Satellite galaxies in the cluster environment are more likely to be quenched than galaxies in the general field. Recently, it has
been reported that satellite galaxy quenching depends on the orientation relative to their central galaxies: satellites along the
major axis of centrals are more likely to be quenched than those along the minor axis. In this paper, we report a detection
of such anisotropic quenching up to z ∼ 1 based on a large optically selected cluster catalogue constructed from the Hyper
Suprime-Cam Subaru Strategic Program. We calculate the quiescent satellite galaxy fraction as a function of orientation angle
measured from the major axis of central galaxies and find that the quiescent fractions at 0.25 < z < 1 are reasonably fitted
by sinusoidal functions with amplitudes of a few per cent. Anisotropy is clearer in inner regions (<r200m) of clusters and not
significant in cluster outskirts (>r200m). We also confirm that the observed anisotropy cannot be explained by differences in
local galaxy density or stellar mass distribution along the two axes. Quiescent fraction excesses between the two axes suggest
that the quenching efficiency contributing to the anisotropy is almost independent of stellar mass, at least down to our stellar
mass limit of M∗ = 1 × 1010 M. Finally, we argue that the physical origins of the observed anisotropy should have shorter
quenching time-scales than ∼ 1 Gyr, like ram-pressure stripping, because, for anisotropic quenching to be observed, satellites
must be quenched before their initial orientation angles are significantly changed.