amplitude and phase in all phases. IV. GRID-TIE INVERTER Generally, Grid-Tie Inverter (GTI) is a power converter that converts direct current (DC) to alternating current (AC) with ability to synchronize to interface with a utility line. The GTI must synchronize its frequency with that of the grid (e.g. 50 Hz) using a local oscillator and limit the voltage to no higher than the grid voltage. A high-quality modern GTI has a fixed unity power factor, which means its output voltage and current are perfectly lined up. As we already discussed in Introduction, Grid connected PV Inverters are implemented with single-stage than two-stage due to its reliability and simple topology. In developed countries like United States and Germany are implementing this type of Grids with PV. In this paper, simple inductor L is used to reduce the ripples in Inverter output. Capacitor is placed across the inverter input side to maintain PV voltage as constant. The overall Matlab simulation setup for Grid connected PV Inverters are explained as follows. V.SIMULATION WORK The Matlab simulation set up is shown in Fig. 9. It is consist of PV and Capacitor to the input side of Inverter. PV with equivalent circuit is designed with Irradiation and Temperature as input parameters. The gate pulses are generated by SPWM technique. An Inductor with parasitic resistance was added to give approximate sinusoidal output of inverter. Three-phase load is connected across the inverter and then, it is fed to the infinite bus bar (GRID). Pi-section is also added between load and Grid. Here Active and Reactive power blocks are also added to observe the Active and Reactive powers before and after load. Here phase to phase Rms values of load and grid are selected as same as inverter to observe the accurate results. Fig. 9 Grid connected PV Inverter with simulation set up in Matlab.
  • 6. GJTE-Vol(1)-Issue(3) Oct 2014 ISSN: 2393-9923 Global Journal of Trends in Engineering www.gjte.in 27 A. The following simulation results are related to Grid connected PV with Irradiation 1000W/m². Fig. 10.PV and Inverter output waveforms. . Fig. 11 Inverter phase currents and voltages waveforms before and after Load (GRID). Fig. 12 Active and Reactive power waveforms before and after load. In practical environment irradiation is not going to be constant throughout the day. In morning and evening sessions, it will be moderate. Irradiation will be high during afternoon session. The average irradiation throughout the day will be 600W/m², but not 1000W/m². B. The following simulation results are related to PV with grid-inverter with irradiation of 600W/m². Fig. 13.PV and Inverter output waveforms.
  • 7. GJTE-Vol(1)-Issue(3) Oct 2014 ISSN: 2393-9923 Global Journal of Trends in Engineering www.gjte.in 28 Fig. 14.Inverter phase voltage and current waveforms before and after load (GRID). Fig. 15.Active and Reactive power waveforms before and after load. PV Panel output voltage can be varied by varying the external load connected to the PV. PV panel current and power can be varied by varying the Irradiation. Hence there is a change in PV output current but not in PV output voltage. The simulation results shows, there is a change in Active and Reactive powers before and after the load. If we change the load then there will be change in PV output voltage. Here Irradiation is varied, so there is change in PV current and power. There by active and reactive powers are changed with reduced manner which are shown Fig. 15 (after load) when compared with Fig. 12 (before load). This Simulink model not uses transformer so it can be called as Transformer less Grid-connected PV inverter. This is advantageous than Grid-connected PV inverters with transformers. VI. CONCLUSION This paper studies about the PV simulation under constant and variable irradiation. PV with grid-tie inverter system is simulated for different irradiation. This PV system has been studied about the PV output voltages and currents with different irradiation profiles. Also this system will be useful to simulate the high rated grids with PV. This system is closely related to single-stage conversion of solar power without tracking Maximum Power Point from PV panel. Single- stage conversion has several advantages than two-stage conversion without including Boost-converter. This can be further extended to improved Grid connected PV Inverters with single-stage topology. REFERENCES [1] GMT Research, “U.S. solar market insight: 2010 year in review,” Solar Energy Industries Association, Washington, D.C., 2010. [2] Sera, S; Teodoresu, R.; Rodriguez.: PV panel model based on datasheet values, IEEE international Symposium on Industrial Electronics, ISIE 2007, 4-7, Pp. 2392-2396, June 2007. [3] S. Liu, R.A. Dugal, Dynamic Multiphysics Model for Solar Array, IEEE Trans. On Energy Conversion, Vol. 17, No. 2, Pp. 285-294, June 2002. [4] E. Roman, R. Alonso,, P. Ibanze, S.Elorduizapatarietxe, and D. Goitia, “Intelligent PV module for grid-connected PV systems , IEEE trans. Ind. Electron., Vol. 53, No. 4, Pp. 1066-1073, June 2006.
  • 8. GJTE-Vol(1)-Issue(3) Oct 2014 ISSN: 2393-9923 Global Journal of Trends in Engineering www.gjte.in 29 [5] Mohammad Ahmad and B. H. Khan, “Evaluation of New Grid connected Solar Inverter”, Aligarh Muslim Technical University. [6] Marcelo G. Molina, and Luis E. Juanico, “Dynamic modeling and control design of advanced photovoltaic solar system for distributed generation applications”, Journal of Electrical Engineering, Vol.1, Issue. 3, Pp. 141-150, 2010. [7] A. F. Williams, The hand book of Photo Voltaic applications: Building Applications and System design considerations. Atlanta, GA: Fairmont Press., 1986. [8] Sung-Hun Ko and Seong- Ryong Lee Hooman Dehbonei and C. V Nayar, ― A grid connected photovoltaic system with direct coupled power quality control‖ Conference on IEEE Industrial Electronics, IECON 2006, pp. 5203-5208. [9] Ryan C. Campbell. A circuit-based Photovoltaic Array model for Power system studies. [10]M.P.Kazmierkowski, and L.Malesani, “Current control techniques for three-phase voltage-source PWM converters: A Servey”, IEEE Transactions on Industrial Electronics, Vol. 45, No. 5, pp. 691-703, October 1998. [11]W. Xiao.M. G. J. Lind W. G. Dunford, and A. Capel, “Real-time identification of optimal operating points in photovoltaic power systems,” IEEE Trans. Ind. Electron. , Vol. 53, No. 4, pp. 1017-1026, June 2006. Biography Shaik Amanulla was completed his B.Tech in electrical and electronics engineering from KORM engineering college, kadapa, A.P. in the year 2012. He is doing his post graduation study in G Pulla Reddy Engineering College, Kurnool with specialization in Power Electronics. His area of research includes renewable energy systems and Power electronic converters. Email id- aman.gprec@gmail.com.