SlideShare ist ein Scribd-Unternehmen logo
1 von 36
The Many Worlds of
Quantum Mechanics
Sean Carroll
http://preposterousuniverse.com/
Before there was quantum mechanics:
classical (Newtonian) mechanics
Classical mechanics describes the world in terms of:
• Space
• Time
• Stuff
• Motion
• Laws of physics
(e.g. forces, F = ma)
Examples

• Billiard balls, pendulums,
inclined planes, spinning tops…
• Moons, planets, rockets.
• Air, water, stone, metal – solids and fluids.
• Electric and magnetic fields.
• Spacetime itself (general relativity).
A clockwork universe
If we knew the complete state of the
universe at any one moment;
and knew the laws of physics exactly;
and had infinite computing power;
we would know the state of the
universe at every other moment.
State of the universe
= position and velocity
of every particle/field
“Laplace’s Demon”
Quantum Mechanics:
early hints, dawn of the 20th century
Max Planck:
blackbody
radiation

Albert
Einstein:
photons

Henri Becquerel,
Marie & Pierre Curie:
radioactivity
Niels Bohr:
electrons in atoms can’t be located just anywhere;
they only have certain allowed orbits
1920’s: quantum mechanics becomes
a full-blown theory
Werner
Heisenberg:
“matrix
mechanics”

Paul Dirac:
Heisenberg’s and
Schrödinger’s
formalisms are
equivalent

Erwin
Schrödinger:
“wave
mechanics”
Newton’s Laws are
replaced by the
Schrödinger Equation
for the quantum state:
Quantum mechanics:
the secret

What we observe is much less
than what actually exists.
What is the “state” of a system?
Classical mechanics: position and velocity.
Quantum mechanics: the wave function.
Position and velocity are what you can observe.
But until you measure them, they don’t exist.
Only the wave function does.
The wave function tells you the probability of
measuring different values of position or velocity.
Electrons in atoms

Cartoon: circling
in orbits

Reality: a static
wave function
Simple example: Miss Kitty,
a two-state system (“qubit”)
When we look for Miss Kitty, we only ever find her
under the table, or on the sofa.

Her wave function might give us a 50% chance of finding
her under the table, 50% of finding her on the sofa.
Classically: Miss Kitty is either under the table or on
the sofa, we just don’t know which one.
Quantum mechanics: she is actually in a superposition
of both possibilities, until we look.

Reason why: interference.
Interference
Imagine that we see Miss Kitty stop by either her food
bowl or her scratching post on the way to the table or sofa.
50%
50%

50%
50%

Either way, we find a 50/50 chance to see her on the
table or the sofa at the end of her journey.
But sometimes we don’t watch. She goes by either her
food bowl or scratching post, we don’t know which.

0%
100%

In that case, it turns out we always find her ending
up on the sofa, never under the table!
What’s going on?
• For every possible
observable outcome,
the wave function has
a value.

wave function

The wave function tells us the probability,
but it’s not equal to the probability.

position
(or other
observable)

• Wave functions can be positive or negative *. Different
contributions to the wave function can therefore
either reinforce, or cancel each other out.
• Probability of observing an outcome = (wave function) 2.
* More precisely: wave functions are complex numbers, ψ = a + ib, and the probability is given by |ψ|2 = a2 + b2.
1926
So if the wave function for Miss Kitty to be under the
table is 0.71, the probability of finding her there
is (0.71)2 = 0.50, or 50%.
0.71
0.71

But, crucially, if the wave function had been -0.71,
we would have the same probability, since
(-0.71)2 = 0.50 also.
That’s what happened in our interference
experiment.
(0.71)2
= 0.5

(-0.71)2
= 0.5

(0.71)2
= 0.5

(0.71)2
= 0.5

½(.71-.71)2
=0
½(.71+.71)2
=1

Interference is at the heart of quantum mechanics.
The Measurement Problem

What actually happens when we observe properties
of a quantum-mechanical system?
Why should “measurement” or “observation” play a
crucial role in a physical theory at all?
Thus, “interpretations of quantum mechanics.”
The Copenhagen (textbook)
interpretation of quantum mechanics
• The “quantum realm” is distinct from the
macroscopic “classical realm” of observers.
• Observations occur when the two realms interact.
• Unobserved wave functions evolve smoothly,
deterministically, via the Schrödinger equation.
• Observed wave functions collapse instantly onto
possible measurement outcomes.
• After collapse, the new quantum state is
concentrated on that outcome.
In Copenhagen, our observation of Miss Kitty along her
path collapsed her wave function onto “scratching post”
or “food bowl,” eliminating future interference.
A more complicated world
Imagine we have both a cat and a dog:
We can observe Ms. Kitty in one of two possible states:
(on the sofa) or (under the table).
We can also observe Mr. Dog in one of two possible states:
(in the yard) or (in the doghouse).
Classically, we describe the systems separately. In
quantum mechanics, we describe them both at once.
Entanglement
There is one wave function for the combined cat+dog
system. It has four possible “basis states”:
sofa

(sofa,
yard) =

sofa

table

(sofa,
doghouse) =

yard doghouse

sofa

(table,
yard) =

yard doghouse

table

yard doghouse

table

sofa

(table,
doghouse) =

table

yard doghouse
Consider a state:
½(sofa, yard) + ½(sofa, doghouse)
(cat, dog) =
+ ½(table, yard) + ½(table, doghouse)
Each specific outcome has a probability
(1/2)2 = 1/4 = 25%
So Ms. Kitty has a total probability for (sofa) of 50%,
likewise for (table); similarly for Mr. Dog.
Knowing about Ms. Kitty tells us nothing about Mr. Dog,
and vice-versa.
Now instead, consider a state:
(cat, dog) = 0.71(sofa, yard) + 0.71(table, doghouse)
Each specific outcome has a probability
(0.71)2 = 0.50 = 50%
Again, Ms. Kitty has a total probability for (sofa) of
50%, likewise for (table); similarly for Mr. Dog.
But now, if we observe Ms. Kitty under the table, we
know Mr. Dog is in the yard with 100% probability –
without even looking at him!
sofa

(sofa,
yard) =

yard doghouse

sofa

(table,
yard) =

sofa

table

(sofa,
doghouse) =

yard doghouse

table

yard doghouse

table

sofa

(table,
doghouse) =

table

yard doghouse

Entanglement establishes correlations between
different possible measurement outcomes.
Decoherence
Consider again an entangled state of Ms. Kitty and Mr. Dog:
(cat, dog) = 0.71(sofa, yard) + 0.71(table, doghouse)
But imagine we know nothing about Mr. Dog (and won’t).
How do we describe the state of Ms. Kitty by herself?
You might guess:
(cat) = 0.71(sofa) + 0.71(table)
But that turns out to be wrong.
Entanglement can prevent interference
With no entanglement, different contributions to Ms. Kitty’s
path lead to the same final states (sofa or table):

Since final states are the same, they can add or subtract
(and thus interfere):
via post: (cat) = 0.5(sofa) + 0.5(table)
via bowl: (cat) = -0.5(sofa) + 0.5(table)
total: (cat) = 0(sofa) + 1.0(table)
Now imagine Ms. Kitty’s path becomes entangled with
the state of Mr. Dog.
(yard)

(doghouse)

Now the final states of the wave function are not the same
(Mr. Dog and Ms. Kitty are entangled), and interference fails:
via post: (cat, dog) = 0.5(sofa, yard) + 0.5(table, yard)
via bowl: (cat, dog) = -0.5(sofa, doghouse) + 0.5(table, doghouse)
total: (cat, dog) = 0.5(sofa, yard) + 0.5(table, yard)
- 0.5(sofa, doghouse) + 0.5(table, doghouse)
Upshot: when a quantum system becomes entangled
with the outside world, different possibilities decohere
and can no longer interfere with each other.
If a system becomes entangled with a messy, permanent,
external environment, its different possibilities will
never interfere with each other, nor affect each other
in any way.
It’s as if they have become part of separate worlds.
Many-Worlds Interpretation of
Quantum Mechanics

Hugh Everett, 1957

• There is no “classical realm.” Everything is quantum,
including you, the observer.
• Wave functions never “collapse.” Only smooth,
deterministic evolution.
• Apparent collapse due to entanglement/decoherence.
• Unobserved possibilities – other “worlds” – still exist.
Schrödinger’s Cat:
Copenhagen version
Ms. Kitty is in a superposition of (awake) and (asleep),
then observed.
Schrödinger’s Cat:
Many-Worlds version
Now we have Ms. Kitty, an observer, and an environment.
Silly objections to Many-Worlds
1. That’s too many universes!
The number of possible quantum states remains
fixed. The wave function contains the same amount
of information at any time. You’re really saying
“I think there are too many quantum states.”
2. This can’t be tested!
Many-worlds is just QM without a collapse postulate
or hidden variables. It’s tested every time we observe
interference. If you have an alternative with explicit
collapses or hidden variables, we can test that!
Reasonable questions for Many-Worlds
1. How do classical worlds emerge?
The “preferred basis problem.” Roughly, the answer
is because interactions are local in space, allowing
some configurations to be robust and not others.
2. Why are probabilities given by the square of the
wave function?
For that matter, why are there probabilities
at all? The theory is completely deterministic.
“Despite the unrivaled empirical success of quantum
theory, the very suggestion that it may be literally true
as a description of nature is still greeted with cynicism,
incomprehension, and even anger.”
- David Deutsch

Weitere ähnliche Inhalte

Was ist angesagt?

Introduction to Special theory of relativity
Introduction to Special theory of relativityIntroduction to Special theory of relativity
Introduction to Special theory of relativityROHIT PANJABI
 
Ch28 special relativity 3 05 2013
Ch28  special relativity   3 05 2013Ch28  special relativity   3 05 2013
Ch28 special relativity 3 05 2013Majoro
 
special relativity
special relativityspecial relativity
special relativitypraveens
 
Physics 2 (Modern Physics)
Physics 2 (Modern Physics)Physics 2 (Modern Physics)
Physics 2 (Modern Physics)Czarina Nedamo
 
Introduction to the General Theory of Relativity
Introduction to the General Theory of RelativityIntroduction to the General Theory of Relativity
Introduction to the General Theory of RelativityArpan Saha
 
History of Quantum Mechanics
History of Quantum MechanicsHistory of Quantum Mechanics
History of Quantum MechanicsChad Orzel
 
Letting Go of Spacetime
Letting Go of SpacetimeLetting Go of Spacetime
Letting Go of SpacetimeSean Carroll
 
Relativity by Albert einstein
Relativity by Albert einsteinRelativity by Albert einstein
Relativity by Albert einsteinJohn Rovy LuCena
 
Quantum Mechanics Presentation
Quantum Mechanics PresentationQuantum Mechanics Presentation
Quantum Mechanics PresentationJasmine Wang
 
The black body radiation Junaid khan
The black body radiation Junaid khanThe black body radiation Junaid khan
The black body radiation Junaid khanJunaid khan
 
Einstein's theory of general relativity
Einstein's theory of general relativityEinstein's theory of general relativity
Einstein's theory of general relativitySmithDaisy
 
Gravitational Lensing.pptx
Gravitational Lensing.pptxGravitational Lensing.pptx
Gravitational Lensing.pptxShahinPK1
 
General theory of relativity
General theory of relativity General theory of relativity
General theory of relativity jade carmena
 
What We (Don't) Know About the Beginning of the Universe
What We (Don't) Know About the Beginning of the UniverseWhat We (Don't) Know About the Beginning of the Universe
What We (Don't) Know About the Beginning of the UniverseSean Carroll
 
General Relativity and Cosmology
General Relativity and CosmologyGeneral Relativity and Cosmology
General Relativity and CosmologyPratik Tarafdar
 
Purpose and the Universe
Purpose and the UniversePurpose and the Universe
Purpose and the UniverseSean Carroll
 
Ph 101-7 WAVE PARTICLES
Ph 101-7 WAVE PARTICLES Ph 101-7 WAVE PARTICLES
Ph 101-7 WAVE PARTICLES Chandan Singh
 

Was ist angesagt? (20)

Introduction to Special theory of relativity
Introduction to Special theory of relativityIntroduction to Special theory of relativity
Introduction to Special theory of relativity
 
Ch28 special relativity 3 05 2013
Ch28  special relativity   3 05 2013Ch28  special relativity   3 05 2013
Ch28 special relativity 3 05 2013
 
special relativity
special relativityspecial relativity
special relativity
 
Physics 2 (Modern Physics)
Physics 2 (Modern Physics)Physics 2 (Modern Physics)
Physics 2 (Modern Physics)
 
Introduction to the General Theory of Relativity
Introduction to the General Theory of RelativityIntroduction to the General Theory of Relativity
Introduction to the General Theory of Relativity
 
History of Quantum Mechanics
History of Quantum MechanicsHistory of Quantum Mechanics
History of Quantum Mechanics
 
Letting Go of Spacetime
Letting Go of SpacetimeLetting Go of Spacetime
Letting Go of Spacetime
 
Relativity by Albert einstein
Relativity by Albert einsteinRelativity by Albert einstein
Relativity by Albert einstein
 
Quantum Mechanics Presentation
Quantum Mechanics PresentationQuantum Mechanics Presentation
Quantum Mechanics Presentation
 
The black body radiation Junaid khan
The black body radiation Junaid khanThe black body radiation Junaid khan
The black body radiation Junaid khan
 
Einstein's theory of general relativity
Einstein's theory of general relativityEinstein's theory of general relativity
Einstein's theory of general relativity
 
Gravitational Lensing.pptx
Gravitational Lensing.pptxGravitational Lensing.pptx
Gravitational Lensing.pptx
 
Theory of relativity
Theory of relativityTheory of relativity
Theory of relativity
 
General theory of relativity
General theory of relativity General theory of relativity
General theory of relativity
 
What We (Don't) Know About the Beginning of the Universe
What We (Don't) Know About the Beginning of the UniverseWhat We (Don't) Know About the Beginning of the Universe
What We (Don't) Know About the Beginning of the Universe
 
General Relativity and Cosmology
General Relativity and CosmologyGeneral Relativity and Cosmology
General Relativity and Cosmology
 
Purpose and the Universe
Purpose and the UniversePurpose and the Universe
Purpose and the Universe
 
Quantum theory ppt
Quantum theory ppt Quantum theory ppt
Quantum theory ppt
 
Ph 101-7 WAVE PARTICLES
Ph 101-7 WAVE PARTICLES Ph 101-7 WAVE PARTICLES
Ph 101-7 WAVE PARTICLES
 
Spacetime
SpacetimeSpacetime
Spacetime
 

Andere mochten auch

Quantum Field Theory and the Limits of Knowledge
Quantum Field Theory and the Limits of KnowledgeQuantum Field Theory and the Limits of Knowledge
Quantum Field Theory and the Limits of KnowledgeSean Carroll
 
Setting Time Aright
Setting Time ArightSetting Time Aright
Setting Time ArightSean Carroll
 
5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanicsSolo Hermelin
 
Aurelian Isar - Decoherence And Transition From Quantum To Classical In Open ...
Aurelian Isar - Decoherence And Transition From Quantum To Classical In Open ...Aurelian Isar - Decoherence And Transition From Quantum To Classical In Open ...
Aurelian Isar - Decoherence And Transition From Quantum To Classical In Open ...SEENET-MTP
 
Quantum Information Technology
Quantum Information TechnologyQuantum Information Technology
Quantum Information TechnologyFenny Thakrar
 
Quantum mechanics
Quantum mechanics Quantum mechanics
Quantum mechanics Kumar
 
Concepts and Problems in Quantum Mechanics, Lecture-II By Manmohan Dash
Concepts and Problems in Quantum Mechanics, Lecture-II By Manmohan DashConcepts and Problems in Quantum Mechanics, Lecture-II By Manmohan Dash
Concepts and Problems in Quantum Mechanics, Lecture-II By Manmohan DashManmohan Dash
 
Concepts and problems in Quantum Mechanics. Lecture-I
Concepts and problems in Quantum Mechanics. Lecture-IConcepts and problems in Quantum Mechanics. Lecture-I
Concepts and problems in Quantum Mechanics. Lecture-IManmohan Dash
 
molecular mechanics and quantum mechnics
molecular mechanics and quantum mechnicsmolecular mechanics and quantum mechnics
molecular mechanics and quantum mechnicsRAKESH JAGTAP
 
TEDx Manchester: AI & The Future of Work
TEDx Manchester: AI & The Future of WorkTEDx Manchester: AI & The Future of Work
TEDx Manchester: AI & The Future of WorkVolker Hirsch
 
Water molecules2
Water molecules2Water molecules2
Water molecules2gary6h
 
Can we extract a mind from a plastic-embedded brain? - Kenneth Hayworth - H+ ...
Can we extract a mind from a plastic-embedded brain? - Kenneth Hayworth - H+ ...Can we extract a mind from a plastic-embedded brain? - Kenneth Hayworth - H+ ...
Can we extract a mind from a plastic-embedded brain? - Kenneth Hayworth - H+ ...Humanity Plus
 
Methods of Preventing Decoherence in Quantum Bits
Methods of Preventing Decoherence in Quantum BitsMethods of Preventing Decoherence in Quantum Bits
Methods of Preventing Decoherence in Quantum BitsDurham Abric
 
Superconducting Quantum Circuits That Learn - Geordie Rose - H+ Summit @ Harvard
Superconducting Quantum Circuits That Learn - Geordie Rose - H+ Summit @ HarvardSuperconducting Quantum Circuits That Learn - Geordie Rose - H+ Summit @ Harvard
Superconducting Quantum Circuits That Learn - Geordie Rose - H+ Summit @ HarvardHumanity Plus
 
Towards the Physics of Consciousness
Towards the Physics of ConsciousnessTowards the Physics of Consciousness
Towards the Physics of ConsciousnessIstvan Dienes
 

Andere mochten auch (20)

Quantum Field Theory and the Limits of Knowledge
Quantum Field Theory and the Limits of KnowledgeQuantum Field Theory and the Limits of Knowledge
Quantum Field Theory and the Limits of Knowledge
 
Setting Time Aright
Setting Time ArightSetting Time Aright
Setting Time Aright
 
5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
 
Aurelian Isar - Decoherence And Transition From Quantum To Classical In Open ...
Aurelian Isar - Decoherence And Transition From Quantum To Classical In Open ...Aurelian Isar - Decoherence And Transition From Quantum To Classical In Open ...
Aurelian Isar - Decoherence And Transition From Quantum To Classical In Open ...
 
Quantum Information Technology
Quantum Information TechnologyQuantum Information Technology
Quantum Information Technology
 
Quantum mechanics
Quantum mechanics Quantum mechanics
Quantum mechanics
 
Concepts and Problems in Quantum Mechanics, Lecture-II By Manmohan Dash
Concepts and Problems in Quantum Mechanics, Lecture-II By Manmohan DashConcepts and Problems in Quantum Mechanics, Lecture-II By Manmohan Dash
Concepts and Problems in Quantum Mechanics, Lecture-II By Manmohan Dash
 
Concepts and problems in Quantum Mechanics. Lecture-I
Concepts and problems in Quantum Mechanics. Lecture-IConcepts and problems in Quantum Mechanics. Lecture-I
Concepts and problems in Quantum Mechanics. Lecture-I
 
molecular mechanics and quantum mechnics
molecular mechanics and quantum mechnicsmolecular mechanics and quantum mechnics
molecular mechanics and quantum mechnics
 
Part III - Quantum Mechanics
Part III - Quantum MechanicsPart III - Quantum Mechanics
Part III - Quantum Mechanics
 
Molecular modelling
Molecular modelling Molecular modelling
Molecular modelling
 
TEDx Manchester: AI & The Future of Work
TEDx Manchester: AI & The Future of WorkTEDx Manchester: AI & The Future of Work
TEDx Manchester: AI & The Future of Work
 
Dr. Amit Goswami Slideshare presentation at 2014 Conference for Consciousness...
Dr. Amit Goswami Slideshare presentation at 2014 Conference for Consciousness...Dr. Amit Goswami Slideshare presentation at 2014 Conference for Consciousness...
Dr. Amit Goswami Slideshare presentation at 2014 Conference for Consciousness...
 
Water molecules2
Water molecules2Water molecules2
Water molecules2
 
Can we extract a mind from a plastic-embedded brain? - Kenneth Hayworth - H+ ...
Can we extract a mind from a plastic-embedded brain? - Kenneth Hayworth - H+ ...Can we extract a mind from a plastic-embedded brain? - Kenneth Hayworth - H+ ...
Can we extract a mind from a plastic-embedded brain? - Kenneth Hayworth - H+ ...
 
Methods of Preventing Decoherence in Quantum Bits
Methods of Preventing Decoherence in Quantum BitsMethods of Preventing Decoherence in Quantum Bits
Methods of Preventing Decoherence in Quantum Bits
 
Superconducting Quantum Circuits That Learn - Geordie Rose - H+ Summit @ Harvard
Superconducting Quantum Circuits That Learn - Geordie Rose - H+ Summit @ HarvardSuperconducting Quantum Circuits That Learn - Geordie Rose - H+ Summit @ Harvard
Superconducting Quantum Circuits That Learn - Geordie Rose - H+ Summit @ Harvard
 
Quantum computers attack
Quantum computers attackQuantum computers attack
Quantum computers attack
 
Towards the Physics of Consciousness
Towards the Physics of ConsciousnessTowards the Physics of Consciousness
Towards the Physics of Consciousness
 
Thesis defense
Thesis defenseThesis defense
Thesis defense
 

Ähnlich wie The Many Worlds of Quantum Mechanics

Quantum Psychology
Quantum PsychologyQuantum Psychology
Quantum PsychologyAndrew Lang
 
Quantum Theory And Reality
Quantum  Theory And  RealityQuantum  Theory And  Reality
Quantum Theory And Realityzakir2012
 
The almost impossible worlds in quantum information
The almost impossible worlds in quantum informationThe almost impossible worlds in quantum information
The almost impossible worlds in quantum informationVasil Penchev
 
Einsteinin Trouble
Einsteinin TroubleEinsteinin Trouble
Einsteinin TroubleMarkClemens
 
Quantum Information
Quantum Information Quantum Information
Quantum Information Dario Scotto
 
Schrodinger cat (Copenhagen & Many-worlds interpretation + phase-damping)
Schrodinger cat (Copenhagen & Many-worlds interpretation + phase-damping)Schrodinger cat (Copenhagen & Many-worlds interpretation + phase-damping)
Schrodinger cat (Copenhagen & Many-worlds interpretation + phase-damping)Gabriel O'Brien
 
The multi universe theory
The multi universe theoryThe multi universe theory
The multi universe theorystudent
 
Quantum Physics for Dogs: Many Worlds, Many Treats?
Quantum Physics for Dogs: Many Worlds, Many Treats?Quantum Physics for Dogs: Many Worlds, Many Treats?
Quantum Physics for Dogs: Many Worlds, Many Treats?Chad Orzel
 
#scichallenge2017 #SciChallenge2017 MULTIVERSE
 #scichallenge2017 #SciChallenge2017  MULTIVERSE #scichallenge2017 #SciChallenge2017  MULTIVERSE
#scichallenge2017 #SciChallenge2017 MULTIVERSEGala Okorn
 
Quantum Implications 07262011
Quantum Implications 07262011Quantum Implications 07262011
Quantum Implications 07262011Gary Stilwell
 
General relativity vs. quantum mechanics issues of foundations uv 1_oct2018
General relativity vs. quantum mechanics issues of foundations uv 1_oct2018General relativity vs. quantum mechanics issues of foundations uv 1_oct2018
General relativity vs. quantum mechanics issues of foundations uv 1_oct2018SOCIEDAD JULIO GARAVITO
 
What Every Dog Should Know About Quantum Physics
What Every Dog Should Know About Quantum PhysicsWhat Every Dog Should Know About Quantum Physics
What Every Dog Should Know About Quantum PhysicsChad Orzel
 
Transactional Boskone_0402.pptx
Transactional Boskone_0402.pptxTransactional Boskone_0402.pptx
Transactional Boskone_0402.pptxPaula323423
 
Why we have become the 5th ape ?
Why  we have become the 5th ape ? Why  we have become the 5th ape ?
Why we have become the 5th ape ? einsteinrelativity
 
How the universe appeared form nothing
How the universe appeared form nothingHow the universe appeared form nothing
How the universe appeared form nothingavturchin
 
“MISSING HIGGS BIGBANG & PARTICLE STUDY”
“MISSING HIGGS BIGBANG & PARTICLE STUDY”“MISSING HIGGS BIGBANG & PARTICLE STUDY”
“MISSING HIGGS BIGBANG & PARTICLE STUDY”Pushkar Purohit
 

Ähnlich wie The Many Worlds of Quantum Mechanics (20)

Quantum Psychology
Quantum PsychologyQuantum Psychology
Quantum Psychology
 
Quantum Theory And Reality
Quantum  Theory And  RealityQuantum  Theory And  Reality
Quantum Theory And Reality
 
The almost impossible worlds in quantum information
The almost impossible worlds in quantum informationThe almost impossible worlds in quantum information
The almost impossible worlds in quantum information
 
Einsteinin Trouble
Einsteinin TroubleEinsteinin Trouble
Einsteinin Trouble
 
Quantum Information
Quantum Information Quantum Information
Quantum Information
 
Schrodinger cat (Copenhagen & Many-worlds interpretation + phase-damping)
Schrodinger cat (Copenhagen & Many-worlds interpretation + phase-damping)Schrodinger cat (Copenhagen & Many-worlds interpretation + phase-damping)
Schrodinger cat (Copenhagen & Many-worlds interpretation + phase-damping)
 
The multi universe theory
The multi universe theoryThe multi universe theory
The multi universe theory
 
Qunatum computing
Qunatum computing Qunatum computing
Qunatum computing
 
Quantum Physics for Dogs: Many Worlds, Many Treats?
Quantum Physics for Dogs: Many Worlds, Many Treats?Quantum Physics for Dogs: Many Worlds, Many Treats?
Quantum Physics for Dogs: Many Worlds, Many Treats?
 
Quantum Experiments
Quantum ExperimentsQuantum Experiments
Quantum Experiments
 
Multiverse
MultiverseMultiverse
Multiverse
 
#scichallenge2017 #SciChallenge2017 MULTIVERSE
 #scichallenge2017 #SciChallenge2017  MULTIVERSE #scichallenge2017 #SciChallenge2017  MULTIVERSE
#scichallenge2017 #SciChallenge2017 MULTIVERSE
 
Quantum Implications 07262011
Quantum Implications 07262011Quantum Implications 07262011
Quantum Implications 07262011
 
General relativity vs. quantum mechanics issues of foundations uv 1_oct2018
General relativity vs. quantum mechanics issues of foundations uv 1_oct2018General relativity vs. quantum mechanics issues of foundations uv 1_oct2018
General relativity vs. quantum mechanics issues of foundations uv 1_oct2018
 
Qm Interpretations
Qm InterpretationsQm Interpretations
Qm Interpretations
 
What Every Dog Should Know About Quantum Physics
What Every Dog Should Know About Quantum PhysicsWhat Every Dog Should Know About Quantum Physics
What Every Dog Should Know About Quantum Physics
 
Transactional Boskone_0402.pptx
Transactional Boskone_0402.pptxTransactional Boskone_0402.pptx
Transactional Boskone_0402.pptx
 
Why we have become the 5th ape ?
Why  we have become the 5th ape ? Why  we have become the 5th ape ?
Why we have become the 5th ape ?
 
How the universe appeared form nothing
How the universe appeared form nothingHow the universe appeared form nothing
How the universe appeared form nothing
 
“MISSING HIGGS BIGBANG & PARTICLE STUDY”
“MISSING HIGGS BIGBANG & PARTICLE STUDY”“MISSING HIGGS BIGBANG & PARTICLE STUDY”
“MISSING HIGGS BIGBANG & PARTICLE STUDY”
 

Kürzlich hochgeladen

Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 

Kürzlich hochgeladen (20)

Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 

The Many Worlds of Quantum Mechanics

  • 1. The Many Worlds of Quantum Mechanics Sean Carroll http://preposterousuniverse.com/
  • 2. Before there was quantum mechanics: classical (Newtonian) mechanics Classical mechanics describes the world in terms of: • Space • Time • Stuff • Motion • Laws of physics (e.g. forces, F = ma)
  • 3. Examples • Billiard balls, pendulums, inclined planes, spinning tops… • Moons, planets, rockets. • Air, water, stone, metal – solids and fluids. • Electric and magnetic fields. • Spacetime itself (general relativity).
  • 4. A clockwork universe If we knew the complete state of the universe at any one moment; and knew the laws of physics exactly; and had infinite computing power; we would know the state of the universe at every other moment. State of the universe = position and velocity of every particle/field “Laplace’s Demon”
  • 5. Quantum Mechanics: early hints, dawn of the 20th century Max Planck: blackbody radiation Albert Einstein: photons Henri Becquerel, Marie & Pierre Curie: radioactivity
  • 6. Niels Bohr: electrons in atoms can’t be located just anywhere; they only have certain allowed orbits
  • 7. 1920’s: quantum mechanics becomes a full-blown theory Werner Heisenberg: “matrix mechanics” Paul Dirac: Heisenberg’s and Schrödinger’s formalisms are equivalent Erwin Schrödinger: “wave mechanics” Newton’s Laws are replaced by the Schrödinger Equation for the quantum state:
  • 8. Quantum mechanics: the secret What we observe is much less than what actually exists.
  • 9. What is the “state” of a system? Classical mechanics: position and velocity. Quantum mechanics: the wave function. Position and velocity are what you can observe. But until you measure them, they don’t exist. Only the wave function does. The wave function tells you the probability of measuring different values of position or velocity.
  • 10. Electrons in atoms Cartoon: circling in orbits Reality: a static wave function
  • 11. Simple example: Miss Kitty, a two-state system (“qubit”) When we look for Miss Kitty, we only ever find her under the table, or on the sofa. Her wave function might give us a 50% chance of finding her under the table, 50% of finding her on the sofa.
  • 12. Classically: Miss Kitty is either under the table or on the sofa, we just don’t know which one. Quantum mechanics: she is actually in a superposition of both possibilities, until we look. Reason why: interference.
  • 13. Interference Imagine that we see Miss Kitty stop by either her food bowl or her scratching post on the way to the table or sofa. 50% 50% 50% 50% Either way, we find a 50/50 chance to see her on the table or the sofa at the end of her journey.
  • 14. But sometimes we don’t watch. She goes by either her food bowl or scratching post, we don’t know which. 0% 100% In that case, it turns out we always find her ending up on the sofa, never under the table! What’s going on?
  • 15. • For every possible observable outcome, the wave function has a value. wave function The wave function tells us the probability, but it’s not equal to the probability. position (or other observable) • Wave functions can be positive or negative *. Different contributions to the wave function can therefore either reinforce, or cancel each other out. • Probability of observing an outcome = (wave function) 2. * More precisely: wave functions are complex numbers, ψ = a + ib, and the probability is given by |ψ|2 = a2 + b2.
  • 16. 1926
  • 17. So if the wave function for Miss Kitty to be under the table is 0.71, the probability of finding her there is (0.71)2 = 0.50, or 50%. 0.71 0.71 But, crucially, if the wave function had been -0.71, we would have the same probability, since (-0.71)2 = 0.50 also. That’s what happened in our interference experiment.
  • 18. (0.71)2 = 0.5 (-0.71)2 = 0.5 (0.71)2 = 0.5 (0.71)2 = 0.5 ½(.71-.71)2 =0 ½(.71+.71)2 =1 Interference is at the heart of quantum mechanics.
  • 19. The Measurement Problem What actually happens when we observe properties of a quantum-mechanical system? Why should “measurement” or “observation” play a crucial role in a physical theory at all? Thus, “interpretations of quantum mechanics.”
  • 20. The Copenhagen (textbook) interpretation of quantum mechanics • The “quantum realm” is distinct from the macroscopic “classical realm” of observers. • Observations occur when the two realms interact. • Unobserved wave functions evolve smoothly, deterministically, via the Schrödinger equation. • Observed wave functions collapse instantly onto possible measurement outcomes. • After collapse, the new quantum state is concentrated on that outcome.
  • 21. In Copenhagen, our observation of Miss Kitty along her path collapsed her wave function onto “scratching post” or “food bowl,” eliminating future interference.
  • 22. A more complicated world Imagine we have both a cat and a dog: We can observe Ms. Kitty in one of two possible states: (on the sofa) or (under the table). We can also observe Mr. Dog in one of two possible states: (in the yard) or (in the doghouse). Classically, we describe the systems separately. In quantum mechanics, we describe them both at once.
  • 23. Entanglement There is one wave function for the combined cat+dog system. It has four possible “basis states”: sofa (sofa, yard) = sofa table (sofa, doghouse) = yard doghouse sofa (table, yard) = yard doghouse table yard doghouse table sofa (table, doghouse) = table yard doghouse
  • 24. Consider a state: ½(sofa, yard) + ½(sofa, doghouse) (cat, dog) = + ½(table, yard) + ½(table, doghouse) Each specific outcome has a probability (1/2)2 = 1/4 = 25% So Ms. Kitty has a total probability for (sofa) of 50%, likewise for (table); similarly for Mr. Dog. Knowing about Ms. Kitty tells us nothing about Mr. Dog, and vice-versa.
  • 25. Now instead, consider a state: (cat, dog) = 0.71(sofa, yard) + 0.71(table, doghouse) Each specific outcome has a probability (0.71)2 = 0.50 = 50% Again, Ms. Kitty has a total probability for (sofa) of 50%, likewise for (table); similarly for Mr. Dog. But now, if we observe Ms. Kitty under the table, we know Mr. Dog is in the yard with 100% probability – without even looking at him!
  • 26. sofa (sofa, yard) = yard doghouse sofa (table, yard) = sofa table (sofa, doghouse) = yard doghouse table yard doghouse table sofa (table, doghouse) = table yard doghouse Entanglement establishes correlations between different possible measurement outcomes.
  • 27. Decoherence Consider again an entangled state of Ms. Kitty and Mr. Dog: (cat, dog) = 0.71(sofa, yard) + 0.71(table, doghouse) But imagine we know nothing about Mr. Dog (and won’t). How do we describe the state of Ms. Kitty by herself? You might guess: (cat) = 0.71(sofa) + 0.71(table) But that turns out to be wrong.
  • 28. Entanglement can prevent interference With no entanglement, different contributions to Ms. Kitty’s path lead to the same final states (sofa or table): Since final states are the same, they can add or subtract (and thus interfere): via post: (cat) = 0.5(sofa) + 0.5(table) via bowl: (cat) = -0.5(sofa) + 0.5(table) total: (cat) = 0(sofa) + 1.0(table)
  • 29. Now imagine Ms. Kitty’s path becomes entangled with the state of Mr. Dog. (yard) (doghouse) Now the final states of the wave function are not the same (Mr. Dog and Ms. Kitty are entangled), and interference fails: via post: (cat, dog) = 0.5(sofa, yard) + 0.5(table, yard) via bowl: (cat, dog) = -0.5(sofa, doghouse) + 0.5(table, doghouse) total: (cat, dog) = 0.5(sofa, yard) + 0.5(table, yard) - 0.5(sofa, doghouse) + 0.5(table, doghouse)
  • 30. Upshot: when a quantum system becomes entangled with the outside world, different possibilities decohere and can no longer interfere with each other. If a system becomes entangled with a messy, permanent, external environment, its different possibilities will never interfere with each other, nor affect each other in any way. It’s as if they have become part of separate worlds.
  • 31. Many-Worlds Interpretation of Quantum Mechanics Hugh Everett, 1957 • There is no “classical realm.” Everything is quantum, including you, the observer. • Wave functions never “collapse.” Only smooth, deterministic evolution. • Apparent collapse due to entanglement/decoherence. • Unobserved possibilities – other “worlds” – still exist.
  • 32. Schrödinger’s Cat: Copenhagen version Ms. Kitty is in a superposition of (awake) and (asleep), then observed.
  • 33. Schrödinger’s Cat: Many-Worlds version Now we have Ms. Kitty, an observer, and an environment.
  • 34. Silly objections to Many-Worlds 1. That’s too many universes! The number of possible quantum states remains fixed. The wave function contains the same amount of information at any time. You’re really saying “I think there are too many quantum states.” 2. This can’t be tested! Many-worlds is just QM without a collapse postulate or hidden variables. It’s tested every time we observe interference. If you have an alternative with explicit collapses or hidden variables, we can test that!
  • 35. Reasonable questions for Many-Worlds 1. How do classical worlds emerge? The “preferred basis problem.” Roughly, the answer is because interactions are local in space, allowing some configurations to be robust and not others. 2. Why are probabilities given by the square of the wave function? For that matter, why are there probabilities at all? The theory is completely deterministic.
  • 36. “Despite the unrivaled empirical success of quantum theory, the very suggestion that it may be literally true as a description of nature is still greeted with cynicism, incomprehension, and even anger.” - David Deutsch

Hinweis der Redaktion

  1. There is no such thing as “position” or “velocity”!
  2. Not just incomplete knowledge!