SlideShare a Scribd company logo
1 of 18
Download to read offline
Tugas Matematika
Integral Hal 49- 59
Disusun Oleh :
POLITEKNIK MANUFAKTUR NEGERI BANGKA BELITUNG
TAHUN AJARAN 2014/2015
Industri Air Kantung Sungailiat 33211
Bangka Induk, Propinsi Kepulauan Bangka Belitung
Telp : +62717 93586
Fax : +6271793585 email : polman@polman-babel.ac.id
http://www.polman-babel.ac.id
Kelompok 7 :
- Sarman
- Fery Ardiansyah
- Rakam Tiano
- Mirza ramadhan
Dua aturan integrasi berguna
Latihan 7.7
Cari integral tak tentu yang paling umum..
1. 3π‘₯4
βˆ’ 5π‘₯3
βˆ’ 21π‘₯2
+ 36π‘₯ βˆ’ 10 𝑑π‘₯
2. 3π‘₯2
βˆ’ 4π‘π‘œπ‘  2π‘₯ 𝑑π‘₯
3.
8
𝑑5
+
5
𝑑
𝑑𝑑
4.
1
25 βˆ’ πœƒ2
+
1
100 + πœƒ2
π‘‘πœƒ
5.
𝑒5π‘₯
βˆ’ 𝑒4π‘₯
𝑒2π‘₯
𝑑π‘₯
6.
π‘₯7
+ π‘₯4
π‘₯5
𝑑π‘₯
7.
π‘₯7
+ π‘₯4
π‘₯5
𝑑π‘₯
8. π‘₯2
+ 4 2
𝑑π‘₯ = π‘₯4
9.
7
𝑑
3 𝑑𝑑
10.
20 + π‘₯
π‘₯
𝑑π‘₯
Penyelesaian :
1. 3π‘₯4
βˆ’ 5π‘₯3
βˆ’ 21π‘₯2
+ 36π‘₯ βˆ’ 10 𝑑π‘₯ = 3π‘₯4
𝑑π‘₯ βˆ’ 5π‘₯3
𝑑π‘₯ βˆ’ 21π‘₯2
𝑑π‘₯ +
36π‘₯ 𝑑π‘₯ βˆ’ 10 𝑑π‘₯ = 3 π‘₯4
𝑑π‘₯ βˆ’ 5 π‘₯3
𝑑π‘₯ βˆ’ 21 π‘₯2
𝑑π‘₯ + 36 π‘₯ 𝑑π‘₯ βˆ’
10 𝑑π‘₯ = 3
π‘₯5
5
βˆ’ 5
π‘₯4
4
βˆ’ 21
π‘₯3
3
+ 36
π‘₯2
2
βˆ’ 10π‘₯ + 𝑐 =
3
5
π‘₯5
βˆ’
5
4
π‘₯4
βˆ’ 7π‘₯3
+
18π‘₯2
βˆ’ 10π‘₯ + 𝑐
2. 3π‘₯2
βˆ’ 4π‘π‘œπ‘  2π‘₯ 𝑑π‘₯ = 3π‘₯2
𝑑π‘₯ βˆ’ 4 π‘π‘œπ‘  2π‘₯ 𝑑π‘₯ = 3 π‘₯2
𝑑π‘₯ βˆ’ 4 π‘π‘œπ‘  2π‘₯ 𝑑π‘₯ =
3
π‘₯3
3
βˆ’ 4
1
2
𝑠𝑖𝑛2π‘₯ + 𝑐 = π‘₯3
βˆ’ 2 sin 2π‘₯ + 𝑐
3.
8
𝑑5 +
5
𝑑
𝑑𝑑 =
8
𝑑5 𝑑π‘₯ +
5
𝑑
𝑑π‘₯ = 8 π‘‘βˆ’5
𝑑π‘₯ + 5
1
𝑑
𝑑π‘₯ = 8
π‘‘βˆ’4
βˆ’4
+ 5 𝑙𝑛 𝑑 + 𝑐 =
βˆ’2π‘‘βˆ’4
+ 5 𝑙𝑛 𝑑 + 𝑐
4.
1
25βˆ’πœƒ2
+
1
100+πœƒ2 π‘‘πœƒ =
1
25βˆ’πœƒ2
𝑑π‘₯ +
1
100+πœƒ2 𝑑π‘₯ =
1
52+πœƒ2
𝑑π‘₯ +
1
102+πœƒ2 𝑑π‘₯ =
π‘ π‘–π‘›βˆ’1 πœƒ
5
+
1
10
π‘‘π‘Žπ‘›βˆ’1 πœƒ
10
+ 𝑐
5.
𝑒5π‘₯ βˆ’π‘’4π‘₯
𝑒2π‘₯ 𝑑π‘₯ = 𝑒3π‘₯
βˆ’ 𝑒2π‘₯
𝑑π‘₯ = 𝑒3π‘₯
𝑑π‘₯ βˆ’ 𝑒2π‘₯
𝑑π‘₯ =
1
3
𝑒3π‘₯
βˆ’
1
2
𝑒2π‘₯
+ 𝑐
6.
π‘₯7+π‘₯4
π‘₯5 𝑑π‘₯ =
π‘₯7
π‘₯5 𝑑π‘₯ +
π‘₯4
π‘₯5 𝑑π‘₯ =
7.
1
𝑒6+π‘₯2 𝑑π‘₯ = 𝑒6
+ π‘₯2
𝑑π‘₯ = 𝑙𝑛 𝑒6
+ π‘₯2
+ 𝑐
8. π‘₯2
+ 4 2
𝑑π‘₯ = π‘₯4
+ 16 + 2. π‘₯2
. 4 𝑑π‘₯ = π‘₯4
+ 8π‘₯2
+ 16 𝑑π‘₯ =
1
4+1
π‘₯4+1
+
8
2+1
π‘₯2+1
+ 16π‘₯ + 𝑐 =
1
5
π‘₯5
+
8
3
π‘₯3
+ 𝑐
9.
7
𝑑3 𝑑𝑑 = 7π‘‘βˆ’
1
3 𝑑𝑑 =
7
βˆ’
1
3
+1
π‘‘βˆ’
1
3
+1
+ 𝑐 =
7
2
3
𝑑
2
3 + 𝑐 =
21
2
𝑑
2
3 + 𝑐
10.
20+π‘₯
π‘₯
𝑑π‘₯ = 20 + π‘₯ π‘₯βˆ’
1
2 𝑑π‘₯ = 20π‘₯βˆ’
1
2 + π‘₯
1
2 𝑑π‘₯ =
20
βˆ’
1
2
+1
π‘₯βˆ’
1
2
+1
+
1
1
2
+1
π‘₯
1
2
+1
+ 𝑐 =
20
1
2
π‘₯
1
2 +
1
3
2
π‘₯
3
2 + 𝑐 = 40π‘₯
1
2 +
2
3
π‘₯
3
2 + 𝑐
Integrasi dasar teknik
Integrasi dengan substitusi
Latihan 8.1
Gunakan integrasi dengan substitusi untuk menemukan integral tak tentu yang paling umum.
1. 3 π‘₯3
βˆ’ 5 4
π‘₯2
𝑑π‘₯
2. 𝑒 π‘₯4
π‘₯3
𝑑π‘₯
3.
𝑑
𝑑2 + 7
𝑑𝑑
4. π‘₯5
βˆ’ 3π‘₯
1
4 5π‘₯4
βˆ’ 3 𝑑π‘₯
5.
π‘₯3
βˆ’ 2π‘₯
π‘₯4 βˆ’ 4π‘₯2 + 5 4
𝑑π‘₯
6.
π‘₯3
βˆ’ 2π‘₯
π‘₯4 βˆ’ 4π‘₯2 + 5
𝑑π‘₯
7. cos 3π‘₯2
+ 1 𝑑π‘₯
8.
3π‘π‘œπ‘ 2
π‘₯(𝑠𝑖𝑛 π‘₯)
π‘₯
𝑑π‘₯
9.
𝑒2π‘₯
1 + 𝑒4π‘₯
𝑑π‘₯
10. 6𝑑2
𝑒 𝑑3βˆ’2
𝑑𝑑
PENYELESAIAN
1. 3 π‘₯3
βˆ’ 5 4
π‘₯2
𝑑π‘₯
u = x3
– 5 du = 3x2
dx
= 𝑒4
𝑑𝑒
=
1
5
𝑒5
+ 𝑐
=
(π‘₯3
βˆ’ 5)5
5
+ 𝑐
2. 𝑒 π‘₯4
π‘₯3
𝑑π‘₯
𝑒 = π‘₯4
= 𝑒 π‘₯4 1
4
. 4π‘₯3
𝑑π‘₯
=
1
4
𝑒 π‘₯3
4π‘₯3
𝑑π‘₯
=
1
4
𝑒 𝑒
𝑑𝑒
=
1
4
𝑒 𝑒
+ 𝑐
=
1
4
𝑒 π‘₯4
+ 𝑐
3.
𝑑
𝑑2 + 7
𝑑𝑑
𝑒 = 𝑑2
+ 7 𝑑𝑒 = 2𝑑 𝑑π‘₯
𝑑
𝑑2 + 7
𝑑𝑑
1
2
2𝑑
𝑑2 + 7
𝑑𝑑
1
2
2𝑑
𝑑2 + 7
𝑑𝑑
1
2
𝑑𝑒
𝑒
1
2
𝐼𝑛 𝑒 + 𝑐
1
2
𝐼𝑛 𝑑2
+ 7 + 𝑐
4. π‘₯5
βˆ’ 3π‘₯
1
4 5π‘₯4
βˆ’ 3 𝑑π‘₯
𝑒 = π‘₯5
βˆ’ 3π‘₯ 𝑑𝑒 = 5π‘₯4
βˆ’ 3 𝑑π‘₯
= 𝑒
1
4 𝑑𝑒
= 4𝑒
5
4 + 𝑐
= 4 π‘₯5
βˆ’ 3π‘₯
5
4 + 𝑐
5.
π‘₯3
βˆ’ 2π‘₯
π‘₯4 βˆ’ 4π‘₯2 + 5 4
𝑑π‘₯
𝑒 = π‘₯4
βˆ’ 4π‘₯2
+ 5 𝑑𝑒 = 4π‘₯3
βˆ’ 8π‘₯ 𝑑π‘₯
=
1
4
.
4 π‘₯3
βˆ’ 2π‘₯
𝑒4
𝑑π‘₯
=
1
4
𝑑𝑒
𝑒4
=
1
4
𝐼𝑛 𝑒 + 𝑐
=
1
4
𝐼𝑛 π‘₯4
βˆ’ 4π‘₯2
+ 5 + 𝑐
6.
π‘₯3
βˆ’ 2π‘₯
π‘₯4 βˆ’ 4π‘₯2 + 5
𝑑π‘₯
𝑒 = π‘₯4
βˆ’ 4π‘₯2
+ 5 𝑑𝑒 = 4π‘₯3
βˆ’ 8π‘₯ 𝑑π‘₯
= 4 π‘₯3
βˆ’ 2π‘₯
=
1
4
.
4(π‘₯3
βˆ’ 2π‘₯)
π‘₯4 βˆ’ 4π‘₯2 + 5
𝑑π‘₯
=
1
4
𝑑𝑒
𝑒
=
1
4
𝐼𝑛 𝑒 + 𝑐
=
1
4
𝐼𝑛 π‘₯4
βˆ’ 4π‘₯2
+ 5 + 𝑐
9.
𝑒2π‘₯
1 + 𝑒4π‘₯
𝑑π‘₯
=
𝑒2π‘₯
1 + 𝑒2π‘₯(2)
𝑑π‘₯
𝑒 = 1 + 𝑒2π‘₯
𝑑𝑒 = 2. 𝑒2π‘₯
𝑑π‘₯
=
1
2
.
2. 𝑒2π‘₯
1 + 𝑒2π‘₯(2)
=
1
2
𝑑𝑒
𝑒
=
1
2
𝐼𝑛 𝑒 𝑑π‘₯
=
1
2
𝐼𝑛 1 + 𝑒4π‘₯
+ 𝑐
10. 6𝑑2
𝑒 𝑑3βˆ’2
𝑑𝑑
𝑒 = 𝑑3
βˆ’ 2 𝑑𝑒 = 3𝑑2
𝑑𝑑
= 6𝑑2
𝑒 𝑑3βˆ’2
𝑑𝑑
= 2 3𝑑2
𝑒 𝑑3βˆ’2
𝑑𝑑
=
1
3
. 3 2 . 3𝑑2
. 𝑒 𝑑3βˆ’2
𝑑𝑑
=
1
3
6 𝑑𝑒. 𝑒 𝑒
=
1
3
𝑒 𝑒
. 6 𝑑𝑒
=
1
3
𝑒 𝑑3βˆ’2
. 6 + 𝑐
= 2𝑒 𝑑3βˆ’2
+ 𝑐
Integrasi dengan bagian
Latihan 8.2
Gunakan integrasi dengan bagian untuk menemukan integral tak tentu yang paling umum.
1. 2π‘₯.sin2x dx
2. π‘₯3
lnx dx
3. 𝑑𝑒 𝑑
dt
4. π‘₯ cos x dx
5. π‘π‘œπ‘‘βˆ’1
π‘₯ 𝑑π‘₯
6. π‘₯2
𝑒 π‘₯
𝑑π‘₯
7. 𝑀( 𝑀 βˆ’ 3)2
𝑑𝑀
8. π‘₯3
𝑖𝑛 4π‘₯ 𝑑π‘₯
9. 𝑑 (𝑑 + 5)βˆ’4
𝑑𝑑
10. π‘₯ π‘₯ + 2 . 𝑑π‘₯
PENYELESAIAN
1. 2π‘₯ sin 2π‘₯ 𝑑π‘₯
Misalnya :
u = 2x du = x
dv = sin 2x dx v= sin 2π‘₯𝑑π‘₯ = -
1
2
cos2x
𝑒. 𝑑𝑣 = 𝑒𝑣 – 𝑒. 𝑑𝑒
2π‘₯ sin 2π‘₯ 𝑑π‘₯ = (2x) (-
1
2
cos 2x ) - (βˆ’
1
2
cos 2x ) . 2x
= -
2
2
cos 2x +
1
2
cos 2x dx
= - x cos 2x +
1
2
.
1
2
sin 2x
= - x cos 2x +
1
2
. sin 2x + c
2. π‘₯3
𝑖𝑛 π‘₯ 𝑑π‘₯
Misalnya :
U= inx du =
1
π‘₯
dx
dv= π‘₯3
dx v = π‘₯3
𝑑π‘₯ =
π‘₯4
4
𝑒. 𝑑𝑣 = 𝑒𝑣 – 𝑒. 𝑑𝑒
π‘₯3
𝑖𝑛 π‘₯ 𝑑π‘₯ = (in x) (
π‘₯4
4
) -
π‘₯4
4
.
1
π‘₯
dx
=
π‘₯4 𝑖𝑛π‘₯
4
-
1
4
.
π‘₯4
4
=
π‘₯4 𝑖𝑛π‘₯
4
-
π‘₯4
16
+ c
3. 𝑑𝑒 𝑑
𝑑𝑑
Misalnya :
U = t du = dt
dv = 𝑒 𝑑
dt v = 𝑒 𝑑
dt = 𝑒 𝑑
𝑒. 𝑑𝑣 = 𝑒. 𝑣 – 𝑒. 𝑑𝑒
𝑑𝑒 𝑑
𝑑𝑑 = (t) (𝑒 𝑑
) - 𝑒 𝑑
dt
= 𝑑𝑒 𝑑
- 𝑒 𝑑
dt
= 𝑑𝑒 𝑑
- 𝑒 𝑑
+ c
4. π‘₯ cos π‘₯ 𝑑π‘₯
Misalnya :
U= x du = dx
dv = cos x dx v = cos π‘₯ 𝑑π‘₯ = sin x
𝑒. 𝑑𝑣 = 𝑒. 𝑣 – 𝑒. 𝑑𝑒
π‘₯ cos π‘₯ 𝑑π‘₯ = ( x ) ( sin x ) - sin π‘₯ 𝑑π‘₯
= sin x + cosx dx
= sin x + cosx + c
5. π‘π‘œπ‘‘βˆ’1
( x ) dx
Misalnya :
U = sinπ‘₯βˆ’1
Du= cosπ‘₯βˆ’1
Subtitusi du = sinπ‘₯βˆ’1
du = cosπ‘₯βˆ’1
π‘π‘œπ‘ π‘₯ βˆ’1
𝑠𝑖𝑛π‘₯ βˆ’1 dx =
𝑑𝑒
𝑒
Salve integral
= in (u) + c
Subsitusi kembali
U=sinπ‘₯βˆ’1
= in (sinπ‘₯βˆ’1
) + 𝑐
6. π‘₯2
𝑒 π‘₯
𝑑π‘₯
Misalnya :
U = π‘₯2
du = 2x
dv = 𝑒 π‘₯
dx v = 𝑒 π‘₯
dx = 𝑒 π‘₯
𝑒. 𝑑𝑣 = u.v - 𝑒.du
π‘₯2
𝑒 π‘₯
𝑑π‘₯ = π‘₯2
𝑒 π‘₯
- π‘₯
2
. 2π‘₯
=π‘₯𝑒2π‘₯
- 2π‘₯. 𝑑π‘₯
=π‘₯𝑒2π‘₯
- x+c
7. 𝑀(𝑀 βˆ’ 3)2
𝑑𝑀
Misalnya :
U= w du= dw
dv = (𝑀 βˆ’ 3)2
𝑑𝑀 𝑣 = 2𝑀 βˆ’ 6 = 𝑀 βˆ’ 3
𝑒. 𝑑𝑣 = u.v - 𝑒.du
𝑀(𝑀 βˆ’ 3)2
𝑑𝑀 = 𝑀. 𝑀 βˆ’ 3 βˆ’ 𝑀. 𝑑𝑀
= 𝑀2
βˆ’ 3𝑀 βˆ’
1
2
𝑀 + 𝑐
8. π‘₯3
𝑖𝑛 4π‘₯ 𝑑π‘₯
Misalnya :
U= in4x du=
1
4π‘₯
𝑑π‘₯
dv= π‘₯3
𝑑π‘₯ v = π‘₯3
dx =
1
4
π‘₯4
𝑒. 𝑑𝑣 = u.v - 𝑣.du
π‘₯3
𝑖𝑛 4π‘₯ 𝑑π‘₯ = in4x.
1
4
π‘₯4
- in4x .
1
4π‘₯
𝑑π‘₯
=
1
4
π‘₯4
𝑖𝑛4π‘₯ βˆ’
1
5
π‘₯5
∢
1
2
16π‘₯2
+ 𝑐
=
1
4
π‘₯4
𝑖𝑛4π‘₯ -
2π‘₯5
80π‘₯2 + c
9. 𝑑(𝑑 + 5)βˆ’4
𝑑𝑑
Misalnya :
U= t du= dt
dv =(𝑑 + 5)βˆ’4
𝑣 = βˆ’4π‘‘βˆ’3
βˆ’ 20βˆ’3
= 2π‘‘βˆ’2
+ 10βˆ’2
𝑒. 𝑑𝑣 = u.v - 𝑣.du
𝑑(𝑑 + 5)βˆ’4
𝑑𝑑 =( t. 2π‘‘βˆ’2
+ 10βˆ’2
) - 2π‘‘βˆ’2
+ 10βˆ’2
. 𝑑𝑑
= 20π‘‘βˆ’4
+ (2𝑑 + 10 + 𝑑𝑑
10. π‘₯ π‘₯ + 2 .dx
Misalnya :
U = x du = dx
Dv= π‘₯ + 2 dx v= (π‘₯ + 2)
1
2 =2π‘₯1
1
2 +0.671
1
2
𝑒. 𝑑𝑣 = u.v - 𝑣.du
π‘₯ π‘₯ + 2 .dx = x . 2π‘₯1
1
2 +0.671
1
2 - 2π‘₯1
1
2 + 0.671
1
2 . dx
= x.2,67π‘₯
3
2 - (2π‘₯
3
2 + 0,67
3
2) dx
= 2,67π‘₯2
3
2 - 2,67π‘₯
6
2 + c
Integrasi dengan menggunakan tabel rumus
terpisahkan
Latihan 8.3
Gunakan tabel rumus integral dalam Lampiran C untuk menemukan integral tak tentu yang
paling umum.
1. cot π‘₯ 𝑑π‘₯
2.
1
π‘₯+2 (2π‘₯+5)
𝑑π‘₯
3. 𝑙𝑛π‘₯ 2
𝑑π‘₯
4. π‘₯ cos π‘₯ 𝑑π‘₯
5.
π‘₯
π‘₯+2 2 𝑑π‘₯
6. 3π‘₯𝑒 π‘₯
𝑑π‘₯
7. 10 𝑀 + 3 𝑑𝑀
8. 𝑑(𝑑 + 5)βˆ’1
𝑑𝑑
9. π‘₯ π‘₯ + 2 𝑑π‘₯
10.
1
sin 𝑒 cos 𝑒
𝑑𝑒
PENYELESAIAN
1. cot π‘₯ 𝑑π‘₯
( Formula nomor 7)
Penyelesaian :
π‘π‘œπ‘‘ π‘₯ 𝑑π‘₯ =
π‘π‘œπ‘ π‘₯
𝑠𝑖𝑛π‘₯
𝑑π‘₯
Misalkan :
𝑒 = sin π‘₯
𝑑𝑒 = cos π‘₯ 𝑑π‘₯
Subsitusi 𝑑𝑒 = cos π‘₯, π‘ˆ = sin π‘₯
cos π‘₯
sin π‘₯
𝑑π‘₯ =
𝑑𝑒
𝑒
π‘ π‘Žπ‘™π‘£π‘’ π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™
ln 𝑒 + 𝐢
subsitusi kembali π‘ˆ = sin π‘₯
𝑙𝑛 sin π‘₯ + 𝑐
2.
1
π‘₯+2 (2π‘₯+5)
𝑑π‘₯
=
1
π‘₯ + 2 (2π‘₯ + 5)
=
𝐴
π‘₯ + 2
+
𝐴
2π‘₯ + 5
𝐴 =
1
π‘₯ + 2 (2.2 + 5)
=
1
9
𝐡 =
1
5 + 2 (2π‘₯ + 5)
=
1
7
Sehingga :
1
π‘₯ + 2 2π‘₯ + 5
𝑑π‘₯ =
1
π‘₯ + 2 2π‘₯ + 5
=
1
9
π‘₯ + 2
𝑑π‘₯ +
1
9
2π‘₯ + 5
𝑑π‘₯
=
1
9
𝑙𝑛 π‘₯ + 2 +
1
7
ln 2π‘₯ + 5 + c
3. 𝑙𝑛π‘₯ 2
𝑑π‘₯ = 𝑙𝑛π‘₯ 𝑙𝑛π‘₯ 𝑑π‘₯
Missal :
U = ln x 𝑑𝑒 = (
1
π‘₯
)2
Dv = dx
dv = 𝑑π‘₯
v = x
(𝑙𝑛π‘₯)2
𝑑π‘₯ = 𝑒𝑣 βˆ’ 𝑣𝑑𝑒 (x ln )
= (𝑙𝑛π‘₯)2
. x - π‘₯
1
π‘₯2 𝑑π‘₯
= π‘₯. (𝑙𝑛π‘₯)2
-
1
π‘₯
𝑑π‘₯
= π‘₯. (𝑙𝑛π‘₯)2
x - π‘₯βˆ’1
𝑑π‘₯
= π‘₯. (𝑙𝑛π‘₯)2
-
1
0
π‘₯0
+ 𝑐
= π‘₯. (𝑙𝑛π‘₯)2
- ~ + 𝑐
= ln x ( x ln x-x ) – (π‘₯ ln π‘₯ βˆ’ π‘₯) .
1
π‘₯
=x (ln x)2
- x ln x -
4. π‘₯ cos π‘₯ 𝑑π‘₯
Penyelesaian :
π‘ˆ = 𝑋 β†’ 𝑑𝑒 = 𝑑π‘₯
𝑑𝑣 = π‘π‘œπ‘ π‘₯ β†’ 𝑣 = 𝑠𝑖𝑛π‘₯
𝑒𝑑𝑣 = 𝑒𝑣 βˆ’ 𝑣𝑑𝑒
π‘₯π‘π‘œπ‘ π‘₯𝑑π‘₯ = π‘₯𝑠𝑖𝑛π‘₯ βˆ’ 𝑠𝑖𝑛π‘₯ 𝑑π‘₯
π‘₯π‘π‘œπ‘ π‘₯𝑑π‘₯ = π‘₯𝑠𝑖𝑛π‘₯ + π‘π‘œπ‘ π‘₯ + 𝑐
5.
π‘₯
π‘₯+2 2 𝑑π‘₯
Penyelesaian :
π‘₯
π‘₯+2 2 =
𝐴
π‘₯+2
+
𝐡
π‘₯+2
=
𝐴 π‘₯+2 +𝐡
π‘₯+2
2
𝐴 = 2
𝐴 + 𝐡 = 0 = βˆ’2
Sehingga :
π‘₯
π‘₯ + 2 2
𝑑π‘₯ =
𝑑π‘₯
π‘₯ + 2
–
𝑑π‘₯
π‘₯ + 2 2
π‘€π‘–π‘ π‘Žπ‘™π‘™ 𝑒 = π‘₯ + 2 β†’ 𝑑𝑒 = 𝑑π‘₯
𝑑π‘₯
π‘₯ + 2
–
𝑑π‘₯
π‘₯ + 2 2
=
𝑑𝑒
𝑒
–
𝑑𝑒
𝑒2
= 2𝑙𝑛 +
2
𝑒
+ 𝑐
2𝑙𝑛 π‘₯ + 2 +
2
π‘₯+2
+ 𝑐
6. 3π‘₯𝑒 π‘₯
𝑑π‘₯
U = 3x dv = 𝑒 π‘₯
𝑑π‘₯
𝑑𝑒
𝑑π‘₯
= 3 v = 𝑒 π‘₯
𝑑π‘₯ = 𝑒 π‘₯
du = 3 dx
𝑒𝑑𝑣 = u.v – 𝑣 𝑑𝑒
= (3x) . (𝑒 π‘₯
) – 𝑒 π‘₯
. 3 𝑑π‘₯
= 3x 𝑒 π‘₯
βˆ’ 3𝑒 π‘₯
7. 10 𝑀 + 3 dw
( Formula nomor 2)
10 𝑀 + 3 dw = (10 𝑀 + 3)
1
2 dw
=
1
1
2
+ 1
(10 𝑀 + 3)
1
2
+1
+ 𝑐
=
2
3
(10 𝑀 + 3)
3
2 + 𝑐
8. 𝑑(𝑑 + 5)βˆ’1
𝑑𝑑
=
𝑑
𝑑+5
dt = 𝑑 (𝑑 + 5)βˆ’1
𝑑𝑑
Missal:
U = t + 5 U= t+5
𝑑𝑒
𝑑𝑑
= 1 t = (u-5)
𝑑𝑒 = 𝑑𝑑 t=uβ†’u=t+5 =5
t = 2 β†’ u=t+5 = 7
=
𝑑
𝑑+5
dt = 𝑑 (𝑑 + 5)βˆ’1
𝑑𝑑 = 𝑒 βˆ’ 5 π‘’βˆ’1
𝑑𝑒 = 𝑒0
βˆ’ 5π‘’βˆ’1
𝑑𝑒
(𝑒0
βˆ’ 5𝑒) … … … … . = 𝑒 βˆ’ 𝑒
βˆ’5π‘’βˆ’1
+1 du
βˆ’5(𝑒1
βˆ’
1
5
π‘₯ ) 𝑑π‘₯
-5 (ln 𝑒 -
1
5
0+1
π‘₯0+1
)
-5 ( ln 𝑑 + 5 -
1
5
x)
-5 ln 𝑑 + 5 + x
9. π‘₯ π‘₯ + 2 𝑑π‘₯
π‘šπ‘–π‘ π‘Žπ‘™ 𝑒 = π‘₯ + 2 β†’ π‘₯ = 𝑒 βˆ’ 2
𝑑𝑒 = 𝑑π‘₯
Sehingga integral diatas dapat menjadi :
= 𝑖𝑛𝑑 𝑒 βˆ’ 2 π‘ˆ 𝑑𝑒
= 𝑖𝑛𝑑 𝑒 βˆ’ 2 π‘ˆ
1
2 𝑑𝑒
= 𝑖𝑛𝑑 π‘ˆ
5
2 βˆ’ π‘ˆ
1
2 𝑑𝑒
=
2
7
π‘ˆ
2
7 βˆ’
2
3
π‘ˆ
3
2 + 𝐢
= 𝑖𝑛𝑑 (π‘₯ + 2)
5
2 βˆ’
2
3
(π‘₯ + 2)
3
2 + 𝐢

More Related Content

What's hot (15)

Tugas 2 matematika 2
Tugas 2  matematika 2Tugas 2  matematika 2
Tugas 2 matematika 2
Β 
Tugas2 matematika
Tugas2 matematikaTugas2 matematika
Tugas2 matematika
Β 
Tugas 2
Tugas 2Tugas 2
Tugas 2
Β 
Tugas 2 mtk 2
Tugas 2 mtk 2Tugas 2 mtk 2
Tugas 2 mtk 2
Β 
Tugas 2 MTK2
Tugas 2 MTK2Tugas 2 MTK2
Tugas 2 MTK2
Β 
Tugas 2
Tugas 2Tugas 2
Tugas 2
Β 
Tugas 2
Tugas 2Tugas 2
Tugas 2
Β 
Tugas Matematika 3
Tugas Matematika 3Tugas Matematika 3
Tugas Matematika 3
Β 
Tugas matematika kelompok 8 kelas 1 eb
Tugas matematika kelompok 8 kelas 1 ebTugas matematika kelompok 8 kelas 1 eb
Tugas matematika kelompok 8 kelas 1 eb
Β 
Tugas matematika 2 (semester 2)
Tugas matematika 2 (semester 2) Tugas matematika 2 (semester 2)
Tugas matematika 2 (semester 2)
Β 
1st Math Task
1st Math Task1st Math Task
1st Math Task
Β 
Tugas mtk 3
Tugas mtk 3Tugas mtk 3
Tugas mtk 3
Β 
Tugas 3 MTK2
Tugas 3 MTK2Tugas 3 MTK2
Tugas 3 MTK2
Β 
Tugas 3 mtk2
Tugas 3 mtk2Tugas 3 mtk2
Tugas 3 mtk2
Β 
Formulas
FormulasFormulas
Formulas
Β 

Viewers also liked

EXPOSICIΓ“: Recerca per a la pau (AMB)
EXPOSICIΓ“: Recerca per a la pau (AMB)EXPOSICIΓ“: Recerca per a la pau (AMB)
EXPOSICIΓ“: Recerca per a la pau (AMB)Recerca per a la pau
Β 
paper no:1
paper no:1paper no:1
paper no:1Janak Maru
Β 
EXPOSICIΓ“: Recerca per a la Pau
 EXPOSICIΓ“: Recerca per a la Pau EXPOSICIΓ“: Recerca per a la Pau
EXPOSICIΓ“: Recerca per a la PauRecerca per a la pau
Β 
Resume_IshitaKundu_CISA
Resume_IshitaKundu_CISAResume_IshitaKundu_CISA
Resume_IshitaKundu_CISAIshita Kundu
Β 
Eklavya as a Tragic Hero
Eklavya as a Tragic HeroEklavya as a Tragic Hero
Eklavya as a Tragic HeroJanak Maru
Β 
Robinson Crusoe'original Sin'
Robinson Crusoe'original Sin'Robinson Crusoe'original Sin'
Robinson Crusoe'original Sin'Janak Maru
Β 
Resume_IshitaKundu_CISA
Resume_IshitaKundu_CISAResume_IshitaKundu_CISA
Resume_IshitaKundu_CISAIshita Kundu
Β 
Major characters of oliver twist
Major characters of oliver twistMajor characters of oliver twist
Major characters of oliver twistJanak Maru
Β 
Resume_IshitaKundu_CISA
Resume_IshitaKundu_CISAResume_IshitaKundu_CISA
Resume_IshitaKundu_CISAIshita Kundu
Β 
John keats as a nature Poet
John keats  as a nature PoetJohn keats  as a nature Poet
John keats as a nature PoetJanak Maru
Β 
PRESENTACIÓ: Conflicte, violència, pau...
PRESENTACIÓ: Conflicte, violència, pau...PRESENTACIÓ: Conflicte, violència, pau...
PRESENTACIÓ: Conflicte, violència, pau...Recerca per a la pau
Β 
Wordsworth coleridge poetic create :comparison
Wordsworth coleridge poetic create :comparisonWordsworth coleridge poetic create :comparison
Wordsworth coleridge poetic create :comparisonJanak Maru
Β 
Natyashastra
NatyashastraNatyashastra
NatyashastraJanak Maru
Β 
African-American Writers
African-American WritersAfrican-American Writers
African-American WritersJanak Maru
Β 
Resume-Ishita_Kundu_2015
Resume-Ishita_Kundu_2015Resume-Ishita_Kundu_2015
Resume-Ishita_Kundu_2015Ishita Kundu
Β 

Viewers also liked (16)

EXPOSICIΓ“: Recerca per a la pau (AMB)
EXPOSICIΓ“: Recerca per a la pau (AMB)EXPOSICIΓ“: Recerca per a la pau (AMB)
EXPOSICIΓ“: Recerca per a la pau (AMB)
Β 
paper no:1
paper no:1paper no:1
paper no:1
Β 
Sample Cuisine
Sample CuisineSample Cuisine
Sample Cuisine
Β 
EXPOSICIΓ“: Recerca per a la Pau
 EXPOSICIΓ“: Recerca per a la Pau EXPOSICIΓ“: Recerca per a la Pau
EXPOSICIΓ“: Recerca per a la Pau
Β 
Resume_IshitaKundu_CISA
Resume_IshitaKundu_CISAResume_IshitaKundu_CISA
Resume_IshitaKundu_CISA
Β 
Eklavya as a Tragic Hero
Eklavya as a Tragic HeroEklavya as a Tragic Hero
Eklavya as a Tragic Hero
Β 
Robinson Crusoe'original Sin'
Robinson Crusoe'original Sin'Robinson Crusoe'original Sin'
Robinson Crusoe'original Sin'
Β 
Resume_IshitaKundu_CISA
Resume_IshitaKundu_CISAResume_IshitaKundu_CISA
Resume_IshitaKundu_CISA
Β 
Major characters of oliver twist
Major characters of oliver twistMajor characters of oliver twist
Major characters of oliver twist
Β 
Resume_IshitaKundu_CISA
Resume_IshitaKundu_CISAResume_IshitaKundu_CISA
Resume_IshitaKundu_CISA
Β 
John keats as a nature Poet
John keats  as a nature PoetJohn keats  as a nature Poet
John keats as a nature Poet
Β 
PRESENTACIÓ: Conflicte, violència, pau...
PRESENTACIÓ: Conflicte, violència, pau...PRESENTACIÓ: Conflicte, violència, pau...
PRESENTACIÓ: Conflicte, violència, pau...
Β 
Wordsworth coleridge poetic create :comparison
Wordsworth coleridge poetic create :comparisonWordsworth coleridge poetic create :comparison
Wordsworth coleridge poetic create :comparison
Β 
Natyashastra
NatyashastraNatyashastra
Natyashastra
Β 
African-American Writers
African-American WritersAfrican-American Writers
African-American Writers
Β 
Resume-Ishita_Kundu_2015
Resume-Ishita_Kundu_2015Resume-Ishita_Kundu_2015
Resume-Ishita_Kundu_2015
Β 

Tugas Matematika "Kelompok 7"

  • 1. Tugas Matematika Integral Hal 49- 59 Disusun Oleh : POLITEKNIK MANUFAKTUR NEGERI BANGKA BELITUNG TAHUN AJARAN 2014/2015 Industri Air Kantung Sungailiat 33211 Bangka Induk, Propinsi Kepulauan Bangka Belitung Telp : +62717 93586 Fax : +6271793585 email : polman@polman-babel.ac.id http://www.polman-babel.ac.id Kelompok 7 : - Sarman - Fery Ardiansyah - Rakam Tiano - Mirza ramadhan
  • 2. Dua aturan integrasi berguna Latihan 7.7 Cari integral tak tentu yang paling umum.. 1. 3π‘₯4 βˆ’ 5π‘₯3 βˆ’ 21π‘₯2 + 36π‘₯ βˆ’ 10 𝑑π‘₯ 2. 3π‘₯2 βˆ’ 4π‘π‘œπ‘  2π‘₯ 𝑑π‘₯ 3. 8 𝑑5 + 5 𝑑 𝑑𝑑 4. 1 25 βˆ’ πœƒ2 + 1 100 + πœƒ2 π‘‘πœƒ 5. 𝑒5π‘₯ βˆ’ 𝑒4π‘₯ 𝑒2π‘₯ 𝑑π‘₯ 6. π‘₯7 + π‘₯4 π‘₯5 𝑑π‘₯ 7. π‘₯7 + π‘₯4 π‘₯5 𝑑π‘₯ 8. π‘₯2 + 4 2 𝑑π‘₯ = π‘₯4 9. 7 𝑑 3 𝑑𝑑 10. 20 + π‘₯ π‘₯ 𝑑π‘₯
  • 3. Penyelesaian : 1. 3π‘₯4 βˆ’ 5π‘₯3 βˆ’ 21π‘₯2 + 36π‘₯ βˆ’ 10 𝑑π‘₯ = 3π‘₯4 𝑑π‘₯ βˆ’ 5π‘₯3 𝑑π‘₯ βˆ’ 21π‘₯2 𝑑π‘₯ + 36π‘₯ 𝑑π‘₯ βˆ’ 10 𝑑π‘₯ = 3 π‘₯4 𝑑π‘₯ βˆ’ 5 π‘₯3 𝑑π‘₯ βˆ’ 21 π‘₯2 𝑑π‘₯ + 36 π‘₯ 𝑑π‘₯ βˆ’ 10 𝑑π‘₯ = 3 π‘₯5 5 βˆ’ 5 π‘₯4 4 βˆ’ 21 π‘₯3 3 + 36 π‘₯2 2 βˆ’ 10π‘₯ + 𝑐 = 3 5 π‘₯5 βˆ’ 5 4 π‘₯4 βˆ’ 7π‘₯3 + 18π‘₯2 βˆ’ 10π‘₯ + 𝑐 2. 3π‘₯2 βˆ’ 4π‘π‘œπ‘  2π‘₯ 𝑑π‘₯ = 3π‘₯2 𝑑π‘₯ βˆ’ 4 π‘π‘œπ‘  2π‘₯ 𝑑π‘₯ = 3 π‘₯2 𝑑π‘₯ βˆ’ 4 π‘π‘œπ‘  2π‘₯ 𝑑π‘₯ = 3 π‘₯3 3 βˆ’ 4 1 2 𝑠𝑖𝑛2π‘₯ + 𝑐 = π‘₯3 βˆ’ 2 sin 2π‘₯ + 𝑐 3. 8 𝑑5 + 5 𝑑 𝑑𝑑 = 8 𝑑5 𝑑π‘₯ + 5 𝑑 𝑑π‘₯ = 8 π‘‘βˆ’5 𝑑π‘₯ + 5 1 𝑑 𝑑π‘₯ = 8 π‘‘βˆ’4 βˆ’4 + 5 𝑙𝑛 𝑑 + 𝑐 = βˆ’2π‘‘βˆ’4 + 5 𝑙𝑛 𝑑 + 𝑐 4. 1 25βˆ’πœƒ2 + 1 100+πœƒ2 π‘‘πœƒ = 1 25βˆ’πœƒ2 𝑑π‘₯ + 1 100+πœƒ2 𝑑π‘₯ = 1 52+πœƒ2 𝑑π‘₯ + 1 102+πœƒ2 𝑑π‘₯ = π‘ π‘–π‘›βˆ’1 πœƒ 5 + 1 10 π‘‘π‘Žπ‘›βˆ’1 πœƒ 10 + 𝑐 5. 𝑒5π‘₯ βˆ’π‘’4π‘₯ 𝑒2π‘₯ 𝑑π‘₯ = 𝑒3π‘₯ βˆ’ 𝑒2π‘₯ 𝑑π‘₯ = 𝑒3π‘₯ 𝑑π‘₯ βˆ’ 𝑒2π‘₯ 𝑑π‘₯ = 1 3 𝑒3π‘₯ βˆ’ 1 2 𝑒2π‘₯ + 𝑐 6. π‘₯7+π‘₯4 π‘₯5 𝑑π‘₯ = π‘₯7 π‘₯5 𝑑π‘₯ + π‘₯4 π‘₯5 𝑑π‘₯ = 7. 1 𝑒6+π‘₯2 𝑑π‘₯ = 𝑒6 + π‘₯2 𝑑π‘₯ = 𝑙𝑛 𝑒6 + π‘₯2 + 𝑐 8. π‘₯2 + 4 2 𝑑π‘₯ = π‘₯4 + 16 + 2. π‘₯2 . 4 𝑑π‘₯ = π‘₯4 + 8π‘₯2 + 16 𝑑π‘₯ = 1 4+1 π‘₯4+1 + 8 2+1 π‘₯2+1 + 16π‘₯ + 𝑐 = 1 5 π‘₯5 + 8 3 π‘₯3 + 𝑐 9. 7 𝑑3 𝑑𝑑 = 7π‘‘βˆ’ 1 3 𝑑𝑑 = 7 βˆ’ 1 3 +1 π‘‘βˆ’ 1 3 +1 + 𝑐 = 7 2 3 𝑑 2 3 + 𝑐 = 21 2 𝑑 2 3 + 𝑐 10. 20+π‘₯ π‘₯ 𝑑π‘₯ = 20 + π‘₯ π‘₯βˆ’ 1 2 𝑑π‘₯ = 20π‘₯βˆ’ 1 2 + π‘₯ 1 2 𝑑π‘₯ = 20 βˆ’ 1 2 +1 π‘₯βˆ’ 1 2 +1 + 1 1 2 +1 π‘₯ 1 2 +1 + 𝑐 = 20 1 2 π‘₯ 1 2 + 1 3 2 π‘₯ 3 2 + 𝑐 = 40π‘₯ 1 2 + 2 3 π‘₯ 3 2 + 𝑐
  • 4. Integrasi dasar teknik Integrasi dengan substitusi Latihan 8.1 Gunakan integrasi dengan substitusi untuk menemukan integral tak tentu yang paling umum. 1. 3 π‘₯3 βˆ’ 5 4 π‘₯2 𝑑π‘₯ 2. 𝑒 π‘₯4 π‘₯3 𝑑π‘₯ 3. 𝑑 𝑑2 + 7 𝑑𝑑 4. π‘₯5 βˆ’ 3π‘₯ 1 4 5π‘₯4 βˆ’ 3 𝑑π‘₯ 5. π‘₯3 βˆ’ 2π‘₯ π‘₯4 βˆ’ 4π‘₯2 + 5 4 𝑑π‘₯ 6. π‘₯3 βˆ’ 2π‘₯ π‘₯4 βˆ’ 4π‘₯2 + 5 𝑑π‘₯ 7. cos 3π‘₯2 + 1 𝑑π‘₯ 8. 3π‘π‘œπ‘ 2 π‘₯(𝑠𝑖𝑛 π‘₯) π‘₯ 𝑑π‘₯ 9. 𝑒2π‘₯ 1 + 𝑒4π‘₯ 𝑑π‘₯ 10. 6𝑑2 𝑒 𝑑3βˆ’2 𝑑𝑑
  • 5. PENYELESAIAN 1. 3 π‘₯3 βˆ’ 5 4 π‘₯2 𝑑π‘₯ u = x3 – 5 du = 3x2 dx = 𝑒4 𝑑𝑒 = 1 5 𝑒5 + 𝑐 = (π‘₯3 βˆ’ 5)5 5 + 𝑐 2. 𝑒 π‘₯4 π‘₯3 𝑑π‘₯ 𝑒 = π‘₯4 = 𝑒 π‘₯4 1 4 . 4π‘₯3 𝑑π‘₯ = 1 4 𝑒 π‘₯3 4π‘₯3 𝑑π‘₯ = 1 4 𝑒 𝑒 𝑑𝑒 = 1 4 𝑒 𝑒 + 𝑐 = 1 4 𝑒 π‘₯4 + 𝑐 3. 𝑑 𝑑2 + 7 𝑑𝑑 𝑒 = 𝑑2 + 7 𝑑𝑒 = 2𝑑 𝑑π‘₯ 𝑑 𝑑2 + 7 𝑑𝑑
  • 6. 1 2 2𝑑 𝑑2 + 7 𝑑𝑑 1 2 2𝑑 𝑑2 + 7 𝑑𝑑 1 2 𝑑𝑒 𝑒 1 2 𝐼𝑛 𝑒 + 𝑐 1 2 𝐼𝑛 𝑑2 + 7 + 𝑐 4. π‘₯5 βˆ’ 3π‘₯ 1 4 5π‘₯4 βˆ’ 3 𝑑π‘₯ 𝑒 = π‘₯5 βˆ’ 3π‘₯ 𝑑𝑒 = 5π‘₯4 βˆ’ 3 𝑑π‘₯ = 𝑒 1 4 𝑑𝑒 = 4𝑒 5 4 + 𝑐 = 4 π‘₯5 βˆ’ 3π‘₯ 5 4 + 𝑐 5. π‘₯3 βˆ’ 2π‘₯ π‘₯4 βˆ’ 4π‘₯2 + 5 4 𝑑π‘₯ 𝑒 = π‘₯4 βˆ’ 4π‘₯2 + 5 𝑑𝑒 = 4π‘₯3 βˆ’ 8π‘₯ 𝑑π‘₯ = 1 4 . 4 π‘₯3 βˆ’ 2π‘₯ 𝑒4 𝑑π‘₯ = 1 4 𝑑𝑒 𝑒4 = 1 4 𝐼𝑛 𝑒 + 𝑐 = 1 4 𝐼𝑛 π‘₯4 βˆ’ 4π‘₯2 + 5 + 𝑐
  • 7. 6. π‘₯3 βˆ’ 2π‘₯ π‘₯4 βˆ’ 4π‘₯2 + 5 𝑑π‘₯ 𝑒 = π‘₯4 βˆ’ 4π‘₯2 + 5 𝑑𝑒 = 4π‘₯3 βˆ’ 8π‘₯ 𝑑π‘₯ = 4 π‘₯3 βˆ’ 2π‘₯ = 1 4 . 4(π‘₯3 βˆ’ 2π‘₯) π‘₯4 βˆ’ 4π‘₯2 + 5 𝑑π‘₯ = 1 4 𝑑𝑒 𝑒 = 1 4 𝐼𝑛 𝑒 + 𝑐 = 1 4 𝐼𝑛 π‘₯4 βˆ’ 4π‘₯2 + 5 + 𝑐 9. 𝑒2π‘₯ 1 + 𝑒4π‘₯ 𝑑π‘₯ = 𝑒2π‘₯ 1 + 𝑒2π‘₯(2) 𝑑π‘₯ 𝑒 = 1 + 𝑒2π‘₯ 𝑑𝑒 = 2. 𝑒2π‘₯ 𝑑π‘₯ = 1 2 . 2. 𝑒2π‘₯ 1 + 𝑒2π‘₯(2) = 1 2 𝑑𝑒 𝑒 = 1 2 𝐼𝑛 𝑒 𝑑π‘₯ = 1 2 𝐼𝑛 1 + 𝑒4π‘₯ + 𝑐
  • 8. 10. 6𝑑2 𝑒 𝑑3βˆ’2 𝑑𝑑 𝑒 = 𝑑3 βˆ’ 2 𝑑𝑒 = 3𝑑2 𝑑𝑑 = 6𝑑2 𝑒 𝑑3βˆ’2 𝑑𝑑 = 2 3𝑑2 𝑒 𝑑3βˆ’2 𝑑𝑑 = 1 3 . 3 2 . 3𝑑2 . 𝑒 𝑑3βˆ’2 𝑑𝑑 = 1 3 6 𝑑𝑒. 𝑒 𝑒 = 1 3 𝑒 𝑒 . 6 𝑑𝑒 = 1 3 𝑒 𝑑3βˆ’2 . 6 + 𝑐 = 2𝑒 𝑑3βˆ’2 + 𝑐
  • 9. Integrasi dengan bagian Latihan 8.2 Gunakan integrasi dengan bagian untuk menemukan integral tak tentu yang paling umum. 1. 2π‘₯.sin2x dx 2. π‘₯3 lnx dx 3. 𝑑𝑒 𝑑 dt 4. π‘₯ cos x dx 5. π‘π‘œπ‘‘βˆ’1 π‘₯ 𝑑π‘₯ 6. π‘₯2 𝑒 π‘₯ 𝑑π‘₯ 7. 𝑀( 𝑀 βˆ’ 3)2 𝑑𝑀 8. π‘₯3 𝑖𝑛 4π‘₯ 𝑑π‘₯ 9. 𝑑 (𝑑 + 5)βˆ’4 𝑑𝑑 10. π‘₯ π‘₯ + 2 . 𝑑π‘₯
  • 10. PENYELESAIAN 1. 2π‘₯ sin 2π‘₯ 𝑑π‘₯ Misalnya : u = 2x du = x dv = sin 2x dx v= sin 2π‘₯𝑑π‘₯ = - 1 2 cos2x 𝑒. 𝑑𝑣 = 𝑒𝑣 – 𝑒. 𝑑𝑒 2π‘₯ sin 2π‘₯ 𝑑π‘₯ = (2x) (- 1 2 cos 2x ) - (βˆ’ 1 2 cos 2x ) . 2x = - 2 2 cos 2x + 1 2 cos 2x dx = - x cos 2x + 1 2 . 1 2 sin 2x = - x cos 2x + 1 2 . sin 2x + c 2. π‘₯3 𝑖𝑛 π‘₯ 𝑑π‘₯ Misalnya : U= inx du = 1 π‘₯ dx dv= π‘₯3 dx v = π‘₯3 𝑑π‘₯ = π‘₯4 4 𝑒. 𝑑𝑣 = 𝑒𝑣 – 𝑒. 𝑑𝑒 π‘₯3 𝑖𝑛 π‘₯ 𝑑π‘₯ = (in x) ( π‘₯4 4 ) - π‘₯4 4 . 1 π‘₯ dx = π‘₯4 𝑖𝑛π‘₯ 4 - 1 4 . π‘₯4 4 = π‘₯4 𝑖𝑛π‘₯ 4 - π‘₯4 16 + c 3. 𝑑𝑒 𝑑 𝑑𝑑 Misalnya : U = t du = dt dv = 𝑒 𝑑 dt v = 𝑒 𝑑 dt = 𝑒 𝑑 𝑒. 𝑑𝑣 = 𝑒. 𝑣 – 𝑒. 𝑑𝑒
  • 11. 𝑑𝑒 𝑑 𝑑𝑑 = (t) (𝑒 𝑑 ) - 𝑒 𝑑 dt = 𝑑𝑒 𝑑 - 𝑒 𝑑 dt = 𝑑𝑒 𝑑 - 𝑒 𝑑 + c 4. π‘₯ cos π‘₯ 𝑑π‘₯ Misalnya : U= x du = dx dv = cos x dx v = cos π‘₯ 𝑑π‘₯ = sin x 𝑒. 𝑑𝑣 = 𝑒. 𝑣 – 𝑒. 𝑑𝑒 π‘₯ cos π‘₯ 𝑑π‘₯ = ( x ) ( sin x ) - sin π‘₯ 𝑑π‘₯ = sin x + cosx dx = sin x + cosx + c 5. π‘π‘œπ‘‘βˆ’1 ( x ) dx Misalnya : U = sinπ‘₯βˆ’1 Du= cosπ‘₯βˆ’1 Subtitusi du = sinπ‘₯βˆ’1 du = cosπ‘₯βˆ’1 π‘π‘œπ‘ π‘₯ βˆ’1 𝑠𝑖𝑛π‘₯ βˆ’1 dx = 𝑑𝑒 𝑒 Salve integral = in (u) + c Subsitusi kembali U=sinπ‘₯βˆ’1 = in (sinπ‘₯βˆ’1 ) + 𝑐 6. π‘₯2 𝑒 π‘₯ 𝑑π‘₯ Misalnya : U = π‘₯2 du = 2x dv = 𝑒 π‘₯ dx v = 𝑒 π‘₯ dx = 𝑒 π‘₯ 𝑒. 𝑑𝑣 = u.v - 𝑒.du π‘₯2 𝑒 π‘₯ 𝑑π‘₯ = π‘₯2 𝑒 π‘₯ - π‘₯ 2 . 2π‘₯ =π‘₯𝑒2π‘₯ - 2π‘₯. 𝑑π‘₯ =π‘₯𝑒2π‘₯ - x+c 7. 𝑀(𝑀 βˆ’ 3)2 𝑑𝑀 Misalnya : U= w du= dw
  • 12. dv = (𝑀 βˆ’ 3)2 𝑑𝑀 𝑣 = 2𝑀 βˆ’ 6 = 𝑀 βˆ’ 3 𝑒. 𝑑𝑣 = u.v - 𝑒.du 𝑀(𝑀 βˆ’ 3)2 𝑑𝑀 = 𝑀. 𝑀 βˆ’ 3 βˆ’ 𝑀. 𝑑𝑀 = 𝑀2 βˆ’ 3𝑀 βˆ’ 1 2 𝑀 + 𝑐 8. π‘₯3 𝑖𝑛 4π‘₯ 𝑑π‘₯ Misalnya : U= in4x du= 1 4π‘₯ 𝑑π‘₯ dv= π‘₯3 𝑑π‘₯ v = π‘₯3 dx = 1 4 π‘₯4 𝑒. 𝑑𝑣 = u.v - 𝑣.du π‘₯3 𝑖𝑛 4π‘₯ 𝑑π‘₯ = in4x. 1 4 π‘₯4 - in4x . 1 4π‘₯ 𝑑π‘₯ = 1 4 π‘₯4 𝑖𝑛4π‘₯ βˆ’ 1 5 π‘₯5 ∢ 1 2 16π‘₯2 + 𝑐 = 1 4 π‘₯4 𝑖𝑛4π‘₯ - 2π‘₯5 80π‘₯2 + c 9. 𝑑(𝑑 + 5)βˆ’4 𝑑𝑑 Misalnya : U= t du= dt dv =(𝑑 + 5)βˆ’4 𝑣 = βˆ’4π‘‘βˆ’3 βˆ’ 20βˆ’3 = 2π‘‘βˆ’2 + 10βˆ’2 𝑒. 𝑑𝑣 = u.v - 𝑣.du 𝑑(𝑑 + 5)βˆ’4 𝑑𝑑 =( t. 2π‘‘βˆ’2 + 10βˆ’2 ) - 2π‘‘βˆ’2 + 10βˆ’2 . 𝑑𝑑 = 20π‘‘βˆ’4 + (2𝑑 + 10 + 𝑑𝑑 10. π‘₯ π‘₯ + 2 .dx Misalnya : U = x du = dx Dv= π‘₯ + 2 dx v= (π‘₯ + 2) 1 2 =2π‘₯1 1 2 +0.671 1 2 𝑒. 𝑑𝑣 = u.v - 𝑣.du π‘₯ π‘₯ + 2 .dx = x . 2π‘₯1 1 2 +0.671 1 2 - 2π‘₯1 1 2 + 0.671 1 2 . dx = x.2,67π‘₯ 3 2 - (2π‘₯ 3 2 + 0,67 3 2) dx = 2,67π‘₯2 3 2 - 2,67π‘₯ 6 2 + c
  • 13. Integrasi dengan menggunakan tabel rumus terpisahkan Latihan 8.3 Gunakan tabel rumus integral dalam Lampiran C untuk menemukan integral tak tentu yang paling umum. 1. cot π‘₯ 𝑑π‘₯ 2. 1 π‘₯+2 (2π‘₯+5) 𝑑π‘₯ 3. 𝑙𝑛π‘₯ 2 𝑑π‘₯ 4. π‘₯ cos π‘₯ 𝑑π‘₯ 5. π‘₯ π‘₯+2 2 𝑑π‘₯ 6. 3π‘₯𝑒 π‘₯ 𝑑π‘₯ 7. 10 𝑀 + 3 𝑑𝑀 8. 𝑑(𝑑 + 5)βˆ’1 𝑑𝑑 9. π‘₯ π‘₯ + 2 𝑑π‘₯ 10. 1 sin 𝑒 cos 𝑒 𝑑𝑒
  • 14. PENYELESAIAN 1. cot π‘₯ 𝑑π‘₯ ( Formula nomor 7) Penyelesaian : π‘π‘œπ‘‘ π‘₯ 𝑑π‘₯ = π‘π‘œπ‘ π‘₯ 𝑠𝑖𝑛π‘₯ 𝑑π‘₯ Misalkan : 𝑒 = sin π‘₯ 𝑑𝑒 = cos π‘₯ 𝑑π‘₯ Subsitusi 𝑑𝑒 = cos π‘₯, π‘ˆ = sin π‘₯ cos π‘₯ sin π‘₯ 𝑑π‘₯ = 𝑑𝑒 𝑒 π‘ π‘Žπ‘™π‘£π‘’ π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™ ln 𝑒 + 𝐢 subsitusi kembali π‘ˆ = sin π‘₯ 𝑙𝑛 sin π‘₯ + 𝑐 2. 1 π‘₯+2 (2π‘₯+5) 𝑑π‘₯ = 1 π‘₯ + 2 (2π‘₯ + 5) = 𝐴 π‘₯ + 2 + 𝐴 2π‘₯ + 5 𝐴 = 1 π‘₯ + 2 (2.2 + 5) = 1 9 𝐡 = 1 5 + 2 (2π‘₯ + 5) = 1 7 Sehingga : 1 π‘₯ + 2 2π‘₯ + 5 𝑑π‘₯ = 1 π‘₯ + 2 2π‘₯ + 5
  • 15. = 1 9 π‘₯ + 2 𝑑π‘₯ + 1 9 2π‘₯ + 5 𝑑π‘₯ = 1 9 𝑙𝑛 π‘₯ + 2 + 1 7 ln 2π‘₯ + 5 + c 3. 𝑙𝑛π‘₯ 2 𝑑π‘₯ = 𝑙𝑛π‘₯ 𝑙𝑛π‘₯ 𝑑π‘₯ Missal : U = ln x 𝑑𝑒 = ( 1 π‘₯ )2 Dv = dx dv = 𝑑π‘₯ v = x (𝑙𝑛π‘₯)2 𝑑π‘₯ = 𝑒𝑣 βˆ’ 𝑣𝑑𝑒 (x ln ) = (𝑙𝑛π‘₯)2 . x - π‘₯ 1 π‘₯2 𝑑π‘₯ = π‘₯. (𝑙𝑛π‘₯)2 - 1 π‘₯ 𝑑π‘₯ = π‘₯. (𝑙𝑛π‘₯)2 x - π‘₯βˆ’1 𝑑π‘₯ = π‘₯. (𝑙𝑛π‘₯)2 - 1 0 π‘₯0 + 𝑐 = π‘₯. (𝑙𝑛π‘₯)2 - ~ + 𝑐 = ln x ( x ln x-x ) – (π‘₯ ln π‘₯ βˆ’ π‘₯) . 1 π‘₯ =x (ln x)2 - x ln x - 4. π‘₯ cos π‘₯ 𝑑π‘₯ Penyelesaian : π‘ˆ = 𝑋 β†’ 𝑑𝑒 = 𝑑π‘₯ 𝑑𝑣 = π‘π‘œπ‘ π‘₯ β†’ 𝑣 = 𝑠𝑖𝑛π‘₯ 𝑒𝑑𝑣 = 𝑒𝑣 βˆ’ 𝑣𝑑𝑒
  • 16. π‘₯π‘π‘œπ‘ π‘₯𝑑π‘₯ = π‘₯𝑠𝑖𝑛π‘₯ βˆ’ 𝑠𝑖𝑛π‘₯ 𝑑π‘₯ π‘₯π‘π‘œπ‘ π‘₯𝑑π‘₯ = π‘₯𝑠𝑖𝑛π‘₯ + π‘π‘œπ‘ π‘₯ + 𝑐 5. π‘₯ π‘₯+2 2 𝑑π‘₯ Penyelesaian : π‘₯ π‘₯+2 2 = 𝐴 π‘₯+2 + 𝐡 π‘₯+2 = 𝐴 π‘₯+2 +𝐡 π‘₯+2 2 𝐴 = 2 𝐴 + 𝐡 = 0 = βˆ’2 Sehingga : π‘₯ π‘₯ + 2 2 𝑑π‘₯ = 𝑑π‘₯ π‘₯ + 2 – 𝑑π‘₯ π‘₯ + 2 2 π‘€π‘–π‘ π‘Žπ‘™π‘™ 𝑒 = π‘₯ + 2 β†’ 𝑑𝑒 = 𝑑π‘₯ 𝑑π‘₯ π‘₯ + 2 – 𝑑π‘₯ π‘₯ + 2 2 = 𝑑𝑒 𝑒 – 𝑑𝑒 𝑒2 = 2𝑙𝑛 + 2 𝑒 + 𝑐 2𝑙𝑛 π‘₯ + 2 + 2 π‘₯+2 + 𝑐 6. 3π‘₯𝑒 π‘₯ 𝑑π‘₯ U = 3x dv = 𝑒 π‘₯ 𝑑π‘₯ 𝑑𝑒 𝑑π‘₯ = 3 v = 𝑒 π‘₯ 𝑑π‘₯ = 𝑒 π‘₯ du = 3 dx 𝑒𝑑𝑣 = u.v – 𝑣 𝑑𝑒
  • 17. = (3x) . (𝑒 π‘₯ ) – 𝑒 π‘₯ . 3 𝑑π‘₯ = 3x 𝑒 π‘₯ βˆ’ 3𝑒 π‘₯ 7. 10 𝑀 + 3 dw ( Formula nomor 2) 10 𝑀 + 3 dw = (10 𝑀 + 3) 1 2 dw = 1 1 2 + 1 (10 𝑀 + 3) 1 2 +1 + 𝑐 = 2 3 (10 𝑀 + 3) 3 2 + 𝑐 8. 𝑑(𝑑 + 5)βˆ’1 𝑑𝑑 = 𝑑 𝑑+5 dt = 𝑑 (𝑑 + 5)βˆ’1 𝑑𝑑 Missal: U = t + 5 U= t+5 𝑑𝑒 𝑑𝑑 = 1 t = (u-5) 𝑑𝑒 = 𝑑𝑑 t=uβ†’u=t+5 =5 t = 2 β†’ u=t+5 = 7 = 𝑑 𝑑+5 dt = 𝑑 (𝑑 + 5)βˆ’1 𝑑𝑑 = 𝑒 βˆ’ 5 π‘’βˆ’1 𝑑𝑒 = 𝑒0 βˆ’ 5π‘’βˆ’1 𝑑𝑒 (𝑒0 βˆ’ 5𝑒) … … … … . = 𝑒 βˆ’ 𝑒 βˆ’5π‘’βˆ’1 +1 du βˆ’5(𝑒1 βˆ’ 1 5 π‘₯ ) 𝑑π‘₯ -5 (ln 𝑒 - 1 5 0+1 π‘₯0+1 ) -5 ( ln 𝑑 + 5 - 1 5 x)
  • 18. -5 ln 𝑑 + 5 + x 9. π‘₯ π‘₯ + 2 𝑑π‘₯ π‘šπ‘–π‘ π‘Žπ‘™ 𝑒 = π‘₯ + 2 β†’ π‘₯ = 𝑒 βˆ’ 2 𝑑𝑒 = 𝑑π‘₯ Sehingga integral diatas dapat menjadi : = 𝑖𝑛𝑑 𝑒 βˆ’ 2 π‘ˆ 𝑑𝑒 = 𝑖𝑛𝑑 𝑒 βˆ’ 2 π‘ˆ 1 2 𝑑𝑒 = 𝑖𝑛𝑑 π‘ˆ 5 2 βˆ’ π‘ˆ 1 2 𝑑𝑒 = 2 7 π‘ˆ 2 7 βˆ’ 2 3 π‘ˆ 3 2 + 𝐢 = 𝑖𝑛𝑑 (π‘₯ + 2) 5 2 βˆ’ 2 3 (π‘₯ + 2) 3 2 + 𝐢