SlideShare una empresa de Scribd logo
1 de 8
Descargar para leer sin conexión
Ejercicios resueltos
Bolet´ın 7
Inducci´on electromagn´etica
Ejercicio 1
Una varilla conductora, de 20 cm de longitud y 10 Ω de resistencia el´ectrica, se des-
plaza paralelamente a s´ı misma y sin rozamiento, con una velocidad de 5 cm/s, sobre un
conductor en forma de U, de resistencia despreciable, situado en el interior de un campo
magn´etico de 0,1 T. Calcula la fuerza magn´etica que act´ua sobre los electrones de la ba-
rra y el campo el´ectrico en su interior. Halla la fuerza electromotriz que aparece entre los
extremos de la varilla y la intensidad de la corriente el´ectrica que recorre el circuito y su
sentido. ¿Qu´e fuerza externa hay que aplicar para mantener el movimiento de la varilla?
Calcula la potencia necesaria para mantener el movimiento de la varilla.
Soluci´on 1
Consid´erese el circuito de la figura adjunta en el que el campo magn´etico tiene la
direcci´on perpendicular al papel y sentido hacia adentro y que el conductor se mueve
hacia la derecha.
Fm
Fe
e−
+
−
EI
v
B
1. Sobre cada electr´on act´ua la fuerza de Lorentz, de direcci´on la de la varilla y sentido
hacia abajo.
Fm = q (v × B) ⇒ F = |q| v B = 1,6 · 10−19
· 0,05 · 0,1 = 8 · 10−22
N
Como consecuencia de la separaci´on de cargas se origina un campo el´ectrico en
el interior del conductor. Siempre que la velocidad del conductor sea constante
1
los m´odulos de la fuerza magn´etica y de la fuerza el´ectrica que act´uan sobre los
electrones son iguales.
Fm = Fe; |q| v B = |q| E ⇒ E = v B = 0,05 · 0,1 = 5 · 10−3
N/C
El sentido del campo el´ectrico dentro del conductor es desde las cargas positivas a
las negativas.
2. La f.e.m. inducida se determina aplicando la relaci´on entre el campo y el potencial
el´ectricos. Su valor absoluto es:
ε = E L = 5 · 10−3
· 0,2 = 10−3
V
Siempre que el conductor se mueva con velocidad constante, la f.e.m. es estable y
se origina una corriente el´ectrica, cuyo sentido convencional es el contrario al del
movimiento de los electrones. Aplicando la ley de Ohm:
I =
ε
R
=
10−3
10
= 10−4
A
3. Sobre la varilla, recorrida por la intensidad de la corriente el´ectrica I, act´ua una fuer-
za magn´etica de sentido opuesto al vector velocidad. Para mantener su movimiento
hay que aplicar una fuerza externa de sentido contrario al de la fuerza magn´etica,
es decir, del mismo sentido que el del vector velocidad. Esta fuerza es la que realiza
el trabajo necesario para mantener la corriente el´ectrica por el circuito. Su m´odulo
es:
Fext = I L B = 0,2 · 10−4
· 0,1 = 2 · 10−6
N
4. La potencia intercambiada por un agente externo para mantener el movimiento de
varilla es:
P = F · v = 2 · 10−6
· 0,05 = 10−7
W
Esta potencia se intercambia en forma de calor en la resistencia el´ectrica del circuito.
P = I2
· R = (10−4
)2
· 10 = 10−7
W
Ejercicio 2
Una bobina circular, formada por 200 espiras de 10 cm de radio, se encuentra situada
perpendicularmente a un campo magn´etico de 0,2 T. Determina la f.e.m. inducida en
la bobina en los casos siguientes referidos a un intervalo de tiempo igual a 0,1 s: se
duplica el campo magn´etico; se anula el campo magn´etico; se invierte el sentido del campo
magn´etico; se gira la bobina 90◦
en torno al eje paralelo al campo magn´etico; se gira la
bobina 90◦
en torno al eje perpendicular al campo magn´etico.
2
Soluci´on 2
Inicialmente el ´angulo θ que forman los vectores campo magn´etico y superficie es igual
a cero.
φB,1 = N B S = N B S cos θ = 200 · 0,2 · π · (0,1)2
· cos 0◦
= 0,4 π Wb
S
B
S
B2
S
B
S
B
eje
S
B
S
1. Si se duplica el campo magn´etico, se duplica el flujo que atraviesa la bobina.
ε = −
∆φB
∆t
= −
2 φB,1 − φB,1
∆t
= −
φB,1
∆t
= −
0,4 π
0,1
= −4 π V
2. Si se anula el campo magn´etico, el flujo final es igual a cero.
ε = −
∆φB
∆t
= −
0 − φB,1
∆t
=
φB,1
∆t
=
0,4 π
0,1
= 4 π V
3. Al invertir el sentido del campo, el flujo final es igual al inicial cambiado de signo.
ε = −
∆φB
∆t
= −
(−φB,1) − φB,1
∆t
=
2 φB,1
∆t
=
2 · 0,4 π
0,1
= 8 π V
4. No cambia la orientaci´on entre la bobina y el campo magn´etico.
ε = −
∆φB
∆t
= 0
5. El flujo final es igual a cero, ya que los dos vectores son perpendiculares.
ε = −
∆φB
∆t
= −
0 − φB,1
∆t
=
φB,1
∆t
=
0,4 π
0,1
= 4 π V
3
Ejercicio 3
Una bobina circular, que est´a formada por 100 espiras de 2 cm de radio y 10 Ω de
resistencia el´ectrica, se encuentra colocada perpendicularmente a un campo magn´etico de
0,8 T. Si el campo magn´etico se anula al cabo de 0,1 s, determina la fuerza electromotriz
inducida, la intensidad que recorre el circuito y la cantidad de carga transportada.
¿C´omo se modifican las magnitudes anteriores si el campo magn´etico tarda el doble
de tiempo en anularse?
Soluci´on 3
1. El flujo del campo magn´etico que atraviesa inicialmente a la bobina es:
φB,0 = N B S = N B S cos θ = 100 · 0,8 · π · (0,02)2
· cos 0◦
= 0,032 π Wb
Aplicando la ley de Lenz-Faraday:
ε = −
∆φB
∆t
= −
0 − 0,032 π
0,1
= 0,32 π V
Aplicando la ley de Ohm:
I =
ε
R
=
0,32 π
10
= 0,032 π A
Aplicando la definici´on de intensidad:
q = I ∆t = 0,032 π · 0,1 = 3,2 · 10−3
π C
2. Si el campo magn´etico tarda el doble de tiempo en anularse: ∆t = 0,2 s, se tiene que
la rapidez con la que var´ıa el flujo magn´etico es menor por lo que disminuye el valor
absoluto de la fuerza electromotriz inducida y el de la intensidad de la corriente
el´ectrica.
Sin embargo, la cantidad de carga el´ectrica transportada permanece constante, ya
que no depende de la rapidez con la que var´ıa el flujo magn´etico. La cantidad de
carga transportada depende de la propia variaci´on del flujo magn´etico, que no se
modifica. En efecto:
ε = −
∆φB
∆t
= −
0 − 0,032 π
0,2
= 0,16 π V
I =
ε
R
=
0,16 π
10
= 0,016 π A
q = I ∆t = 0,016 π · 0,2 = 3,2 · 10−3
π C
Ejercicio 4
Una espira cuadrada de 5 cm de lado, situada en el plano XY , se desplaza con velocidad
v = 2 ı cm/s, penetrando en el instante t = 0 en una regi´on del espacio donde hay un
campo magn´etico uniforme B = −0,2 k T. Calcula la fuerza electromotriz y la intensidad
de la corriente inducidas en la espira si su resistencia es de 10 Ω. Haz un esquema indicando
el sentido de la intensidad de la corriente el´ectrica inducida.
4
Y
X
v
B
Soluci´on 4
Seg´un avanza la espira hacia el interior del campo magn´etico, la superficie que delimita
es atravesada por un flujo del campo magn´etico cada vez mayor, por lo que se genera una
fuerza electromotriz inducida y una corriente el´ectrica inducida que se opone a la variaci´on
del flujo.
v
Y
X
B
L
dL
Al cabo de un tiempo: t =
L
v
=
5
2
= 2,5 s, la espira se sit´ua completamente dentro del
campo magn´etico.
A partir de ese instante el flujo del campo magn´etico a trav´es de la espira permanece
constante y con ello desaparece la fuerza electromotriz y la intensidad de la corriente
el´ectrica inducida.
Transcurrido un tiempo dt, desde el instante inicial, el elemento de superficie que se
ha situado en el interior del campo magn´etico es:
dS = L dL = L v dt
Los vectores B y dS son paralelos, por lo que:
dφB = B dS = B L vdt
ε = −
dφB
dt
= −B L v = −0,2 · 0,05 · 0,02 = −2 · 10−4
V
Aplicando la ley de Ohm:
I =
ε
R
=
2 · 10−4
10
= 2 · 10−5
A
El sentido de la intensidad inducida es el contrario al de las agujas del reloj, con el fin
de generar en el interior de la espira un campo magn´etico inducido de sentido contrario
al del campo magn´etico inductor.
A partir del instante t = 2,5 s, cesa la variaci´on del flujo del campo magn´etico y la
fuerza electromotriz y la intensidad de la corriente el´ectrica se hacen iguales a cero.
5
vBinducido
Y
X
B
Ejercicio 5
Una espira de 10 cm2
de ´area est´a situada perpendicularmente en el seno de un campo
magn´etico de 1 T. Si el campo disminuye proporcionalmente hasta anularse al cabo de 2 s,
calcula la fuerza electromotriz inducida. Representa de forma gr´afica el campo magn´etico
y la fuerza electromotriz inducida en funci´on del tiempo. Si el campo magn´etico es per-
pendicular al plano del papel y de sentido hacia fuera, indica en un esquema el sentido de
la intensidad de la corriente el´ectrica inducida en la espira.
Soluci´on 5
1. Si el campo disminuye proporcionalmente con el tiempo responde a una ecuaci´on
de tipo: y = a x + b, con b = B0 = 1 T
B0
B(T)
t(s)0 1 2
Para calcular la pendiente tenemos en cuenta que Bt=2 = 0, y sustituyendo en la
ecuaci´on de la recta:
0 = a · 2 + 1 ⇒ a = −
1
2
La ecuaci´on que describe la variaci´on del campo magn´etico es:
B(t) = 1 −
1
2
t
2. El flujo del campo magn´etico que atraviesa la espira, teniendo en cuenta que los
vectores B y S son paralelos entre s´ı, es:
φB = B S = 1 −
1
2
t · 10−3
Wb
Aplicando la ley de Lenz-Faraday, se tiene que la fuerza electromotriz inducida es:
ε = −
dφB
dt
= 0,5 · 10−3
V
6
ε(V)
t(s)0 1 2
3. Durante el proceso, disminuye el flujo del campo magn´etico que atraviesa la super-
ficie que delimita la espira. Aplicando la ley de Lenz, el sentido de la intensidad de
la corriente el´ectrica inducida es el contrario del de las agujas del reloj.
Binductor
inducidoB
De esta forma, se genera un campo magn´etico inducido en el centro de la espira, del
mismo sentido que el campo magn´etico inductor, para as´ı oponerse a la disminuci´on
del flujo del campo magn´etico.
Ejercicio 6
Un cuadro, que tiene una resistencia el´ectrica de 8 Ω, est´a formada por 40 espiras de
5 cm radio. El cuadro gira alrededor de un di´ametro con una frecuencia de 20 Hz dentro
de un campo magn´etico uniforme de 0,1 T. Si en el instante inicial el plano de la espira
es perpendicular al campo magn´etico, determina las expresiones del flujo magn´etico, la
fuerza electromotriz e intensidad de la corriente el´ectrica inducida.
Soluci´on 6
Inicialmente el vector superficie y el vector campo magn´etico tienen la misma direcci´on
y sentido, por lo que el ´angulo que delimitan en el instante inicial es igual a cero: θt=0 = 0
rad y el flujo del campo magn´etico que atraviesa las espiras es m´aximo.
1. El flujo del campo magn´etico que atraviesa al cuadro en cualquier instante es:
φB = B S = B S cos(ω t) = B N π r2
cos(2 π ν t)
Sustituyendo:
φB = 0,1 · 40 · π(5 · 10−2
)2
cos(2 π · 20 t) = 0,03 cos(40 π t) Wb
2. Aplicando la ley de Lenz-Faraday, se tiene que la f.e.m. inducida es:
ε = −
dφB
dt
= 0,03 · 40 · π · sin(40 π t) = 3,95 sin(40 π t) V
7
3. Aplicando la ley de Ohm se determina la expresi´on de la intensidad de la corriente
el´ectrica:
I =
ε
R
=
3,95 sin(40 π t)
8
= 0,49 sin(40 π t) A
Ejercicio 7
El circuito primario de un transformador est´a formado por 1200 espiras y el secundario
por 20. Si el circuito primario se conecta a una diferencia de potencial de 220 V, calcula la
diferencia de potencial a la salida del circuito secundario. ¿Cu´al es el valor de la intensidad
de la corriente en el secundario cuando la intensidad en el primario es 0,5 A?
Soluci´on 7
La relaci´on entre la diferencia de potencial entre los circuitos es:
∆Vs
∆Vp
=
Ns
Np
⇒ ∆Vs = ∆Vp
Ns
Np
= 220
20
1200
= 3,7 V
Si en el transformador no hay p´erdidas de potencia, se tiene:
∆Vp · Ip = ∆Vs · Is ⇒ Is = Ip
∆Vp
∆Vs
∆Vp
∆Vs
=
Np
Ns



⇒ Is = Ip
Np
Ns
= 0,5 ·
1200
20
= 30 A
8

Más contenido relacionado

La actualidad más candente

Informe Lab Electrica 2
Informe Lab Electrica 2Informe Lab Electrica 2
Informe Lab Electrica 2guestcb4f3e
 
SOLUCIONARIO DINAMICA
SOLUCIONARIO DINAMICASOLUCIONARIO DINAMICA
SOLUCIONARIO DINAMICAIrlanda Gt
 
Electromagnetismo-Fisica II
Electromagnetismo-Fisica IIElectromagnetismo-Fisica II
Electromagnetismo-Fisica IIshanirarc
 
Circuitos de corriente alterna
Circuitos de corriente alternaCircuitos de corriente alterna
Circuitos de corriente alternaFrancisco Rivas
 
Informe de laboratorio- Movimiento armonico simple
Informe de laboratorio- Movimiento armonico simpleInforme de laboratorio- Movimiento armonico simple
Informe de laboratorio- Movimiento armonico simpleJesu Nuñez
 
Laboratorio de Movimiento Armonico Amortiguado
Laboratorio de Movimiento Armonico AmortiguadoLaboratorio de Movimiento Armonico Amortiguado
Laboratorio de Movimiento Armonico AmortiguadoJesu Nuñez
 
Corriente y resistencia. ing. carlos moreno (ESPOL)
Corriente y resistencia. ing. carlos moreno (ESPOL)Corriente y resistencia. ing. carlos moreno (ESPOL)
Corriente y resistencia. ing. carlos moreno (ESPOL)Francisco Rivas
 
Informe 2 equipotenciales
Informe 2 equipotencialesInforme 2 equipotenciales
Informe 2 equipotencialesandres mera
 
Resolucion problemas de campo electrico
Resolucion problemas de campo electricoResolucion problemas de campo electrico
Resolucion problemas de campo electricoJosé Miranda
 
Solucionario fisica sears vol 2
Solucionario fisica sears vol 2Solucionario fisica sears vol 2
Solucionario fisica sears vol 2Karl Krieger
 
Capituloii campoelectrico-121021135328-phpapp01
Capituloii campoelectrico-121021135328-phpapp01Capituloii campoelectrico-121021135328-phpapp01
Capituloii campoelectrico-121021135328-phpapp01Paola Ramirez
 

La actualidad más candente (20)

Ejercicios cap 25 y 26
Ejercicios cap 25 y 26Ejercicios cap 25 y 26
Ejercicios cap 25 y 26
 
Campo eléctrico
Campo eléctricoCampo eléctrico
Campo eléctrico
 
Informe Lab Electrica 2
Informe Lab Electrica 2Informe Lab Electrica 2
Informe Lab Electrica 2
 
2 campos electrostaticos
2 campos electrostaticos2 campos electrostaticos
2 campos electrostaticos
 
SOLUCIONARIO DINAMICA
SOLUCIONARIO DINAMICASOLUCIONARIO DINAMICA
SOLUCIONARIO DINAMICA
 
Electromagnetismo-Fisica II
Electromagnetismo-Fisica IIElectromagnetismo-Fisica II
Electromagnetismo-Fisica II
 
Circuitos de corriente alterna
Circuitos de corriente alternaCircuitos de corriente alterna
Circuitos de corriente alterna
 
(Solucionario) estatica problemas resueltos
(Solucionario) estatica problemas resueltos(Solucionario) estatica problemas resueltos
(Solucionario) estatica problemas resueltos
 
Informe de laboratorio- Movimiento armonico simple
Informe de laboratorio- Movimiento armonico simpleInforme de laboratorio- Movimiento armonico simple
Informe de laboratorio- Movimiento armonico simple
 
Laboratorio de Movimiento Armonico Amortiguado
Laboratorio de Movimiento Armonico AmortiguadoLaboratorio de Movimiento Armonico Amortiguado
Laboratorio de Movimiento Armonico Amortiguado
 
LEY DE OHM LABORATORIO FÍSICA ELECTROMAGNÉTICA 2019
LEY DE OHM LABORATORIO FÍSICA ELECTROMAGNÉTICA 2019LEY DE OHM LABORATORIO FÍSICA ELECTROMAGNÉTICA 2019
LEY DE OHM LABORATORIO FÍSICA ELECTROMAGNÉTICA 2019
 
Corriente y resistencia. ing. carlos moreno (ESPOL)
Corriente y resistencia. ing. carlos moreno (ESPOL)Corriente y resistencia. ing. carlos moreno (ESPOL)
Corriente y resistencia. ing. carlos moreno (ESPOL)
 
Informe 2 equipotenciales
Informe 2 equipotencialesInforme 2 equipotenciales
Informe 2 equipotenciales
 
Campo electrico informe
Campo electrico informeCampo electrico informe
Campo electrico informe
 
Resolucion problemas de campo electrico
Resolucion problemas de campo electricoResolucion problemas de campo electrico
Resolucion problemas de campo electrico
 
Informe leyes-de-kirchhoff
Informe leyes-de-kirchhoffInforme leyes-de-kirchhoff
Informe leyes-de-kirchhoff
 
Solucionario fisica sears vol 2
Solucionario fisica sears vol 2Solucionario fisica sears vol 2
Solucionario fisica sears vol 2
 
Informe Ondas 1
Informe Ondas 1Informe Ondas 1
Informe Ondas 1
 
Capituloii campoelectrico-121021135328-phpapp01
Capituloii campoelectrico-121021135328-phpapp01Capituloii campoelectrico-121021135328-phpapp01
Capituloii campoelectrico-121021135328-phpapp01
 
Momento de inercia
Momento de inercia Momento de inercia
Momento de inercia
 

Similar a Resueltos em

Ejercicios resueltso Zemansky
Ejercicios resueltso ZemanskyEjercicios resueltso Zemansky
Ejercicios resueltso ZemanskyDiego Trujillo
 
LEY DE AMPERE Y FARADAY
LEY DE AMPERE Y FARADAYLEY DE AMPERE Y FARADAY
LEY DE AMPERE Y FARADAYgerardovg89
 
Tema7.2ºbachillerato.física.ejercicios selectividad resueltos
Tema7.2ºbachillerato.física.ejercicios selectividad resueltosTema7.2ºbachillerato.física.ejercicios selectividad resueltos
Tema7.2ºbachillerato.física.ejercicios selectividad resueltosquififluna
 
Electricidad y magnetismo - Induccion magnetica.pdf
Electricidad y magnetismo - Induccion magnetica.pdfElectricidad y magnetismo - Induccion magnetica.pdf
Electricidad y magnetismo - Induccion magnetica.pdfJuanCruzIndurain
 
GUIA FISICA SERVICIO SOCIAL .pdf
GUIA FISICA SERVICIO SOCIAL .pdfGUIA FISICA SERVICIO SOCIAL .pdf
GUIA FISICA SERVICIO SOCIAL .pdfLizeth Valdez
 
Presentacion maquinas electricas i
Presentacion maquinas electricas iPresentacion maquinas electricas i
Presentacion maquinas electricas iDesiree Rodriguez
 
Clase 8 inducción electromagnética TE
Clase 8 inducción electromagnética TEClase 8 inducción electromagnética TE
Clase 8 inducción electromagnética TETensor
 
Clase 8 inducción electromagnética
Clase 8 inducción electromagnéticaClase 8 inducción electromagnética
Clase 8 inducción electromagnéticaTensor
 
Fisica c 2do parcial conceptos
Fisica c 2do parcial conceptosFisica c 2do parcial conceptos
Fisica c 2do parcial conceptosERICK CONDE
 
Circuitos de corriente continua
Circuitos de corriente continuaCircuitos de corriente continua
Circuitos de corriente continuaxblogvirtual
 
Clase 8 IE
Clase 8 IEClase 8 IE
Clase 8 IETensor
 
MAGNETISMO Y ELECTRICIDAD.pdf
MAGNETISMO Y ELECTRICIDAD.pdfMAGNETISMO Y ELECTRICIDAD.pdf
MAGNETISMO Y ELECTRICIDAD.pdfLuzHerrera90
 
Ley de ampere y Faraday
Ley de ampere y Faraday Ley de ampere y Faraday
Ley de ampere y Faraday EdgarGamboa34
 
Tema induccion magnetica
Tema induccion magneticaTema induccion magnetica
Tema induccion magneticaYambal
 
LEY DE FARADAY - LENZ.
LEY DE FARADAY - LENZ.LEY DE FARADAY - LENZ.
LEY DE FARADAY - LENZ.ssuser17f23b
 
7. Problemas de inducción electromagnética
7. Problemas de inducción electromagnética7. Problemas de inducción electromagnética
7. Problemas de inducción electromagnéticaÁlvaro Pascual Sanz
 
5.1 a 5.3 induccion electromagnetica
5.1 a 5.3 induccion electromagnetica5.1 a 5.3 induccion electromagnetica
5.1 a 5.3 induccion electromagneticaGuillermo Quintero
 

Similar a Resueltos em (20)

Ejercicios resueltso Zemansky
Ejercicios resueltso ZemanskyEjercicios resueltso Zemansky
Ejercicios resueltso Zemansky
 
INDUCCION ELECTROMAGNETICA
INDUCCION ELECTROMAGNETICAINDUCCION ELECTROMAGNETICA
INDUCCION ELECTROMAGNETICA
 
LEY DE AMPERE Y FARADAY
LEY DE AMPERE Y FARADAYLEY DE AMPERE Y FARADAY
LEY DE AMPERE Y FARADAY
 
Tema7.2ºbachillerato.física.ejercicios selectividad resueltos
Tema7.2ºbachillerato.física.ejercicios selectividad resueltosTema7.2ºbachillerato.física.ejercicios selectividad resueltos
Tema7.2ºbachillerato.física.ejercicios selectividad resueltos
 
Electricidad y magnetismo - Induccion magnetica.pdf
Electricidad y magnetismo - Induccion magnetica.pdfElectricidad y magnetismo - Induccion magnetica.pdf
Electricidad y magnetismo - Induccion magnetica.pdf
 
GUIA FISICA SERVICIO SOCIAL .pdf
GUIA FISICA SERVICIO SOCIAL .pdfGUIA FISICA SERVICIO SOCIAL .pdf
GUIA FISICA SERVICIO SOCIAL .pdf
 
B3 magn2 resueltos
B3 magn2 resueltosB3 magn2 resueltos
B3 magn2 resueltos
 
Presentacion maquinas electricas i
Presentacion maquinas electricas iPresentacion maquinas electricas i
Presentacion maquinas electricas i
 
Clase 8 inducción electromagnética TE
Clase 8 inducción electromagnética TEClase 8 inducción electromagnética TE
Clase 8 inducción electromagnética TE
 
Presentación
PresentaciónPresentación
Presentación
 
Clase 8 inducción electromagnética
Clase 8 inducción electromagnéticaClase 8 inducción electromagnética
Clase 8 inducción electromagnética
 
Fisica c 2do parcial conceptos
Fisica c 2do parcial conceptosFisica c 2do parcial conceptos
Fisica c 2do parcial conceptos
 
Circuitos de corriente continua
Circuitos de corriente continuaCircuitos de corriente continua
Circuitos de corriente continua
 
Clase 8 IE
Clase 8 IEClase 8 IE
Clase 8 IE
 
MAGNETISMO Y ELECTRICIDAD.pdf
MAGNETISMO Y ELECTRICIDAD.pdfMAGNETISMO Y ELECTRICIDAD.pdf
MAGNETISMO Y ELECTRICIDAD.pdf
 
Ley de ampere y Faraday
Ley de ampere y Faraday Ley de ampere y Faraday
Ley de ampere y Faraday
 
Tema induccion magnetica
Tema induccion magneticaTema induccion magnetica
Tema induccion magnetica
 
LEY DE FARADAY - LENZ.
LEY DE FARADAY - LENZ.LEY DE FARADAY - LENZ.
LEY DE FARADAY - LENZ.
 
7. Problemas de inducción electromagnética
7. Problemas de inducción electromagnética7. Problemas de inducción electromagnética
7. Problemas de inducción electromagnética
 
5.1 a 5.3 induccion electromagnetica
5.1 a 5.3 induccion electromagnetica5.1 a 5.3 induccion electromagnetica
5.1 a 5.3 induccion electromagnetica
 

Último

FICHA MATEMÁTICA comparamos numeros.pdf
FICHA MATEMÁTICA  comparamos numeros.pdfFICHA MATEMÁTICA  comparamos numeros.pdf
FICHA MATEMÁTICA comparamos numeros.pdfMariaAdelinaOsccoDel
 
Flores Galindo, A. - La ciudad sumergida. Aristocracia y plebe en Lima, 1760-...
Flores Galindo, A. - La ciudad sumergida. Aristocracia y plebe en Lima, 1760-...Flores Galindo, A. - La ciudad sumergida. Aristocracia y plebe en Lima, 1760-...
Flores Galindo, A. - La ciudad sumergida. Aristocracia y plebe en Lima, 1760-...frank0071
 
CASO CLÍNICO INFECCIONES Y TUMORES.pptx
CASO CLÍNICO INFECCIONES Y TUMORES.pptxCASO CLÍNICO INFECCIONES Y TUMORES.pptx
CASO CLÍNICO INFECCIONES Y TUMORES.pptx4bsbmpg98x
 
Mapa-conceptual-de-la-Seguridad-y-Salud-en-el-Trabajo-3.pptx
Mapa-conceptual-de-la-Seguridad-y-Salud-en-el-Trabajo-3.pptxMapa-conceptual-de-la-Seguridad-y-Salud-en-el-Trabajo-3.pptx
Mapa-conceptual-de-la-Seguridad-y-Salud-en-el-Trabajo-3.pptxangietatianasanchezc
 
Contreras & Cueto. - Historia del Perú contemporáneo [ocr] [2007].pdf
Contreras & Cueto. - Historia del Perú contemporáneo [ocr] [2007].pdfContreras & Cueto. - Historia del Perú contemporáneo [ocr] [2007].pdf
Contreras & Cueto. - Historia del Perú contemporáneo [ocr] [2007].pdffrank0071
 
hipotalamo hipofisis clase de endocrinología
hipotalamo hipofisis clase de endocrinologíahipotalamo hipofisis clase de endocrinología
hipotalamo hipofisis clase de endocrinologíawaldyGamer
 
Moda colonial de 1810 donde podemos ver las distintas prendas
Moda colonial de 1810 donde podemos ver las distintas prendasModa colonial de 1810 donde podemos ver las distintas prendas
Moda colonial de 1810 donde podemos ver las distintas prendasMorenaVictorero1
 
Musculos Paraproteticos, protesis, musculos
Musculos Paraproteticos, protesis, musculosMusculos Paraproteticos, protesis, musculos
Musculos Paraproteticos, protesis, musculosCatalinaSezCrdenas
 
REINO FUNGI: CONCEPTO, CARACTERISTICAS, ETC
REINO FUNGI: CONCEPTO, CARACTERISTICAS, ETCREINO FUNGI: CONCEPTO, CARACTERISTICAS, ETC
REINO FUNGI: CONCEPTO, CARACTERISTICAS, ETCbayolethBarboza
 
desequilibrio acido baseEE Y TEORIA ACIDO BASICO DE STEWART
desequilibrio acido baseEE Y TEORIA ACIDO BASICO DE STEWARTdesequilibrio acido baseEE Y TEORIA ACIDO BASICO DE STEWART
desequilibrio acido baseEE Y TEORIA ACIDO BASICO DE STEWARTfjmn110693
 
Hobson, John A. - Estudio del imperialismo [ocr] [1902] [1981].pdf
Hobson, John A. - Estudio del imperialismo [ocr] [1902] [1981].pdfHobson, John A. - Estudio del imperialismo [ocr] [1902] [1981].pdf
Hobson, John A. - Estudio del imperialismo [ocr] [1902] [1981].pdffrank0071
 
PRUEBA CALIFICADA 4º sec biomoleculas y bioelementos .docx
PRUEBA CALIFICADA 4º sec biomoleculas y bioelementos .docxPRUEBA CALIFICADA 4º sec biomoleculas y bioelementos .docx
PRUEBA CALIFICADA 4º sec biomoleculas y bioelementos .docxAlexandraNeryHuamanM2
 
Evolución Historica de los mapas antiguos.ppt
Evolución Historica de los mapas antiguos.pptEvolución Historica de los mapas antiguos.ppt
Evolución Historica de los mapas antiguos.pptElizabethLpez634570
 
Soporte vital basico maniobras de soporte vital basico
Soporte vital basico maniobras de soporte vital basicoSoporte vital basico maniobras de soporte vital basico
Soporte vital basico maniobras de soporte vital basicoNAYDA JIMENEZ
 
DILATADORES ESOFAGICOS estenosis benignas (1).pptx
DILATADORES ESOFAGICOS estenosis benignas (1).pptxDILATADORES ESOFAGICOS estenosis benignas (1).pptx
DILATADORES ESOFAGICOS estenosis benignas (1).pptxGabyCrespo6
 
El Genoma Humano, Características, Definición, ETC
El Genoma Humano, Características, Definición, ETCEl Genoma Humano, Características, Definición, ETC
El Genoma Humano, Características, Definición, ETCJ0S3G4LV1S
 
Anatomía y fisiología del rumen 000000000
Anatomía y fisiología del rumen 000000000Anatomía y fisiología del rumen 000000000
Anatomía y fisiología del rumen 000000000jmedu3
 
Glaeser, E. - El triunfo de las ciudades [2011].pdf
Glaeser, E. - El triunfo de las ciudades [2011].pdfGlaeser, E. - El triunfo de las ciudades [2011].pdf
Glaeser, E. - El triunfo de las ciudades [2011].pdffrank0071
 
El Gran Atractor, la misteriosa fuerza que está halando a la Vía Láctea.pptx
El Gran Atractor, la misteriosa fuerza que está halando a la Vía Láctea.pptxEl Gran Atractor, la misteriosa fuerza que está halando a la Vía Láctea.pptx
El Gran Atractor, la misteriosa fuerza que está halando a la Vía Láctea.pptxangelorihuela4
 
Derivadas- sus aplicaciones en la vida cotidiana
Derivadas- sus aplicaciones en la vida cotidianaDerivadas- sus aplicaciones en la vida cotidiana
Derivadas- sus aplicaciones en la vida cotidianapabv24
 

Último (20)

FICHA MATEMÁTICA comparamos numeros.pdf
FICHA MATEMÁTICA  comparamos numeros.pdfFICHA MATEMÁTICA  comparamos numeros.pdf
FICHA MATEMÁTICA comparamos numeros.pdf
 
Flores Galindo, A. - La ciudad sumergida. Aristocracia y plebe en Lima, 1760-...
Flores Galindo, A. - La ciudad sumergida. Aristocracia y plebe en Lima, 1760-...Flores Galindo, A. - La ciudad sumergida. Aristocracia y plebe en Lima, 1760-...
Flores Galindo, A. - La ciudad sumergida. Aristocracia y plebe en Lima, 1760-...
 
CASO CLÍNICO INFECCIONES Y TUMORES.pptx
CASO CLÍNICO INFECCIONES Y TUMORES.pptxCASO CLÍNICO INFECCIONES Y TUMORES.pptx
CASO CLÍNICO INFECCIONES Y TUMORES.pptx
 
Mapa-conceptual-de-la-Seguridad-y-Salud-en-el-Trabajo-3.pptx
Mapa-conceptual-de-la-Seguridad-y-Salud-en-el-Trabajo-3.pptxMapa-conceptual-de-la-Seguridad-y-Salud-en-el-Trabajo-3.pptx
Mapa-conceptual-de-la-Seguridad-y-Salud-en-el-Trabajo-3.pptx
 
Contreras & Cueto. - Historia del Perú contemporáneo [ocr] [2007].pdf
Contreras & Cueto. - Historia del Perú contemporáneo [ocr] [2007].pdfContreras & Cueto. - Historia del Perú contemporáneo [ocr] [2007].pdf
Contreras & Cueto. - Historia del Perú contemporáneo [ocr] [2007].pdf
 
hipotalamo hipofisis clase de endocrinología
hipotalamo hipofisis clase de endocrinologíahipotalamo hipofisis clase de endocrinología
hipotalamo hipofisis clase de endocrinología
 
Moda colonial de 1810 donde podemos ver las distintas prendas
Moda colonial de 1810 donde podemos ver las distintas prendasModa colonial de 1810 donde podemos ver las distintas prendas
Moda colonial de 1810 donde podemos ver las distintas prendas
 
Musculos Paraproteticos, protesis, musculos
Musculos Paraproteticos, protesis, musculosMusculos Paraproteticos, protesis, musculos
Musculos Paraproteticos, protesis, musculos
 
REINO FUNGI: CONCEPTO, CARACTERISTICAS, ETC
REINO FUNGI: CONCEPTO, CARACTERISTICAS, ETCREINO FUNGI: CONCEPTO, CARACTERISTICAS, ETC
REINO FUNGI: CONCEPTO, CARACTERISTICAS, ETC
 
desequilibrio acido baseEE Y TEORIA ACIDO BASICO DE STEWART
desequilibrio acido baseEE Y TEORIA ACIDO BASICO DE STEWARTdesequilibrio acido baseEE Y TEORIA ACIDO BASICO DE STEWART
desequilibrio acido baseEE Y TEORIA ACIDO BASICO DE STEWART
 
Hobson, John A. - Estudio del imperialismo [ocr] [1902] [1981].pdf
Hobson, John A. - Estudio del imperialismo [ocr] [1902] [1981].pdfHobson, John A. - Estudio del imperialismo [ocr] [1902] [1981].pdf
Hobson, John A. - Estudio del imperialismo [ocr] [1902] [1981].pdf
 
PRUEBA CALIFICADA 4º sec biomoleculas y bioelementos .docx
PRUEBA CALIFICADA 4º sec biomoleculas y bioelementos .docxPRUEBA CALIFICADA 4º sec biomoleculas y bioelementos .docx
PRUEBA CALIFICADA 4º sec biomoleculas y bioelementos .docx
 
Evolución Historica de los mapas antiguos.ppt
Evolución Historica de los mapas antiguos.pptEvolución Historica de los mapas antiguos.ppt
Evolución Historica de los mapas antiguos.ppt
 
Soporte vital basico maniobras de soporte vital basico
Soporte vital basico maniobras de soporte vital basicoSoporte vital basico maniobras de soporte vital basico
Soporte vital basico maniobras de soporte vital basico
 
DILATADORES ESOFAGICOS estenosis benignas (1).pptx
DILATADORES ESOFAGICOS estenosis benignas (1).pptxDILATADORES ESOFAGICOS estenosis benignas (1).pptx
DILATADORES ESOFAGICOS estenosis benignas (1).pptx
 
El Genoma Humano, Características, Definición, ETC
El Genoma Humano, Características, Definición, ETCEl Genoma Humano, Características, Definición, ETC
El Genoma Humano, Características, Definición, ETC
 
Anatomía y fisiología del rumen 000000000
Anatomía y fisiología del rumen 000000000Anatomía y fisiología del rumen 000000000
Anatomía y fisiología del rumen 000000000
 
Glaeser, E. - El triunfo de las ciudades [2011].pdf
Glaeser, E. - El triunfo de las ciudades [2011].pdfGlaeser, E. - El triunfo de las ciudades [2011].pdf
Glaeser, E. - El triunfo de las ciudades [2011].pdf
 
El Gran Atractor, la misteriosa fuerza que está halando a la Vía Láctea.pptx
El Gran Atractor, la misteriosa fuerza que está halando a la Vía Láctea.pptxEl Gran Atractor, la misteriosa fuerza que está halando a la Vía Láctea.pptx
El Gran Atractor, la misteriosa fuerza que está halando a la Vía Láctea.pptx
 
Derivadas- sus aplicaciones en la vida cotidiana
Derivadas- sus aplicaciones en la vida cotidianaDerivadas- sus aplicaciones en la vida cotidiana
Derivadas- sus aplicaciones en la vida cotidiana
 

Resueltos em

  • 1. Ejercicios resueltos Bolet´ın 7 Inducci´on electromagn´etica Ejercicio 1 Una varilla conductora, de 20 cm de longitud y 10 Ω de resistencia el´ectrica, se des- plaza paralelamente a s´ı misma y sin rozamiento, con una velocidad de 5 cm/s, sobre un conductor en forma de U, de resistencia despreciable, situado en el interior de un campo magn´etico de 0,1 T. Calcula la fuerza magn´etica que act´ua sobre los electrones de la ba- rra y el campo el´ectrico en su interior. Halla la fuerza electromotriz que aparece entre los extremos de la varilla y la intensidad de la corriente el´ectrica que recorre el circuito y su sentido. ¿Qu´e fuerza externa hay que aplicar para mantener el movimiento de la varilla? Calcula la potencia necesaria para mantener el movimiento de la varilla. Soluci´on 1 Consid´erese el circuito de la figura adjunta en el que el campo magn´etico tiene la direcci´on perpendicular al papel y sentido hacia adentro y que el conductor se mueve hacia la derecha. Fm Fe e− + − EI v B 1. Sobre cada electr´on act´ua la fuerza de Lorentz, de direcci´on la de la varilla y sentido hacia abajo. Fm = q (v × B) ⇒ F = |q| v B = 1,6 · 10−19 · 0,05 · 0,1 = 8 · 10−22 N Como consecuencia de la separaci´on de cargas se origina un campo el´ectrico en el interior del conductor. Siempre que la velocidad del conductor sea constante 1
  • 2. los m´odulos de la fuerza magn´etica y de la fuerza el´ectrica que act´uan sobre los electrones son iguales. Fm = Fe; |q| v B = |q| E ⇒ E = v B = 0,05 · 0,1 = 5 · 10−3 N/C El sentido del campo el´ectrico dentro del conductor es desde las cargas positivas a las negativas. 2. La f.e.m. inducida se determina aplicando la relaci´on entre el campo y el potencial el´ectricos. Su valor absoluto es: ε = E L = 5 · 10−3 · 0,2 = 10−3 V Siempre que el conductor se mueva con velocidad constante, la f.e.m. es estable y se origina una corriente el´ectrica, cuyo sentido convencional es el contrario al del movimiento de los electrones. Aplicando la ley de Ohm: I = ε R = 10−3 10 = 10−4 A 3. Sobre la varilla, recorrida por la intensidad de la corriente el´ectrica I, act´ua una fuer- za magn´etica de sentido opuesto al vector velocidad. Para mantener su movimiento hay que aplicar una fuerza externa de sentido contrario al de la fuerza magn´etica, es decir, del mismo sentido que el del vector velocidad. Esta fuerza es la que realiza el trabajo necesario para mantener la corriente el´ectrica por el circuito. Su m´odulo es: Fext = I L B = 0,2 · 10−4 · 0,1 = 2 · 10−6 N 4. La potencia intercambiada por un agente externo para mantener el movimiento de varilla es: P = F · v = 2 · 10−6 · 0,05 = 10−7 W Esta potencia se intercambia en forma de calor en la resistencia el´ectrica del circuito. P = I2 · R = (10−4 )2 · 10 = 10−7 W Ejercicio 2 Una bobina circular, formada por 200 espiras de 10 cm de radio, se encuentra situada perpendicularmente a un campo magn´etico de 0,2 T. Determina la f.e.m. inducida en la bobina en los casos siguientes referidos a un intervalo de tiempo igual a 0,1 s: se duplica el campo magn´etico; se anula el campo magn´etico; se invierte el sentido del campo magn´etico; se gira la bobina 90◦ en torno al eje paralelo al campo magn´etico; se gira la bobina 90◦ en torno al eje perpendicular al campo magn´etico. 2
  • 3. Soluci´on 2 Inicialmente el ´angulo θ que forman los vectores campo magn´etico y superficie es igual a cero. φB,1 = N B S = N B S cos θ = 200 · 0,2 · π · (0,1)2 · cos 0◦ = 0,4 π Wb S B S B2 S B S B eje S B S 1. Si se duplica el campo magn´etico, se duplica el flujo que atraviesa la bobina. ε = − ∆φB ∆t = − 2 φB,1 − φB,1 ∆t = − φB,1 ∆t = − 0,4 π 0,1 = −4 π V 2. Si se anula el campo magn´etico, el flujo final es igual a cero. ε = − ∆φB ∆t = − 0 − φB,1 ∆t = φB,1 ∆t = 0,4 π 0,1 = 4 π V 3. Al invertir el sentido del campo, el flujo final es igual al inicial cambiado de signo. ε = − ∆φB ∆t = − (−φB,1) − φB,1 ∆t = 2 φB,1 ∆t = 2 · 0,4 π 0,1 = 8 π V 4. No cambia la orientaci´on entre la bobina y el campo magn´etico. ε = − ∆φB ∆t = 0 5. El flujo final es igual a cero, ya que los dos vectores son perpendiculares. ε = − ∆φB ∆t = − 0 − φB,1 ∆t = φB,1 ∆t = 0,4 π 0,1 = 4 π V 3
  • 4. Ejercicio 3 Una bobina circular, que est´a formada por 100 espiras de 2 cm de radio y 10 Ω de resistencia el´ectrica, se encuentra colocada perpendicularmente a un campo magn´etico de 0,8 T. Si el campo magn´etico se anula al cabo de 0,1 s, determina la fuerza electromotriz inducida, la intensidad que recorre el circuito y la cantidad de carga transportada. ¿C´omo se modifican las magnitudes anteriores si el campo magn´etico tarda el doble de tiempo en anularse? Soluci´on 3 1. El flujo del campo magn´etico que atraviesa inicialmente a la bobina es: φB,0 = N B S = N B S cos θ = 100 · 0,8 · π · (0,02)2 · cos 0◦ = 0,032 π Wb Aplicando la ley de Lenz-Faraday: ε = − ∆φB ∆t = − 0 − 0,032 π 0,1 = 0,32 π V Aplicando la ley de Ohm: I = ε R = 0,32 π 10 = 0,032 π A Aplicando la definici´on de intensidad: q = I ∆t = 0,032 π · 0,1 = 3,2 · 10−3 π C 2. Si el campo magn´etico tarda el doble de tiempo en anularse: ∆t = 0,2 s, se tiene que la rapidez con la que var´ıa el flujo magn´etico es menor por lo que disminuye el valor absoluto de la fuerza electromotriz inducida y el de la intensidad de la corriente el´ectrica. Sin embargo, la cantidad de carga el´ectrica transportada permanece constante, ya que no depende de la rapidez con la que var´ıa el flujo magn´etico. La cantidad de carga transportada depende de la propia variaci´on del flujo magn´etico, que no se modifica. En efecto: ε = − ∆φB ∆t = − 0 − 0,032 π 0,2 = 0,16 π V I = ε R = 0,16 π 10 = 0,016 π A q = I ∆t = 0,016 π · 0,2 = 3,2 · 10−3 π C Ejercicio 4 Una espira cuadrada de 5 cm de lado, situada en el plano XY , se desplaza con velocidad v = 2 ı cm/s, penetrando en el instante t = 0 en una regi´on del espacio donde hay un campo magn´etico uniforme B = −0,2 k T. Calcula la fuerza electromotriz y la intensidad de la corriente inducidas en la espira si su resistencia es de 10 Ω. Haz un esquema indicando el sentido de la intensidad de la corriente el´ectrica inducida. 4
  • 5. Y X v B Soluci´on 4 Seg´un avanza la espira hacia el interior del campo magn´etico, la superficie que delimita es atravesada por un flujo del campo magn´etico cada vez mayor, por lo que se genera una fuerza electromotriz inducida y una corriente el´ectrica inducida que se opone a la variaci´on del flujo. v Y X B L dL Al cabo de un tiempo: t = L v = 5 2 = 2,5 s, la espira se sit´ua completamente dentro del campo magn´etico. A partir de ese instante el flujo del campo magn´etico a trav´es de la espira permanece constante y con ello desaparece la fuerza electromotriz y la intensidad de la corriente el´ectrica inducida. Transcurrido un tiempo dt, desde el instante inicial, el elemento de superficie que se ha situado en el interior del campo magn´etico es: dS = L dL = L v dt Los vectores B y dS son paralelos, por lo que: dφB = B dS = B L vdt ε = − dφB dt = −B L v = −0,2 · 0,05 · 0,02 = −2 · 10−4 V Aplicando la ley de Ohm: I = ε R = 2 · 10−4 10 = 2 · 10−5 A El sentido de la intensidad inducida es el contrario al de las agujas del reloj, con el fin de generar en el interior de la espira un campo magn´etico inducido de sentido contrario al del campo magn´etico inductor. A partir del instante t = 2,5 s, cesa la variaci´on del flujo del campo magn´etico y la fuerza electromotriz y la intensidad de la corriente el´ectrica se hacen iguales a cero. 5
  • 6. vBinducido Y X B Ejercicio 5 Una espira de 10 cm2 de ´area est´a situada perpendicularmente en el seno de un campo magn´etico de 1 T. Si el campo disminuye proporcionalmente hasta anularse al cabo de 2 s, calcula la fuerza electromotriz inducida. Representa de forma gr´afica el campo magn´etico y la fuerza electromotriz inducida en funci´on del tiempo. Si el campo magn´etico es per- pendicular al plano del papel y de sentido hacia fuera, indica en un esquema el sentido de la intensidad de la corriente el´ectrica inducida en la espira. Soluci´on 5 1. Si el campo disminuye proporcionalmente con el tiempo responde a una ecuaci´on de tipo: y = a x + b, con b = B0 = 1 T B0 B(T) t(s)0 1 2 Para calcular la pendiente tenemos en cuenta que Bt=2 = 0, y sustituyendo en la ecuaci´on de la recta: 0 = a · 2 + 1 ⇒ a = − 1 2 La ecuaci´on que describe la variaci´on del campo magn´etico es: B(t) = 1 − 1 2 t 2. El flujo del campo magn´etico que atraviesa la espira, teniendo en cuenta que los vectores B y S son paralelos entre s´ı, es: φB = B S = 1 − 1 2 t · 10−3 Wb Aplicando la ley de Lenz-Faraday, se tiene que la fuerza electromotriz inducida es: ε = − dφB dt = 0,5 · 10−3 V 6
  • 7. ε(V) t(s)0 1 2 3. Durante el proceso, disminuye el flujo del campo magn´etico que atraviesa la super- ficie que delimita la espira. Aplicando la ley de Lenz, el sentido de la intensidad de la corriente el´ectrica inducida es el contrario del de las agujas del reloj. Binductor inducidoB De esta forma, se genera un campo magn´etico inducido en el centro de la espira, del mismo sentido que el campo magn´etico inductor, para as´ı oponerse a la disminuci´on del flujo del campo magn´etico. Ejercicio 6 Un cuadro, que tiene una resistencia el´ectrica de 8 Ω, est´a formada por 40 espiras de 5 cm radio. El cuadro gira alrededor de un di´ametro con una frecuencia de 20 Hz dentro de un campo magn´etico uniforme de 0,1 T. Si en el instante inicial el plano de la espira es perpendicular al campo magn´etico, determina las expresiones del flujo magn´etico, la fuerza electromotriz e intensidad de la corriente el´ectrica inducida. Soluci´on 6 Inicialmente el vector superficie y el vector campo magn´etico tienen la misma direcci´on y sentido, por lo que el ´angulo que delimitan en el instante inicial es igual a cero: θt=0 = 0 rad y el flujo del campo magn´etico que atraviesa las espiras es m´aximo. 1. El flujo del campo magn´etico que atraviesa al cuadro en cualquier instante es: φB = B S = B S cos(ω t) = B N π r2 cos(2 π ν t) Sustituyendo: φB = 0,1 · 40 · π(5 · 10−2 )2 cos(2 π · 20 t) = 0,03 cos(40 π t) Wb 2. Aplicando la ley de Lenz-Faraday, se tiene que la f.e.m. inducida es: ε = − dφB dt = 0,03 · 40 · π · sin(40 π t) = 3,95 sin(40 π t) V 7
  • 8. 3. Aplicando la ley de Ohm se determina la expresi´on de la intensidad de la corriente el´ectrica: I = ε R = 3,95 sin(40 π t) 8 = 0,49 sin(40 π t) A Ejercicio 7 El circuito primario de un transformador est´a formado por 1200 espiras y el secundario por 20. Si el circuito primario se conecta a una diferencia de potencial de 220 V, calcula la diferencia de potencial a la salida del circuito secundario. ¿Cu´al es el valor de la intensidad de la corriente en el secundario cuando la intensidad en el primario es 0,5 A? Soluci´on 7 La relaci´on entre la diferencia de potencial entre los circuitos es: ∆Vs ∆Vp = Ns Np ⇒ ∆Vs = ∆Vp Ns Np = 220 20 1200 = 3,7 V Si en el transformador no hay p´erdidas de potencia, se tiene: ∆Vp · Ip = ∆Vs · Is ⇒ Is = Ip ∆Vp ∆Vs ∆Vp ∆Vs = Np Ns    ⇒ Is = Ip Np Ns = 0,5 · 1200 20 = 30 A 8