The era of helicopter-based surveys on Mars has already begun, creating opportunities for future aerial science investigations with a range of instruments. We argue that magnetometer-based studies can make use of aerial technology to answer some of the key questions regarding early Mars evolution. As such, we discuss mission concepts for a helicopter equipped with a magnetometer on Mars, measurements it would provide, and survey designs that could be implemented. For a range of scenarios, we build magnetization models and test how well structures can be resolved using a range of different inversion approaches. With this work, we provide modeling ground work and recommendations to plan the future of aerial Mars exploration.
The era of helicopter-based surveys on Mars has already begun, creating opportunities for future aerial science investigations with a range of instruments. We argue that magnetometer-based studies can make use of aerial technology to answer some of the key questions regarding early Mars evolution. As such, we discuss mission concepts for a helicopter equipped with a magnetometer on Mars, measurements it would provide, and survey designs that could be implemented. For a range of scenarios, we build magnetization models and test how well structures can be resolved using a range of different inversion approaches. With this work, we provide modeling ground work and recommendations to plan the future of aerial Mars exploration.