Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.
Warm up <ul><li>Each person solve their problem </li></ul><ul><li>Draw some conclusions about which solutions are equal </...
Sheets Matrices & Geometric Transformations <ul><li>Writing Directions (1 page) </li></ul><ul><li>Direction Master (Transf...
Finding the determinant of a matrix <ul><li>The determinate of a matrix is a  number   associated with the matrix. </li></...
To find the determinant of a 2 x 2 matrix Example = (3)(2) - (4)(-1) = 6 + 4 = 10 3  -1 4  2
Finding the determinant of a 3 x 3 matrix using “expansion by minors” <ul><li>5  -1 </li></ul><ul><li>-2  0  3 </li></ul><...
Finding the determinant of a 3 x 3 matrix using “expansion by minors” <ul><li>5  -1 </li></ul><ul><li>-2  0  3 </li></ul><...
Finding the determinant of a 3 x 3 matrix using “expansion by minors” = 3((0)(1)-(4)(3)) – 5((-2)(1)-(1)(3)) +-1((-2)(4)-(...
Finding the determinant of a 3 x 3 matrix using “diagonals” 3 -2 1 5 0 4 = (3 ·0 ·1 + 5 ·3 ·1 + -1 ·-2 ·4) - (-1 ·0 ·1 + 3...
Nächste SlideShare
Wird geladen in …5
×

Determinants

459 Aufrufe

Veröffentlicht am

Veröffentlicht in: Bildung
  • Als Erste(r) kommentieren

  • Gehören Sie zu den Ersten, denen das gefällt!

Determinants

  1. 1. Warm up <ul><li>Each person solve their problem </li></ul><ul><li>Draw some conclusions about which solutions are equal </li></ul><ul><li>Generalize your conclusions </li></ul>
  2. 2. Sheets Matrices & Geometric Transformations <ul><li>Writing Directions (1 page) </li></ul><ul><li>Direction Master (Transformations 2) (1 page) </li></ul><ul><li>Matrices Transformations 3 (2 page) </li></ul><ul><li>Areas of Transformations (1 page) </li></ul><ul><li>The Shoelace Algorithm (3 page) </li></ul><ul><li>The Mall Problem (2 page) </li></ul><ul><li>Operation Practice (1 page) </li></ul>
  3. 3. Finding the determinant of a matrix <ul><li>The determinate of a matrix is a number associated with the matrix. </li></ul><ul><li>The determinate of matrix A is denoted by | A | </li></ul><ul><li>You can only find the determinate of a square matrix </li></ul>
  4. 4. To find the determinant of a 2 x 2 matrix Example = (3)(2) - (4)(-1) = 6 + 4 = 10 3 -1 4 2
  5. 5. Finding the determinant of a 3 x 3 matrix using “expansion by minors” <ul><li>5 -1 </li></ul><ul><li>-2 0 3 </li></ul><ul><li>1 4 1 </li></ul>= 3 0 3 4 1
  6. 6. Finding the determinant of a 3 x 3 matrix using “expansion by minors” <ul><li>5 -1 </li></ul><ul><li>-2 0 3 </li></ul><ul><li>1 4 1 </li></ul>= 3 0 3 4 1 - 5 -2 3 1 1
  7. 7. Finding the determinant of a 3 x 3 matrix using “expansion by minors” = 3((0)(1)-(4)(3)) – 5((-2)(1)-(1)(3)) +-1((-2)(4)-(1)(0)) = 3(-12) – 5(-5) + -1(-8) = -36+25+8 = -3 <ul><li>5 -1 </li></ul><ul><li>-2 0 3 </li></ul><ul><li>1 4 1 </li></ul>= 3 0 3 4 1 - 5 -2 3 1 1 + -1 -2 0 1 4 Note: Signs!
  8. 8. Finding the determinant of a 3 x 3 matrix using “diagonals” 3 -2 1 5 0 4 = (3 ·0 ·1 + 5 ·3 ·1 + -1 ·-2 ·4) - (-1 ·0 ·1 + 3 ·3 ·4 + 5 ·-2 ·1) = (0+15+8)-(0+36-10) =(23)-(26) = -3 <ul><li>5 -1 </li></ul><ul><li>-2 0 3 </li></ul><ul><li>1 4 1 </li></ul>

×