SlideShare ist ein Scribd-Unternehmen logo
1 von 117
Tuberculosis, Leprosy
&
Management
Department of Pharmacology
Late BRKM GMC Jagdalpur
Introduction
• Tuberculosis is a chronic granulomatous infectious disease.
• The causative organism is Mycobacterium tuberculosis, which is an acid-
fast bacillus.
• In India, approximately 1000 people die from TB every day.
• In India, the control and treatment of TB is covered under a National
programme called as ‘The Revised National Tuberculosis Control
Programme (RNTCP)’, in which free and full course of treatment is provided
to all TB cases.
• RNTCP was launched in 1997, and its treatment guidelines were further
revised in 2010.
• Government of India has declared TB to be a notifiable disease in 2012, so
that any clinician, who treats a TB patient, has to notify it to the
Government.
Epidemic and resistance
• India has more new tuberculosis (TB) patients annually than any
other country globally, contributing to 27% of the world’s TB burden.
• About 2.79 million TB patients are estimated to be added annually.
• The Revised National Tuberculosis Control Programme (RNTCP)
notified around 1.94 million TB patients in 2016.
• Worldwide approximately 4.1% of new TB patients and 19% of
previously treated TB patients have multidrug resistant-TB (MDR-TB),
i.e. TB resistant to at least two of the first-line drugs – isoniazid and
rifampicin.
Epidemic and resistance
• Extensively drug- resistant TB (XDR-TB), defined as MDR-TB with
additional resistance to at least one fluoroquinolone and one second
line injectable drug, has been reported by 123 countries.
• The proportion of XDR-TB among MDR-TB patients is 6.2%
worldwide. The estimated number of MDR/rifampicin resistant (RR)-
TB in India is 147 000, accounting for one fourth of the global burden
of MDR/RR-TB .
Resistance pattern
• MDR-TB is 6.19% (CI 5.54–6.90%) among all TB patients with 2.84%
(CI 2.27–3.50%) among new and 11.60% (CI 10.21–13.15%) among
previously treated TB patients.
• Among MDR-TB patients, additional resistance to any
fluoroquinolones was 21.82% (17.33–26.87%), and 3.58% (1.8–
6.32%) to any second-line injectable drugs.
• Among MDR-TB patients, additional resistance to at least one drug
from each of the two classes, i.e. fluoroquinolone and second-line
injectable drugs (XDR-TB) was 1.3% (0.36–3.30%).
Resistance pattern
• Any first- or second line drug resistance among all TB patients is
28.0% (CI 26.77– 29.29%) with 22.54% (CI 21.10–24.10%) among new
and 36.82% (CI 34.64–39.04%) among previously treated TB patients.
• Any isoniazid resistance is 11.06% (CI 9.97–12.22%) and 25.09% (CI
23.1–-27.11%) among new and previously treated TB patients,
respectively.
• Any pyrazinamide resistance is 6.95% (CI 6.07–7.91%) and 8.77%
(7.53–10.13%) among new and previously treated TB patients,
respectively.
Severe Symptoms
• Persistent cough
• Chest pain
• Coughing with bloody sputum
• Shortness of breath
• Urine discoloration
• Cloudy & reddish urine
• Fever with chills.
• Fatigue
Diagnosis
• Bacteriological test:
• Zeihl-Neelsen stain
• Auramine stain(fluorescence microscopy)
• Sputum culture test:
• Lowenstein –Jensen(LJ) solid medium: 4-18 weeks
• Liquid medium : 8-14 days
• Agar medium : 7 to 14 days
• Radiography:
• Chest X-Ray(CXR)
• Nucleic acid amplification:
• Species identification ; several hours
• Low sensitivity, high cost
• Most useful for the rapid
confirmation of tuberculosis in
persons with AFB-positive sputum
• AFB-negative pulmonary
tuberculosis
• Extra pulmonary tuberculosis
• Tuberculin skin test (PPD)
• Injection of fluid into the skin of the lower arm.
• 48-72 hours later – checked for a reaction.
• Diagnosis is based on the size of the wheal.
• 1 dose = 0.1 ml contains 0.04μg Tuberculin PPD.
Interpretation of skin test
Preventive measures
1) Mask
2) BCG vaccine
3) Regular medical follow up
4) Isolation of Patient
5) Ventilation
6) Natural sunlight
7) UV germicidal irradiation
Management
BCG vaccine
• Bacille Calmette Guerin (BCG).
• First used in 1921.
• Only vaccine available today for protection against tuberculosis.
• It is most effective in protecting children from the disease.
• Given 0.1 ml intradermally.
• Duration of Protection 15 to 20 years
• Efficacy 0 to 80%.
• Should be given to all healthy infants as soon as possible after birth
unless the child presented with symptomatic HIV infection
According to their clinical utility, the anti-
tubercular drugs have been classified as follows:
• First line anti-tubercular drugs:
• These drugs are highly effective with low toxicity profile.
• These drugs are the first choice drugs and are used in
routine.
• These drugs are always given in combinations for
therapeutic purpose.
• Second line anti-tubercular drugs:
• These drugs have medium anti-tubercular efficacy.
• The toxic effects of these drugs appear due to the longer
duration of anti-tubercular therapy.
• These drugs are used as reserve drugs and always given in
different combinations with first line drugs.
FIRST LINE DRUGS SECOND LINE DRUGS
1. Rifampin (R)
2. Isoniazid (H)
3. Ethambutol (E)
4. Pyrazinamide (Z)
5. Streptomycin (S)
Rifabutin
Thiacetazone
Ethionamide
Prothionamide
Cycloserine
Para-aminosalicylic acid
Fluoroquinolones
• Moxifloxacin
• Ciprofloxacin
• Ofloxacin
• Levofloxacin
Injectable drugs
• Kanamycin
• Amikacin
• Capreomycin
ISONIAZID (isonicotinic acid hydrazide, H)
• Isoniazid (INH) is an essential component of all antitubercular
regimens.
• It is primarily a tuberculocidal drug. It kills the fast multiplying
organisms rapidly. The dormant organisms are inhibited only.
• It acts both on extracellular as well as intracellular TB (bacilli present
within macrophages), and is equally active both in acidic and alkaline
medium.
Mechanism of action
• INH acts by inhibiting the synthesis of mycolic acids in the
mycobacterial cell wall.
• The mycobacterial cell wall is composed as fatty acid known as
mycolic acids.
• Inhibiting mycolic acid leads to a disruption in the mycobacterial cell
wall and consequently cell death.
• INH has good resistance preventing action also.
Pharmacokinetics
• Isoniazid is readily absorbed after oral administration.
• Absorption is impaired if it is taken with food, particularly high-fatty
meals.
• The drug diffuses into all body fluids, cells, and caseous material
(necrotic tissue resembling cheese that is produced in tuberculous
lesions).
• The CSF concentration attained is equal to that in plasma.
• The metabolism occurs in liver and excretion via kidneys.
Adverse effects
• Peripheral neuritis and a variety of neurological manifestations
(paresthesia, numbness, mental disturbances, rarely convulsions) are
the most important dose-dependent toxic effects.
• Hepatitis, a major adverse effect, is common in older people, but rare
in children. It is due to dose-related damage to hepatocytes and is
reversible on stopping the drug.
• Other side effects are lethargy, rashes, fever, acne and arthralgia.
 Pyridoxine given prophylactically (10 mg/day) prevents the
neurotoxicity.
 Prophylactic pyridoxine must be given to diabetics, chronic
alcoholics, malnourished, pregnant, lactating and HIV infected
patients.
 INH neurotoxicity is treated by pyridoxine 100 mg/day.
RIFAMYCINS (Rifampin (Rifampicin, R),
Rifabutin, and Rifapentine)
• Rifampicin has broader antimicrobial activity than isoniazid and can
be used as part of treatment for several different bacterial infections.
• Rifampicin is a semisynthetic derivative of Rifamycin.
• It has bactericidal action on Mycobacterium tuberculosis and all its
subpopulations. M. leprae is also highly sensitive.
• It is also acts similarly against a number of gram-positive and gram-
negative bacterias.
• It acts best on the slow/intermittent dividing bacilli (spurters).
• The cidal effect of rifampicin is similar to INH.
• It shows bactericidal effect on both extracellular and intracellular
organisms.
• It has good sterilizing action (making sputum AFB negative) and the
only drug, which shows cidal effect on persisters.
• It has good resistance preventing action also.
Mechanism of Action
• Rifampicin blocks mycobacterial DNA-dependent RNA
polymerase enzyme, which inhibits RNA transcription and
leads to bacterial cell death.
• This action is selective to mycobacterium only and not seen
in human cells.
Pharmacokinetics
• It is well absorbed orally and the bioavailability is nearly 70%.
• Its absorption decreases when taken with food; Hence, it should be
taken empty stomach only.
• It is widely distributed in the body and penetrates intracellularly,
enters tubercular cavities, caseous masses and placenta.
• It is converted to an active metabolite in liver, which is excreted
mainly in bile & to lesser extend in the urine and undergoes
enterohepatic circulation.
• It has variable plasma t½ ranging from 2–5 hrs.
Adverse effects
• Hepatitis, a major adverse effect, is dose-related and generally occurs
in hepatic impaired patients. It is rarely seen with a dose less than
600 mg/day.
• Jaundice, if occurs, is reversible on discontinuation of the drug.
• Minor adverse reactions are nausea, vomiting, abdominal cramps, flu
like syndrome and cutaneous syndrome in which patient presents as
flushing, pruritus & rash.
[Note: Urine, faeces, sweat and other secretions become orange-red in
color, so patients should be informed in advance that it is harmless.
Tears may even stain soft contact lenses orange-red.]
Other uses of Rifampicin
• Rifampicin is used in the treatment of Leprosy.
• It is used in prophylaxis of Meningococcal and H. influenzae
meningitis and carrier state.
• Rifampicin+ Doxycycline is the first line therapy of brucellosis
RIFABUTIN
• Rifabutin is a derivative of rifampin, and is preferred for TB patients
coinfected with the human immunodeficiency virus (HIV) who are
receiving protease inhibitors (PIs) or non-nucleoside reverse
transcriptase inhibitors (NNRTIs).
• Rifabutin is a less potent inducer of cytochrome P450 enzymes as
compared to rifampicin. Hence, drug interactions are less.
• Rifabutin has adverse effects similar to those of rifampicin but can
also cause uveitis, skin hyperpigmentation, and neutropenia.
Rifapentine
• It is a rifampin congener.
• Used against M. tuberculosis and MAC.
• Rifapentine is as potent an enzyme inducer as rifampin.
• The only indication of rifapentine (600 mg once/twice weekly) is in
the continuation phase of treatment of TB, as a substitute of daily
rifampin.
• Once weekly rifapentine combined with INH has also been employed
to treat latent TB.
PYRAZINAMIDE (Z)
• Pyrazinamide (Z) is chemically similar to INH.
• It is weakly tuberculocidal and more active in acidic medium.
• It is more lethal to intracellularly located bacilli and to those at sites
showing an inflammatory response (pH is acidic at both these
locations).
• It is highly effective during the first 2 months of therapy.
• By killing the residual intracellular bacilli it has good ‘sterilizing’
activity.
Mechanism of action
• It is not well established, but like INH, it is also converted
inside the mycobacterial cell into an active metabolite
pyrazinoic acid by an enzyme pyrazinamidase.
• This metabolite gets accumulated in acidic medium and
probably inhibits mycolic acid synthesis.
• Pharmacokinetics
• Pyrazinamide is absorbed orally and widely distributed. It has good
penetration in CSF due to which it is highly useful in meningeal TB.
• The metabolism occurs in liver and excretion via kidneys.
• The plasma t½ is 6–10 hours.
• Adverse effects
• The dose related side effect is hepatotoxicity.
• Other adverse effects are abdominal distress, hyperuricemia,
arthralgia, flushing, rashes, fever and loss of diabetes control.
ETHAMBUTOL (E)
• Ethambutol is a tuberculostatic antitubercular drug.
• It is more active against fast multiplying bacilli.
• It helps the early conversion of sputum positive patients to sputum
negative ones when added to the triple drug regimen of RHZ.
• Primarily, it is used to prevent development of drug resistance.
• Mechanism of action
• The exact mechanism of action of ethambutol is unknown.
• Probably, it interferes with the mycolic acid incorporation in
mycobacterial cell wall.
• Pharmacokinetics
• It is absorbed orally and is widely distributed in all compartment of
body.
• It penetrates meninges in completely and is temporarily stored in
RBCs.
• The excretion occurs via kidneys through glomerular filtration as
well as tubular secretion.
• The plasma t½ is nearly 4 hrs.
Adverse effects
• The most important dose and duration dependent side effect is Optic
neuritis.
• It causes loss of visual acuity, colour vision and field defects.
• In colour vision defect, there is loss of ability to differentiate between
red and green colour.
• Hyperuricemia may occur due to interference with urate excretion
DRUG ADVERSE EFFECTS COMMENTS
Isoniazid Hepatic enzyme elevation,
hepatitis,
peripheral neuropathy.
Take baseline hepatic enzyme measurements;
repeat if abnormal or patient is at risk or
symptomatic.
Clinically significant interaction with phenytoin and
Carbamazepine.
Rifampicin Hepatitis, GI upset, rash, flu-like
syndrome, significant interaction
with several drugs.
Take baseline hepatic enzyme measurements and
CBC;
Repeat if abnormal or patient is at risk or
symptomatic. Warn patient that urine and tears
may turn red-orange in color.
Ethambutol Optic neuritis with blurred vision,
red-green color blindness
Establish baseline visual acuity and color vision;
test monthly.
Pyrazinamide Nausea, hepatitis, hyperuricemia,
rash,arthralgia, gout (rare)
Take baseline hepatic enzymes and uric acid
measurements; repeat if abnormal or patient is at
risk or symptomatic.
STREPTOMYCIN (S)
• The pharmacology of streptomycin has been already described with aminoglycosides.
• It was the first clinically useful antitubercular drug.
• The tuberculocidal effect is less as compare to INH or Rifampicin.
• It exerts its effect on extracellular bacilli only (because of poor penetration into cells).
• It penetrates tubercular cavities, but does not cross the CSF, and has poor action in acidic
medium.
• It has lower margin of safety.
• Ototoxicity & nephrotoxicity are the major side effects like other aminoglycosides.
• Streptomycin is used in addition to other ATT in DOTs category-II for a period of two
months.
• It is also labelled as a ‘supplemental’ first line drug.
SECOND LINE ANTI-TUBERCULAR DRUGS
• Second line anti-tubercular drugs are more toxic and less efficacious
as compared to first line anti-TB drugs.
• These are used when the tubercular bacilli show a resistance to the
first line antitubercular drugs or when first line anti –TBdrugs are not
tolerated or contraindicated
Kanamycin (Km), Amikacin (Am)
• These are tuberculocidal aminoglycosides and very much similar to
streptomycin in antitubercular activity, pharmacokinetic properties and
adverse effects.
• Many streptomycin resistant and MDR strains of M.tuberculosisare
sensitive to these drugs.
• During the intensive phase of MDR-TB treatment,one of these drugs is
mostly included in the regimen.
• The RNTCP standardized regimen for MDR-TB includes kanamycindue to its
lesser cost as compared to amikacin.
• It is administered intramuscularly in an OD dose of 0.75–1.0 g/day (10–15
mg/kg/day).
Capreomycin (Cm)
• It is chemically very different from aminoglycosides, but has similar
bactericidal activity against Mycobacterium.
• It is administered by i.m. route.
• It is used only as an alternative to Streptomycin and Amikacin
resistant M. tuberculosis.
• It is administered intramuscularly in an OD dose of 0.75–1.0 g/day.
Fluoroquinolones
• The fluoroquinolones are potent oral bactericidal drugs for TB.
• The preferred ones are moxifloxacin and levofloxacin.
• They have an important place in the treatment of multidrug-resistant
tuberculosis as they penetrate cells and kill mycobacteria lodged
inside the macrophages.
• The Antitubercular Doses are:
• Moxifloxacin-400mgOD,
• Levofloxacin-750mgOD,
• Ofloxacin -800 mg OD.
Ethionamide
• This is sulfur containing structural analog of isoniazid that also disrupts
mycolic acid synthesis. It acts on both extracellular and intracellular bacilli.
• It is widely distributed in all compartment of the body, including the CSF.
• The metabolism occurs in liver with plasma t½ of 2-3 hrs.
• Adverse effects are anorexia nausea, sulfurous belching, vomiting,
hepatotoxicity and peripheral neuritis. Pyridoxine (100 mg/day) can be
used to treat the neurological adverse effects.
• Ethionamide is given in escalated dosage schedule as follows: 250 mg/day,
and increased every 5–6 days to reach 750 mg daily (10–15 mg/kg/day).
This is done to improve tolerance.
Cycloserine
• This is an orally effective tuberculostatic drug.
• It disrupts d-alanine incorporation into the bacterial cell wall.
• It is well distributed in all compartment of the body, including the CSF.
• The only 1/3 fraction in liver and the remaining part is excreted via
kidneys in a unchanged form.
Cycloserine
• Commonly seen side effects are CNS disturbances like lethargy,
anxiety, and suicidal tendency. Therefore, in patients with history of
seizure and other mental illness, it is contraindicated.
• Pyridoxine (100 mg/day) can be used to treat the neurological
adverse effects.
• It is given in escalated dosage schedule as follows::Start with 250 mg
BD and increase to750 mg/day, if tolerated.
Para-amino salicylic acid (PAS)
• PAS acts by the same mechanism as sulfonamides.
• It is tuberculostatic and one of the least active drug.
• It is absorbed completely by the oral route and distributed all over
body except in CSF.
• Some of the common side effects are anorexia, nausea, epigastric
pain, rashes, fever, malaise, hypokalaemia, goiter, liver dysfunction
and rarely blood dyscrasias.
• PAS is used only in resistant TB when one of the tuberculocidal drugs
or static drugs cannot be used.
• PAS is given in divided doses of 10–12 gm daily.
TREATMENT OF TUBERCULOSIS
• In the previous days, the full treatment course for a tuberculosis
patient used to be for nine to twelve months.
• The therapy of tuberculosis has undergone remarkable changes now.
• The ‘conventional’ treatment has been replaced by more effective
and less toxic 6 months (short course) treatment. Due to shortening
of duration of treatment, the treatment completion rate has
increased.
SHORT COURSE CHEMOTHERAPY(DOTS)
• After several years of trials, the WHO introduced 6–8 months
multidrug ‘short course’ regimens in 1995 under DOTS programme
(Directly Observed Treatment, Short course chemotherapy).
• In DOTS Programme, the patients are treated in two phases.
• All regimens have an initial intensive phase with 4–5 drugs given for
2–3 months and a continuation phase with 2–3 drugs lasting 4–5
months.
• The aim of intensive phase is:
• To kill the Mycobacterium rapidly.
• To bringing about rapid sputum conversion (from sputum positive
to sputum negative).
• To provide fast symptomatic relief.
• The aim of continuation phase is:
• To eliminate there manning bacilli so that relapse does not occur.
• Previously, there used to be three categories of tuberculosis patients
for the purpose of treatment under DOTS.
• These were Category I, Category II and Category III.
• New guidelines with revised categorization of patients were brought
out in 2010. According to these guidelines, the category III was
merged with category I, and patients of TB are now classified as
• ‘New cases’ or category I patients ,
• ‘Previously treated’ or category II patients, and
• Drug resistant MDR-TB patients.
New patients (Category I patients)
• The new smear positive TB patients who in the past have never been
exposed to anti-TB drugs are called New patients or Category I
patients.
• In these type of patients, the intensive phase treatment for two
months is started with Four drugs (HRZE) which includes three
bactericidal drugs. This reduces the risk of bacilli becoming resistant.
• After the intensive phase, the continuation phase is started which
includes two highly effective mycobactericidal drugs (HR). This phase
is continued for four months, which is enough for effective cure as
only few bacilli are left after the intensive phase.
Previously treated patients (Category II
patients)
• The smear positive TB patients who in the past had been exposed to anti-
TB drugs, but did not complete the course or took inadequate/irregular
medication, or relapsed after responding, or failed to respond run a higher
risk of harboring drug resistant (DR) bacilli.
• These type of patients are included in previously treated or Category II
patients.
• In these type of patients, the intensive phase treatment is started with Five
drugs (HRZES) which includes four bactericidal drugs. The 1st line drugs
HRZES (5 drugs) are given daily for 2 months and HRZE (4 drugs) for
another one month.
• This is followed by the continuation phase of 3 drugs (HRE) for the next 5
months.
Recommended doses of antitubercular drugs
DRUG Daily dose maximum
mg/kg dose
3 times per week dose
mg/kg daily maximum
Isoniazid (H) 5 (4–6) 300 mg 10 (8–12) 900 mg
Rifampin (R) 10 (8–12) 600 mg 10 (8–12) 600 mg
Pyrazinamide (Z) 25 (20–30) - 35 (30–40) -
Ethambutol (E) 15 (15–20) - 30 (25–35) -
Streptomycin (S)* 15 (12–18) - 15 (12–18) 1000 mg
* Patients over 60 years age—10 mg/kg or 500–750 mg/day (i.m.).
[Adopted from Treatment of Tuberculosis: Guidelines, 4th edition (2010), WHO,
Geneva]
Category-wise treatment regimens for tuberculosis
Category Intensive
phase
Continuation phase Duration
(months)
Comment
I
New patient
2* HRZE daily 4* HR daily 6* Optimal
2 HRZE daily 4 HR thrice weekly 6 Acceptable if DOT ensured
2 HRZE thrice
weekly
4 HR thrice weekly 6 Acceptable if DOT ensured, and no
HIV coinfection or its risk
II
Previously
treated patients
pending DST
result
2 HRZES daily
+
1 HRZE daily
5 HRE daily 8 For patient with low/medium risk of
MDR-TB (failure, default, etc.)
Empirical**
(Standardized)
MDR-regimen
Empirical
(Standardized)
MDR-regimen
18–24 or till DST
result
For patient with high risk of MDR-
TB (failure, 2nd default, contact of
MDR-TB.
DST—Drug sensitivity testing; DOT—Directly observed therapy
H, R, Z, E, S—Standard codes for isoniazid, rifampin, pyrazinamide, ethambutol and streptomycin, respectively.
*—The neumerals indicate duration of a phase/total duration in months.
**—Empirical (Standardized) MDR regimen is country specific depending upon local data and situation
(adopted from WHO guidelines 2010)
MULTIDRUG-RESISTANT (MDR) TUBERCULOSIS
• When the tuberculosis is due to the tubercular bacilli resistant to
both INH & rifampicin and may be any number of other first line
drug/drugs, it is called multidrug-resistant (MDR) tuberculosis.
• It has a more rapid course with worse outcomes.
• Its treatment requires complex multiple 2nd line drug regimens,
which are more expensive, more toxic, and has to be given for longer
duration.
GENERAL PRINCIPLES OF MDR-TB TREATMENT
• The regimen often includes 5–6 drugs, out of which at least 4 drugs
should be certainly effective as efficacy of some drugs may be
uncertain.
• The regimen includes drugs from group I to group IV (alternative
classification) in a hierarchical order.
• Group I drugs (except H and R) can be included, add one injectable
drug (group II), One FQ (group III) and one or two group IV drugs.
Cont…
• Bedaquiline fumarate, a newer anti-tubercular drug has been recently
approved by US-FDA for multi-drug resistant tuberculosis.
• Pyridoxine 100 mg/day is given to all patients during the whole
course of therapy to prevent neurotoxicity of the anti-TB drugs.
RNTCP regimen for MDR-TB
Intensive phase (6–9 months) Continuation phase (18 months)
Kanamycin (Km) Ofloxacin or Levofloxacin
Ofloxacin or Levofloxacin Ethionamide
Ethionamide (Eto) Cycloserine
Cycloserine (Cs) Ethambutol
Pyrazinamide (Z)
Ethambutol (E)
+ Pyridoxine 100 mg/day
Extensively drug-resistant tuberculosis (XDR-
TB)
 The MDR-TB cases, which are also resistant to
o Fluoroquinolones,
o One of the injectable second line drugs and
o May be any number of other drugs, are called as XDR-TB patients.
 The bacilli are resistant to at least 4 most effective mycobactericidal drugs,
viz. H, R,FQs and one of kanamycin or amikacin or capreomycin.
 The Extensively drug-resistant tuberculosis (XDR-TB) patients are very
difficult to treat.
• The RNTCP (2016) has recommended a treatment regimen for XDR-TB
consisting of 7 drugs in the intensive phase (6-12 months) and 6 drugs
in the continuation phase ( 18 months).
• The drugs and their adult daily doses (for 46-70 kg body weight).
Drugs Doses
Capreomycin 1000 mg
Moxifloxacin 400 mg
High dose isoniazid 900 mg
Clofazimine 200 mg
Linezolid 600 mg
PAS 12 g
Amoxicillin/clavulanate (875+125 mg tab) 2 tab morning + one tab evening.
In the continuation phase, injection capreomycin is stopped and the remaining 6
drugs are continued for another 18 months.
Tuberculosis treatment in pregnant women
• The standard 6 months (2HRZE +4HR) regimen can be given to
pregnant women with TB (The WHO and British Thoracic Society
recommendations).
• Streptomycin is contraindicated because it is ototoxic to the foetus.
• Treatment of TB should not be withheld or delayed because of
pregnancy.
• All pregnant women being treated with INH should also receive
pyridoxine 10–25 mg/day
Tuberculosis treatment in breastfeeding women
• All anti-TB drugs are compatible with breastfeeding.
• Full course of ATT should be given to the mother.
• The infant should receive BCG vaccination and6-months isoniazid
preventive treatment after ruling out active TB.
• The children are given INH in a dose of 10mg/kg for 6months.
Chemoprophylaxis of Tuberculosis
• The Aim of chemoprophylaxis is to prevent progression of latent
tubercular infection to active disease.
• The standard drug for chemoprophylaxis of TB is Isoniazid (H) 300 mg (10
mg/kg in children) daily for 6 months.
• The candidates for chemoprophylaxis are as follows:
• Contacts of open cases that show recent Montoux conversion.
• Children with positive Montoux test and a TB patient in the family.
• Neonate of the tubercular mother.
• Patients of leukaemia, diabetes, silicosis, or those who are HIV positive but are not
anergic, or are on corticosteroid therapy who show a positive Montoux test.
• Patients with old inactive disease who are assessed to have received inadequate
therapy.
CORTICOSTEROIDS THERAPY IN TUBERCULOSIS
• Corticosteroids should not be used in routine in tubercular patients.
However, they are used:
• In miliary or severe pulmonary TB patients till the antitubercular drugs
start acting
• When patients show sensitivity to antitubercular drugs.
• To reduce exudation and to prevent strictures formation in organ TB.
• Corticosteroids are contraindicated in intestinal tuberculosis as because
perforation of intestines remains silent(painless and with poorly localized
symptoms) .
*Precaution: Corticosteroids should always be tapered gradually when the
general condition of the patient improves.
TUBERCULOSIS TREATMENT IN AIDS PATIENTS
• In case of M. tuberculosis infection in HIV patients, drugs used are
the same as in non-HIV cases.
• Initial intensive phase therapy with daily HRZE for 2 months is started
immediately on the diagnosis of TB.
• It is followed by a continuation phase of HR for 4–7 months (total 6–9
months).
• Thrice weekly regimen is not advised due to chances of relapse
among HIV positive patients.
• In addition, the risk of acquiring resistance to Rifampicin is increased
as compared to daily treatment.
Mycobacterium avium complex (MAC} infection
• MAC is an opportunistic pathogen
which causes disseminated and multi
focal disease in immunocompromised
(HIV-AIDS) patients.
• The disease develops when cell
mediated immunity is markedly
depressed, i.e. when CD4 count drops
to <50 cells/μL , HIV-RNA load is high
and other opportunistic infections (P.
jirovecii, etc.) are also present.
BEDAQUILINE
• Bedaquiline fumarate, a newer anti-tubercular drug has been recently
approved by US-FDA for multi-drug resistant tuberculosis.
• It is included in the WHO list of essential drugs.
• Mechanism of Action
• It inhibits mycobacterial ATP (adenosine 5’-triphosphate) synthase, by binding
to subunit c of the enzyme. This enzyme is essential for the production of
energy [ATP] in M. tuberculosis.
• Pharmacokinetics
• It is well absorbed orally with wide distribution in all compartments of body.
• The metabolism occurs in liver and excretion via faeces.
• The plasma t ½ is approximately 5.5 months.
• Indications: Pulmonary MDR TB.
• Dosage schedule:
• 400 mg once daily orally for initial two weeks then 200 mg thrice weekly upto
24th week.
• The total duration of treatment is upto 24th week only.
• Adverse effects
• Commonly seen adverse effects are, nausea, headache, arthralgia.
• It also leads to QT prolongation and increases liver enzyme levels.
https://tbcindia.gov.in/showfile.php?lid=3246
Leprosy
• Leprosy is also known as Hansen’s disease and is caused by
Mycobacterium laprae.
• It primarily affects skin, mucous membranes and nerves.
• It is more prevalent among the lowest socioeconomic population.
• It was considered incurable since ages.
• The antileprotic drugs can cure the disease but not the deformities or
defects which have already in occurred. The deformities can be
corrected to some extent by surgery only.
• In India, Multi-Drug Therapy [MDT] was introduced for the treatment
of leprosy as apart of National Leprosy Eradication Programme
(NLEP)in 1982.
Status in the Country
• The year 2016-17 started with 0.86 lakh leprosy cases on record as on
1st April 2016, with PR 0.66/10,000.
• Till then 34 States/ UTs had attained the level of leprosy elimination.
554 districts (81.23%) out of total 682 districts also achieved
elimination by March 2017.
Sign & symptoms
• The first noticeable sign of leprosy is often the development of pale
or pinkish patches of skin that may be insensitive to temperature or
pain.
• This is sometimes accompanied or preceded by nerve problems
including numbness or tenderness in the hands or feet.
Types
Risk factors
• The greatest risk factor for developing leprosy is contact with
another case of leprosy.
• Contacts of people with leprosy are five to eight times more
likely to develop leprosy than members of the general
population.
• Leprosy also occurs more commonly among those living in
poverty.
Diagnosis
• Clinically
• Lepromin skin test
• Biopsy
Management
Drug Class Drugs
Sulfone Dapsone (DDS)
Phenazine derivatives Clofazimine
Antitubercular drugs Rifampicin & Ethionamide
Other antibiotics Ofloxacin, Minocycline,
Moxifloxacin & Clarithromycin
DAPSONE (DDS)
• Dapsone is the oldest, most active and most commonly used drug.
• At very low concentrations, it is leprostatic and at relatively higher
concentrations, it is cidal to many other sulfonamide sensitive
bacteria.
• Dapsone is active against certain protozoa and shows some anti-
inflammatory activity also.
Mechanism of Action:
Dapsone is chemically related to sulfonamides and has
the same mechanism of action i.e. inhibition of PABA
incorporation into folic acid by folate synthase
Pharmacokinetics
• It is well absorbed orally with a widely distribution in different body
parts but, penetration in CSF is poor.
• It is concentrated in skin (especially lepromatous skin), muscles, liver
and kidney. The plasma protein binding is 70%.
• The metabolism occurs in liver & excretion occurs in urine.
• The Metabolites undergo enterohepatic circulation.
• The plasma t½ is more than 24 hrs. Due to retention in tissues and
enterohepatic circulation, the elimination may take 1–2 weeks or
longer.
Adverse effects
• Dapsone is generally well tolerated.
• Some dose related side effects like haemolytic anaemia and gastric
intolerance can occur in some patients.
• Patients with G-6-PD deficiency are more susceptible to haemolysis at
doses > 50 mg/day.
• It is contraindicated in severe anaemia (Hb < 7 g/dl), G-6-PD
deficiency and in patients who are hypersensitive to dapsone.
Indications
• Multibacillary and paucibacillary leprosy.
• Other than leprosy:
• Chloroquine resistant malaria,
• toxoplasmosis, and
• P. jirovecii infection [in combination with pyrimethamine].
SULFONE SYNDROME
• This reaction develops 4–6 weeks after starting dapsone therapy.
• It appears with fever, malaise, lymphadenopathy, desquamation of
skin, jaundice, and anaemia.
• This reaction has become frequent after the introduction of MDT and
mostly seen in malnourished patients.
• Some or all of the above symptoms may occur.
• The treatment of this syndrome includes
• Stopping dapsone,
• Corticosteroid therapy and
• Supportive measures.
CLOFAZIMINE (Clo)
• Clofazimine is a dye with leprostatic and anti-
inflammatory properties.
Mechanism of action
• In M. leprae, it inhibits the mycobacterial growth by
interfering with the template function of DNA, altering the
membrane structure and disrupting the mitochondrial
electron transport chain.
Pharmacokinetics
• It is absorbed orally (40–70%) and accumulates in
macrophages and gets deposited in many tissues including
subcutaneous fat.
• The CSF penetration is poor.
• The plasma t½ is 70 days.
• Dose: 50 -100 mg once daily.
Adverse effects
• clofazimine may lead to photosensitivity in which reddish-black
discolouration of skin (specially exposed parts) occurs.
• Discolouration of hair, conjunctiva and body secretions cause
cosmetic problems.
• Dryness of skin and itching can also occur.
• Clofazimine should be avoided during early pregnancy and in patients
with poor liver or kidney functions.
Indications
• Leprosy [as a component of multidrug therapy (MDT)]
• Lepra reaction [due to its anti-inflammatory property]
RIFAMPICIN (R)
• It is the most potent cidal drug for M.leprae.
• The leprosy patients are made noncontagious within 3–7
days of starting therapy with rifampicin as 99.99%
M.lepraeare killed within this period.
• It is not given alone but has been included in the MDT of
leprosy whereby it shortens the duration of treatment and
prevents the development of resistance.
• In MDT, rifampicin is given in a 600 mg monthly dose. It is
effective and practically non-toxic.
• It should not be given during ‘erythema nodosum leprosum’
(ENL) and ‘reversal reaction’ in leprosy patients, because it
can release large quantities of mycobacterial antigens by
inducing rapid bacillary killing.
• It should be avoided in renal and hepatic compromised
patients.
FLUOROQUINOLONES
• Many fluoroquinolones like ofloxacin and moxifloxacin are
highly effective against Myocobacterium leprae.
• The most commonly used FQ in leprosy is ofloxacin.
• It is cidal to M. leprae.
• It is used only when rifampicin is intolerable.
• Dose: 400 mg daily.
MINOCYCLINE
• It has good antileprotic activity, but lesser than rifampicin.
• It penetrates the M. leprae as well.
• It is a part of alternative MDT regimens.
TREATMENT OF LEPROSY
• The most commonly used classification of leprosy was given
by Ridley and Jopling in 1966 and leprosy was divided into:
• Lepromatous (LL)
• Borderline lepromatous (BL)
• Borderline (BB)
• Borderline tuberculoid (BT)
• Tuberculoid (TT)
• The two extreme types are Tuberculoid (mild form) and
Lepromatous (severe form) types.
Tuberculoid leprosy (TT) Lepromatous leprosy (LL)
Anaesthetic patch Diffuse skin and mucous membrane
infiltration, nodules
Cell mediated immunity (CMI) is
normal
CMI is absent
Lepromin test—positive, Bacilli rarely
found in biopsies
Lepromin test-negative, Skin and
mucous membrane lesions teeming
with bacilli
Prolonged remissions with periodic
exacerbations
Progresses to anaesthesia of distal
parts, atrophy, ulceration, absorption
of digits, etc.
For operational purposes WHO has divided leprosy
into:
• Paucibacillary leprosy (PBL)
• Patient has few bacilli and is noninfectious.
• It includes the TT and BT types.
• Multibacillary leprosy (MBL)
• Patient has large bacillary load and is infectious.
• It includes the LL, BL and BB types.
WHO reclassified leprosy in 1998 into
• Single lesion paucibacillary leprosy (SLPB):
• With a solitary cutaneous lesion.
• Paucibacillary leprosy (PB):
• With 2–5 skin lesions.
• Both SLPB and PB cases are skin smear negative for M. leprae.
• Multibacillary leprosy (MB):
• With > 6 skin lesions, as well as all smear positive cases.
The classification being followed by NLEP since 2009
Paucibacillary (PB) Multibacillary (MB)
 1-5 skin lesions
 No nerve/only one nerve
involvement, + 1–5 skin
lesions.
 Skin smear negative at all
sites.
 6 or more skin lesions
 >1 nerve involved irrespective
of number of skin lesions.
 Skin smear positive at any one
site.
Multidrug therapy (MDT) of leprosy
Drugs Multibacillary Leprosy Paucibacillary Leprosy
Rifampicin 600 mg once in a month (under
supervision)
600 mg once in a month
(under supervision)
Dapsone 100 mg daily self administered 100 mg daily self
administered
Clofazimine 300 mg once a month
supervised and 50 mg daily self
administered
-
Duration 12 months 6 months
Doses should be reduced suitably for children.
ALTERNATIVE REGIMENS
• The alternative regimens are used only in case of rifampin-resistance
or when it is not possible to employ the standard MDT regimen.
• Some of these regimens are :
• Intermittent ROM: Rifampin 600 mg + Ofloxacin 400 mg+ Minocycline 100 mg
are given once a month for 3–6 months for PBL and for 12 or 24 months for
MBL cases
• Single dose ROM: A single dose of rifampin + ofloxacin+ minocycline was
given for single lesion PBL, but this has been discontinued now.
• Intermittent RMMx: Moxifloxacin 400 mg + Minocycline 200 mg + Rifampicin
600 mg is given once a month: Total six doses for PBL and 12 doses for MBL
are given.
Reactions in leprosy
• Two types of reactions can occur in the patients of leprosy.
• The reaction occurring on start of treatment is known as Lepra
reaction and that on completion of therapy is known as Reversal
reaction.
Lepra reaction (ENL) Reversal reaction
Seen in LL TT and BL
Time of Start Coincides with institution of chemotherapy
and/or any intercurrent infection.
Occurs suddenly even after completion
of therapy.
Cause Jarish Herxheimer (Arthus) type of reaction due
to release of antigens from the killed bacilli.
A manifestation of delayed
hypersensitivityto M. leprae antigens.
Symptoms Abrupt onset; existing lesions enlarge, become
red, swollen and painful; several new lesions
may appear. Malaise, fever and other
constitutional symptoms generally accompany
and may be marked.
Cutaneous ulceration, multiple nerve
involvement with swollen, painful and
tender nerves, occurs suddenly.
Severity May be mild, severe or life-threatening, i.e.
erythema nodosum leprosum (ENL)
Moderately severe form.
Treatment 1.Temporary discontinuation of dapsone.
2. Clofazimine(200 mg daily)
3. Prednisolone 40–60 mg/day
4.Thalidomide100–300 mg OD at bed time as
an alternative to Prednisolone.
1. Clofazimine (200 mg daily)
2. Prednisolone 40–60 mg/day
3. Thalidomide is ineffective.
Post Exposure Chemoprophylaxis
Post Exposure Chemoprophylaxis is any preventive
medical treatment started immediately after exposure
to a pathogen, in order to prevent infection by the
pathogen and the development of disease
Eligibility criteria for PEP
•Inclusion criteria
•A person who has been living/working/having
social activities for more than three months and 20
hrs/wk with a newly detected case of leprosy in the
last 1 yr.
•Age ≥2 years.
Exclusion criteria
• Pregnant women (PEP can be given after delivery).
• People receiving rifampicin therapy for any reason in the last two
years (e.g. for tuberculosis [TB] or 5 leprosy treatment, or as a contact
from another index case).
• People with a history of liver disorders (ask for H/o jaundice, right
sided abdominal pain and swelling, swelling in legs and ankles, pale
coloured stool) or renal disorders (ask for H/o decreased urine
output, swelling in legs and ankles, H/o high BP).
• People who have possible signs and/or symptoms of leprosy.
Cont…
• People who have possible signs and/or symptoms of TB
(patients having any of the following symptoms should be
screened for TB: cough for more than two weeks, night
sweats, unexplained fever, weight loss).
• Person with acute febrile illness.
Single-dose rifampicin prophylaxis
• > 35 kg – 600 mg
• 20 – 35 kg – 450 mg
• < 20 kg – 10-15 mg/kg
ATT

Weitere ähnliche Inhalte

Was ist angesagt? (20)

Tb treatment new
Tb treatment newTb treatment new
Tb treatment new
 
Fever with Rash
Fever with RashFever with Rash
Fever with Rash
 
Revised definitions of tb cases and management as per ntep
Revised definitions of tb cases and management as per ntepRevised definitions of tb cases and management as per ntep
Revised definitions of tb cases and management as per ntep
 
diagnosis and treatment of malaria
diagnosis and treatment of malariadiagnosis and treatment of malaria
diagnosis and treatment of malaria
 
CBNAAT
CBNAATCBNAAT
CBNAAT
 
Mdr xdr TB
Mdr xdr TBMdr xdr TB
Mdr xdr TB
 
MDR-TB
MDR-TBMDR-TB
MDR-TB
 
MDR T.B.
MDR T.B.MDR T.B.
MDR T.B.
 
Resistant tb
Resistant tbResistant tb
Resistant tb
 
Antitubercular agents in TB patients with Chronic Liver disease (CLD)
Antitubercular agents in TB patients with Chronic Liver disease (CLD)Antitubercular agents in TB patients with Chronic Liver disease (CLD)
Antitubercular agents in TB patients with Chronic Liver disease (CLD)
 
Line probe assay 26 7-15
Line probe assay 26 7-15Line probe assay 26 7-15
Line probe assay 26 7-15
 
Approach to fever with rashes
Approach to fever with rashesApproach to fever with rashes
Approach to fever with rashes
 
Opportunistic infections
Opportunistic infectionsOpportunistic infections
Opportunistic infections
 
2. fever with rash
2. fever with rash2. fever with rash
2. fever with rash
 
Jerrin's
Jerrin'sJerrin's
Jerrin's
 
Scrub typhus
Scrub typhusScrub typhus
Scrub typhus
 
Management of TB 2019
Management of TB 2019Management of TB 2019
Management of TB 2019
 
scrub typhus
scrub typhusscrub typhus
scrub typhus
 
Diagnosis and management of tuberculosis with revised rntcp
Diagnosis and management of tuberculosis with revised rntcpDiagnosis and management of tuberculosis with revised rntcp
Diagnosis and management of tuberculosis with revised rntcp
 
Pyrexia of unknown origin (PUO)
Pyrexia of unknown origin (PUO)Pyrexia of unknown origin (PUO)
Pyrexia of unknown origin (PUO)
 

Ähnlich wie ATT

Tuberculosis pharmacotherapy
Tuberculosis pharmacotherapyTuberculosis pharmacotherapy
Tuberculosis pharmacotherapysachin panwar
 
Anti-Tuberculosis.ppt
Anti-Tuberculosis.pptAnti-Tuberculosis.ppt
Anti-Tuberculosis.pptPrakash Siju
 
Pharmacology - Antimycobacterials Drugs
Pharmacology - Antimycobacterials DrugsPharmacology - Antimycobacterials Drugs
Pharmacology - Antimycobacterials DrugsAreej Abu Hanieh
 
Pharmacological agents in tuberculosis
Pharmacological agents in tuberculosisPharmacological agents in tuberculosis
Pharmacological agents in tuberculosisDr. Marya Ahsan
 
Pharmacology of antitubercular drugs
Pharmacology of antitubercular drugsPharmacology of antitubercular drugs
Pharmacology of antitubercular drugsRAVISHANKARMANCHUKON
 
anti TB and othes.pptx
anti TB and othes.pptxanti TB and othes.pptx
anti TB and othes.pptxDerejeTsegaye8
 
antituberculardrugs-150922084323-lva1-app6892.pdf
antituberculardrugs-150922084323-lva1-app6892.pdfantituberculardrugs-150922084323-lva1-app6892.pdf
antituberculardrugs-150922084323-lva1-app6892.pdfLahariNaidu7
 
Antitubercular drugs
Antitubercular drugsAntitubercular drugs
Antitubercular drugsDr. Pramod B
 
Unit 4 Anti TB drugs.pdf
Unit 4 Anti TB drugs.pdfUnit 4 Anti TB drugs.pdf
Unit 4 Anti TB drugs.pdfMirzaAnwarBaig1
 
Tuberculosis treatment.pptx
Tuberculosis treatment.pptxTuberculosis treatment.pptx
Tuberculosis treatment.pptxSushil Humane
 
Pharmacotherapy of tuberculosis
Pharmacotherapy of tuberculosisPharmacotherapy of tuberculosis
Pharmacotherapy of tuberculosisRavi Kiran
 
Anti tubercular drugs
Anti tubercular drugsAnti tubercular drugs
Anti tubercular drugsJegan Nadar
 

Ähnlich wie ATT (20)

Tuberculosis pharmacotherapy
Tuberculosis pharmacotherapyTuberculosis pharmacotherapy
Tuberculosis pharmacotherapy
 
Anti tb drugs
Anti tb drugsAnti tb drugs
Anti tb drugs
 
Anti-Tuberculosis.ppt
Anti-Tuberculosis.pptAnti-Tuberculosis.ppt
Anti-Tuberculosis.ppt
 
Tuberculosis
TuberculosisTuberculosis
Tuberculosis
 
Anti tuberculosis drugs
Anti tuberculosis drugsAnti tuberculosis drugs
Anti tuberculosis drugs
 
Non resistant tuberculosis
Non resistant tuberculosisNon resistant tuberculosis
Non resistant tuberculosis
 
Pharmacology - Antimycobacterials Drugs
Pharmacology - Antimycobacterials DrugsPharmacology - Antimycobacterials Drugs
Pharmacology - Antimycobacterials Drugs
 
Pharmacological agents in tuberculosis
Pharmacological agents in tuberculosisPharmacological agents in tuberculosis
Pharmacological agents in tuberculosis
 
Pharmacology of antitubercular drugs
Pharmacology of antitubercular drugsPharmacology of antitubercular drugs
Pharmacology of antitubercular drugs
 
anti TB and othes.pptx
anti TB and othes.pptxanti TB and othes.pptx
anti TB and othes.pptx
 
antituberculardrugs-150922084323-lva1-app6892.pdf
antituberculardrugs-150922084323-lva1-app6892.pdfantituberculardrugs-150922084323-lva1-app6892.pdf
antituberculardrugs-150922084323-lva1-app6892.pdf
 
Antitubercular drugs
Antitubercular drugsAntitubercular drugs
Antitubercular drugs
 
Anti TB drugs
Anti TB drugsAnti TB drugs
Anti TB drugs
 
Unit 4 Anti TB drugs.pdf
Unit 4 Anti TB drugs.pdfUnit 4 Anti TB drugs.pdf
Unit 4 Anti TB drugs.pdf
 
TREATMENT of tb.pptx
TREATMENT of tb.pptxTREATMENT of tb.pptx
TREATMENT of tb.pptx
 
Tuberculosis treatment.pptx
Tuberculosis treatment.pptxTuberculosis treatment.pptx
Tuberculosis treatment.pptx
 
Therapeutics in dentistry
Therapeutics in dentistryTherapeutics in dentistry
Therapeutics in dentistry
 
Anti protozoal agents
Anti protozoal agentsAnti protozoal agents
Anti protozoal agents
 
Pharmacotherapy of tuberculosis
Pharmacotherapy of tuberculosisPharmacotherapy of tuberculosis
Pharmacotherapy of tuberculosis
 
Anti tubercular drugs
Anti tubercular drugsAnti tubercular drugs
Anti tubercular drugs
 

Mehr von Dr. Rupendra Bharti

Macrolides antibiotics (with lincosamide)
Macrolides antibiotics (with lincosamide) Macrolides antibiotics (with lincosamide)
Macrolides antibiotics (with lincosamide) Dr. Rupendra Bharti
 
Non parametric study; Statistical approach for med student
Non parametric study; Statistical approach for med student Non parametric study; Statistical approach for med student
Non parametric study; Statistical approach for med student Dr. Rupendra Bharti
 
Various dermatological conditions and pharmacological approach for management
Various dermatological conditions and pharmacological approach for management Various dermatological conditions and pharmacological approach for management
Various dermatological conditions and pharmacological approach for management Dr. Rupendra Bharti
 
Histaminic Pharmacology; clinical approach toward patients
Histaminic Pharmacology; clinical approach toward patients Histaminic Pharmacology; clinical approach toward patients
Histaminic Pharmacology; clinical approach toward patients Dr. Rupendra Bharti
 
Therapeutic drug monitoring in Pharmacology
Therapeutic drug monitoring in PharmacologyTherapeutic drug monitoring in Pharmacology
Therapeutic drug monitoring in PharmacologyDr. Rupendra Bharti
 
Clinical auditing in pharmacology
Clinical auditing  in pharmacologyClinical auditing  in pharmacology
Clinical auditing in pharmacologyDr. Rupendra Bharti
 
Drugs for constipationa n diarrhoea
Drugs for constipationa n diarrhoea  Drugs for constipationa n diarrhoea
Drugs for constipationa n diarrhoea Dr. Rupendra Bharti
 
Emesis & anti emetics medications
Emesis & anti emetics medications Emesis & anti emetics medications
Emesis & anti emetics medications Dr. Rupendra Bharti
 
Calcium and pth and osteoporosis mbbs
Calcium and pth and osteoporosis mbbsCalcium and pth and osteoporosis mbbs
Calcium and pth and osteoporosis mbbsDr. Rupendra Bharti
 

Mehr von Dr. Rupendra Bharti (20)

Pharmacokinetics,
Pharmacokinetics, Pharmacokinetics,
Pharmacokinetics,
 
Antipsychotics & mania
Antipsychotics & maniaAntipsychotics & mania
Antipsychotics & mania
 
Macrolides antibiotics (with lincosamide)
Macrolides antibiotics (with lincosamide) Macrolides antibiotics (with lincosamide)
Macrolides antibiotics (with lincosamide)
 
Non parametric study; Statistical approach for med student
Non parametric study; Statistical approach for med student Non parametric study; Statistical approach for med student
Non parametric study; Statistical approach for med student
 
Various dermatological conditions and pharmacological approach for management
Various dermatological conditions and pharmacological approach for management Various dermatological conditions and pharmacological approach for management
Various dermatological conditions and pharmacological approach for management
 
Histaminic Pharmacology; clinical approach toward patients
Histaminic Pharmacology; clinical approach toward patients Histaminic Pharmacology; clinical approach toward patients
Histaminic Pharmacology; clinical approach toward patients
 
Cough & Asthma; Pharmacotherapy
Cough & Asthma; PharmacotherapyCough & Asthma; Pharmacotherapy
Cough & Asthma; Pharmacotherapy
 
Therapeutic drug monitoring in Pharmacology
Therapeutic drug monitoring in PharmacologyTherapeutic drug monitoring in Pharmacology
Therapeutic drug monitoring in Pharmacology
 
Chronopharmacology
Chronopharmacology Chronopharmacology
Chronopharmacology
 
Protein therapeutics
Protein therapeuticsProtein therapeutics
Protein therapeutics
 
Clinical auditing in pharmacology
Clinical auditing  in pharmacologyClinical auditing  in pharmacology
Clinical auditing in pharmacology
 
Chelating agents
Chelating agents Chelating agents
Chelating agents
 
Drugs for constipationa n diarrhoea
Drugs for constipationa n diarrhoea  Drugs for constipationa n diarrhoea
Drugs for constipationa n diarrhoea
 
Emesis & anti emetics medications
Emesis & anti emetics medications Emesis & anti emetics medications
Emesis & anti emetics medications
 
Peptic ulcer, GERD; management
Peptic ulcer, GERD; managementPeptic ulcer, GERD; management
Peptic ulcer, GERD; management
 
Bioequivalence
BioequivalenceBioequivalence
Bioequivalence
 
Obesity & its management
Obesity  & its management Obesity  & its management
Obesity & its management
 
Calcium and pth and osteoporosis mbbs
Calcium and pth and osteoporosis mbbsCalcium and pth and osteoporosis mbbs
Calcium and pth and osteoporosis mbbs
 
Opioids Pharma
Opioids  PharmaOpioids  Pharma
Opioids Pharma
 
Coagulant and anticoagulants
Coagulant and anticoagulantsCoagulant and anticoagulants
Coagulant and anticoagulants
 

Kürzlich hochgeladen

VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service MumbaiVIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbaisonalikaur4
 
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls ServiceCall Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Servicesonalikaur4
 
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...narwatsonia7
 
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...narwatsonia7
 
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment BookingCall Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Bookingnarwatsonia7
 
Case Report Peripartum Cardiomyopathy.pptx
Case Report Peripartum Cardiomyopathy.pptxCase Report Peripartum Cardiomyopathy.pptx
Case Report Peripartum Cardiomyopathy.pptxNiranjan Chavan
 
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...rajnisinghkjn
 
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service MumbaiLow Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbaisonalikaur4
 
Statistical modeling in pharmaceutical research and development.
Statistical modeling in pharmaceutical research and development.Statistical modeling in pharmaceutical research and development.
Statistical modeling in pharmaceutical research and development.ANJALI
 
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...narwatsonia7
 
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdf
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdfHemostasis Physiology and Clinical correlations by Dr Faiza.pdf
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdfMedicoseAcademics
 
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...narwatsonia7
 
call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️saminamagar
 
Glomerular Filtration and determinants of glomerular filtration .pptx
Glomerular Filtration and  determinants of glomerular filtration .pptxGlomerular Filtration and  determinants of glomerular filtration .pptx
Glomerular Filtration and determinants of glomerular filtration .pptxDr.Nusrat Tariq
 
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment BookingCall Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment BookingNehru place Escorts
 
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...narwatsonia7
 
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original PhotosBook Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photosnarwatsonia7
 
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 

Kürzlich hochgeladen (20)

VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service MumbaiVIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
 
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls ServiceCall Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Service
 
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
 
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
 
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
 
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment BookingCall Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
 
Case Report Peripartum Cardiomyopathy.pptx
Case Report Peripartum Cardiomyopathy.pptxCase Report Peripartum Cardiomyopathy.pptx
Case Report Peripartum Cardiomyopathy.pptx
 
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...
 
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service MumbaiLow Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
 
Statistical modeling in pharmaceutical research and development.
Statistical modeling in pharmaceutical research and development.Statistical modeling in pharmaceutical research and development.
Statistical modeling in pharmaceutical research and development.
 
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
 
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdf
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdfHemostasis Physiology and Clinical correlations by Dr Faiza.pdf
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdf
 
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
 
call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
 
Glomerular Filtration and determinants of glomerular filtration .pptx
Glomerular Filtration and  determinants of glomerular filtration .pptxGlomerular Filtration and  determinants of glomerular filtration .pptx
Glomerular Filtration and determinants of glomerular filtration .pptx
 
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment BookingCall Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
 
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
 
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
 
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original PhotosBook Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
 
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
 

ATT

  • 1. Tuberculosis, Leprosy & Management Department of Pharmacology Late BRKM GMC Jagdalpur
  • 2. Introduction • Tuberculosis is a chronic granulomatous infectious disease. • The causative organism is Mycobacterium tuberculosis, which is an acid- fast bacillus. • In India, approximately 1000 people die from TB every day. • In India, the control and treatment of TB is covered under a National programme called as ‘The Revised National Tuberculosis Control Programme (RNTCP)’, in which free and full course of treatment is provided to all TB cases. • RNTCP was launched in 1997, and its treatment guidelines were further revised in 2010. • Government of India has declared TB to be a notifiable disease in 2012, so that any clinician, who treats a TB patient, has to notify it to the Government.
  • 3. Epidemic and resistance • India has more new tuberculosis (TB) patients annually than any other country globally, contributing to 27% of the world’s TB burden. • About 2.79 million TB patients are estimated to be added annually. • The Revised National Tuberculosis Control Programme (RNTCP) notified around 1.94 million TB patients in 2016. • Worldwide approximately 4.1% of new TB patients and 19% of previously treated TB patients have multidrug resistant-TB (MDR-TB), i.e. TB resistant to at least two of the first-line drugs – isoniazid and rifampicin.
  • 4. Epidemic and resistance • Extensively drug- resistant TB (XDR-TB), defined as MDR-TB with additional resistance to at least one fluoroquinolone and one second line injectable drug, has been reported by 123 countries. • The proportion of XDR-TB among MDR-TB patients is 6.2% worldwide. The estimated number of MDR/rifampicin resistant (RR)- TB in India is 147 000, accounting for one fourth of the global burden of MDR/RR-TB .
  • 5. Resistance pattern • MDR-TB is 6.19% (CI 5.54–6.90%) among all TB patients with 2.84% (CI 2.27–3.50%) among new and 11.60% (CI 10.21–13.15%) among previously treated TB patients. • Among MDR-TB patients, additional resistance to any fluoroquinolones was 21.82% (17.33–26.87%), and 3.58% (1.8– 6.32%) to any second-line injectable drugs. • Among MDR-TB patients, additional resistance to at least one drug from each of the two classes, i.e. fluoroquinolone and second-line injectable drugs (XDR-TB) was 1.3% (0.36–3.30%).
  • 6. Resistance pattern • Any first- or second line drug resistance among all TB patients is 28.0% (CI 26.77– 29.29%) with 22.54% (CI 21.10–24.10%) among new and 36.82% (CI 34.64–39.04%) among previously treated TB patients. • Any isoniazid resistance is 11.06% (CI 9.97–12.22%) and 25.09% (CI 23.1–-27.11%) among new and previously treated TB patients, respectively. • Any pyrazinamide resistance is 6.95% (CI 6.07–7.91%) and 8.77% (7.53–10.13%) among new and previously treated TB patients, respectively.
  • 7.
  • 8.
  • 9. Severe Symptoms • Persistent cough • Chest pain • Coughing with bloody sputum • Shortness of breath • Urine discoloration • Cloudy & reddish urine • Fever with chills. • Fatigue
  • 10.
  • 11. Diagnosis • Bacteriological test: • Zeihl-Neelsen stain • Auramine stain(fluorescence microscopy) • Sputum culture test: • Lowenstein –Jensen(LJ) solid medium: 4-18 weeks • Liquid medium : 8-14 days • Agar medium : 7 to 14 days
  • 12. • Radiography: • Chest X-Ray(CXR) • Nucleic acid amplification: • Species identification ; several hours • Low sensitivity, high cost • Most useful for the rapid confirmation of tuberculosis in persons with AFB-positive sputum • AFB-negative pulmonary tuberculosis • Extra pulmonary tuberculosis
  • 13. • Tuberculin skin test (PPD) • Injection of fluid into the skin of the lower arm. • 48-72 hours later – checked for a reaction. • Diagnosis is based on the size of the wheal. • 1 dose = 0.1 ml contains 0.04μg Tuberculin PPD.
  • 15. Preventive measures 1) Mask 2) BCG vaccine 3) Regular medical follow up 4) Isolation of Patient 5) Ventilation 6) Natural sunlight 7) UV germicidal irradiation
  • 17. BCG vaccine • Bacille Calmette Guerin (BCG). • First used in 1921. • Only vaccine available today for protection against tuberculosis. • It is most effective in protecting children from the disease. • Given 0.1 ml intradermally. • Duration of Protection 15 to 20 years • Efficacy 0 to 80%. • Should be given to all healthy infants as soon as possible after birth unless the child presented with symptomatic HIV infection
  • 18. According to their clinical utility, the anti- tubercular drugs have been classified as follows: • First line anti-tubercular drugs: • These drugs are highly effective with low toxicity profile. • These drugs are the first choice drugs and are used in routine. • These drugs are always given in combinations for therapeutic purpose.
  • 19. • Second line anti-tubercular drugs: • These drugs have medium anti-tubercular efficacy. • The toxic effects of these drugs appear due to the longer duration of anti-tubercular therapy. • These drugs are used as reserve drugs and always given in different combinations with first line drugs.
  • 20. FIRST LINE DRUGS SECOND LINE DRUGS 1. Rifampin (R) 2. Isoniazid (H) 3. Ethambutol (E) 4. Pyrazinamide (Z) 5. Streptomycin (S) Rifabutin Thiacetazone Ethionamide Prothionamide Cycloserine Para-aminosalicylic acid Fluoroquinolones • Moxifloxacin • Ciprofloxacin • Ofloxacin • Levofloxacin Injectable drugs • Kanamycin • Amikacin • Capreomycin
  • 21.
  • 22.
  • 23. ISONIAZID (isonicotinic acid hydrazide, H) • Isoniazid (INH) is an essential component of all antitubercular regimens. • It is primarily a tuberculocidal drug. It kills the fast multiplying organisms rapidly. The dormant organisms are inhibited only. • It acts both on extracellular as well as intracellular TB (bacilli present within macrophages), and is equally active both in acidic and alkaline medium.
  • 24. Mechanism of action • INH acts by inhibiting the synthesis of mycolic acids in the mycobacterial cell wall. • The mycobacterial cell wall is composed as fatty acid known as mycolic acids. • Inhibiting mycolic acid leads to a disruption in the mycobacterial cell wall and consequently cell death. • INH has good resistance preventing action also.
  • 25. Pharmacokinetics • Isoniazid is readily absorbed after oral administration. • Absorption is impaired if it is taken with food, particularly high-fatty meals. • The drug diffuses into all body fluids, cells, and caseous material (necrotic tissue resembling cheese that is produced in tuberculous lesions). • The CSF concentration attained is equal to that in plasma. • The metabolism occurs in liver and excretion via kidneys.
  • 26. Adverse effects • Peripheral neuritis and a variety of neurological manifestations (paresthesia, numbness, mental disturbances, rarely convulsions) are the most important dose-dependent toxic effects. • Hepatitis, a major adverse effect, is common in older people, but rare in children. It is due to dose-related damage to hepatocytes and is reversible on stopping the drug. • Other side effects are lethargy, rashes, fever, acne and arthralgia.  Pyridoxine given prophylactically (10 mg/day) prevents the neurotoxicity.  Prophylactic pyridoxine must be given to diabetics, chronic alcoholics, malnourished, pregnant, lactating and HIV infected patients.  INH neurotoxicity is treated by pyridoxine 100 mg/day.
  • 27. RIFAMYCINS (Rifampin (Rifampicin, R), Rifabutin, and Rifapentine) • Rifampicin has broader antimicrobial activity than isoniazid and can be used as part of treatment for several different bacterial infections. • Rifampicin is a semisynthetic derivative of Rifamycin. • It has bactericidal action on Mycobacterium tuberculosis and all its subpopulations. M. leprae is also highly sensitive. • It is also acts similarly against a number of gram-positive and gram- negative bacterias.
  • 28. • It acts best on the slow/intermittent dividing bacilli (spurters). • The cidal effect of rifampicin is similar to INH. • It shows bactericidal effect on both extracellular and intracellular organisms. • It has good sterilizing action (making sputum AFB negative) and the only drug, which shows cidal effect on persisters. • It has good resistance preventing action also.
  • 29. Mechanism of Action • Rifampicin blocks mycobacterial DNA-dependent RNA polymerase enzyme, which inhibits RNA transcription and leads to bacterial cell death. • This action is selective to mycobacterium only and not seen in human cells.
  • 30. Pharmacokinetics • It is well absorbed orally and the bioavailability is nearly 70%. • Its absorption decreases when taken with food; Hence, it should be taken empty stomach only. • It is widely distributed in the body and penetrates intracellularly, enters tubercular cavities, caseous masses and placenta. • It is converted to an active metabolite in liver, which is excreted mainly in bile & to lesser extend in the urine and undergoes enterohepatic circulation. • It has variable plasma t½ ranging from 2–5 hrs.
  • 31. Adverse effects • Hepatitis, a major adverse effect, is dose-related and generally occurs in hepatic impaired patients. It is rarely seen with a dose less than 600 mg/day. • Jaundice, if occurs, is reversible on discontinuation of the drug. • Minor adverse reactions are nausea, vomiting, abdominal cramps, flu like syndrome and cutaneous syndrome in which patient presents as flushing, pruritus & rash. [Note: Urine, faeces, sweat and other secretions become orange-red in color, so patients should be informed in advance that it is harmless. Tears may even stain soft contact lenses orange-red.]
  • 32. Other uses of Rifampicin • Rifampicin is used in the treatment of Leprosy. • It is used in prophylaxis of Meningococcal and H. influenzae meningitis and carrier state. • Rifampicin+ Doxycycline is the first line therapy of brucellosis
  • 33. RIFABUTIN • Rifabutin is a derivative of rifampin, and is preferred for TB patients coinfected with the human immunodeficiency virus (HIV) who are receiving protease inhibitors (PIs) or non-nucleoside reverse transcriptase inhibitors (NNRTIs). • Rifabutin is a less potent inducer of cytochrome P450 enzymes as compared to rifampicin. Hence, drug interactions are less. • Rifabutin has adverse effects similar to those of rifampicin but can also cause uveitis, skin hyperpigmentation, and neutropenia.
  • 34. Rifapentine • It is a rifampin congener. • Used against M. tuberculosis and MAC. • Rifapentine is as potent an enzyme inducer as rifampin. • The only indication of rifapentine (600 mg once/twice weekly) is in the continuation phase of treatment of TB, as a substitute of daily rifampin. • Once weekly rifapentine combined with INH has also been employed to treat latent TB.
  • 35. PYRAZINAMIDE (Z) • Pyrazinamide (Z) is chemically similar to INH. • It is weakly tuberculocidal and more active in acidic medium. • It is more lethal to intracellularly located bacilli and to those at sites showing an inflammatory response (pH is acidic at both these locations). • It is highly effective during the first 2 months of therapy. • By killing the residual intracellular bacilli it has good ‘sterilizing’ activity.
  • 36. Mechanism of action • It is not well established, but like INH, it is also converted inside the mycobacterial cell into an active metabolite pyrazinoic acid by an enzyme pyrazinamidase. • This metabolite gets accumulated in acidic medium and probably inhibits mycolic acid synthesis.
  • 37. • Pharmacokinetics • Pyrazinamide is absorbed orally and widely distributed. It has good penetration in CSF due to which it is highly useful in meningeal TB. • The metabolism occurs in liver and excretion via kidneys. • The plasma t½ is 6–10 hours. • Adverse effects • The dose related side effect is hepatotoxicity. • Other adverse effects are abdominal distress, hyperuricemia, arthralgia, flushing, rashes, fever and loss of diabetes control.
  • 38. ETHAMBUTOL (E) • Ethambutol is a tuberculostatic antitubercular drug. • It is more active against fast multiplying bacilli. • It helps the early conversion of sputum positive patients to sputum negative ones when added to the triple drug regimen of RHZ. • Primarily, it is used to prevent development of drug resistance.
  • 39. • Mechanism of action • The exact mechanism of action of ethambutol is unknown. • Probably, it interferes with the mycolic acid incorporation in mycobacterial cell wall. • Pharmacokinetics • It is absorbed orally and is widely distributed in all compartment of body. • It penetrates meninges in completely and is temporarily stored in RBCs. • The excretion occurs via kidneys through glomerular filtration as well as tubular secretion. • The plasma t½ is nearly 4 hrs.
  • 40. Adverse effects • The most important dose and duration dependent side effect is Optic neuritis. • It causes loss of visual acuity, colour vision and field defects. • In colour vision defect, there is loss of ability to differentiate between red and green colour. • Hyperuricemia may occur due to interference with urate excretion
  • 41. DRUG ADVERSE EFFECTS COMMENTS Isoniazid Hepatic enzyme elevation, hepatitis, peripheral neuropathy. Take baseline hepatic enzyme measurements; repeat if abnormal or patient is at risk or symptomatic. Clinically significant interaction with phenytoin and Carbamazepine. Rifampicin Hepatitis, GI upset, rash, flu-like syndrome, significant interaction with several drugs. Take baseline hepatic enzyme measurements and CBC; Repeat if abnormal or patient is at risk or symptomatic. Warn patient that urine and tears may turn red-orange in color. Ethambutol Optic neuritis with blurred vision, red-green color blindness Establish baseline visual acuity and color vision; test monthly. Pyrazinamide Nausea, hepatitis, hyperuricemia, rash,arthralgia, gout (rare) Take baseline hepatic enzymes and uric acid measurements; repeat if abnormal or patient is at risk or symptomatic.
  • 42. STREPTOMYCIN (S) • The pharmacology of streptomycin has been already described with aminoglycosides. • It was the first clinically useful antitubercular drug. • The tuberculocidal effect is less as compare to INH or Rifampicin. • It exerts its effect on extracellular bacilli only (because of poor penetration into cells). • It penetrates tubercular cavities, but does not cross the CSF, and has poor action in acidic medium. • It has lower margin of safety. • Ototoxicity & nephrotoxicity are the major side effects like other aminoglycosides. • Streptomycin is used in addition to other ATT in DOTs category-II for a period of two months. • It is also labelled as a ‘supplemental’ first line drug.
  • 43. SECOND LINE ANTI-TUBERCULAR DRUGS • Second line anti-tubercular drugs are more toxic and less efficacious as compared to first line anti-TB drugs. • These are used when the tubercular bacilli show a resistance to the first line antitubercular drugs or when first line anti –TBdrugs are not tolerated or contraindicated
  • 44. Kanamycin (Km), Amikacin (Am) • These are tuberculocidal aminoglycosides and very much similar to streptomycin in antitubercular activity, pharmacokinetic properties and adverse effects. • Many streptomycin resistant and MDR strains of M.tuberculosisare sensitive to these drugs. • During the intensive phase of MDR-TB treatment,one of these drugs is mostly included in the regimen. • The RNTCP standardized regimen for MDR-TB includes kanamycindue to its lesser cost as compared to amikacin. • It is administered intramuscularly in an OD dose of 0.75–1.0 g/day (10–15 mg/kg/day).
  • 45. Capreomycin (Cm) • It is chemically very different from aminoglycosides, but has similar bactericidal activity against Mycobacterium. • It is administered by i.m. route. • It is used only as an alternative to Streptomycin and Amikacin resistant M. tuberculosis. • It is administered intramuscularly in an OD dose of 0.75–1.0 g/day.
  • 46. Fluoroquinolones • The fluoroquinolones are potent oral bactericidal drugs for TB. • The preferred ones are moxifloxacin and levofloxacin. • They have an important place in the treatment of multidrug-resistant tuberculosis as they penetrate cells and kill mycobacteria lodged inside the macrophages. • The Antitubercular Doses are: • Moxifloxacin-400mgOD, • Levofloxacin-750mgOD, • Ofloxacin -800 mg OD.
  • 47. Ethionamide • This is sulfur containing structural analog of isoniazid that also disrupts mycolic acid synthesis. It acts on both extracellular and intracellular bacilli. • It is widely distributed in all compartment of the body, including the CSF. • The metabolism occurs in liver with plasma t½ of 2-3 hrs. • Adverse effects are anorexia nausea, sulfurous belching, vomiting, hepatotoxicity and peripheral neuritis. Pyridoxine (100 mg/day) can be used to treat the neurological adverse effects. • Ethionamide is given in escalated dosage schedule as follows: 250 mg/day, and increased every 5–6 days to reach 750 mg daily (10–15 mg/kg/day). This is done to improve tolerance.
  • 48. Cycloserine • This is an orally effective tuberculostatic drug. • It disrupts d-alanine incorporation into the bacterial cell wall. • It is well distributed in all compartment of the body, including the CSF. • The only 1/3 fraction in liver and the remaining part is excreted via kidneys in a unchanged form.
  • 49. Cycloserine • Commonly seen side effects are CNS disturbances like lethargy, anxiety, and suicidal tendency. Therefore, in patients with history of seizure and other mental illness, it is contraindicated. • Pyridoxine (100 mg/day) can be used to treat the neurological adverse effects. • It is given in escalated dosage schedule as follows::Start with 250 mg BD and increase to750 mg/day, if tolerated.
  • 50. Para-amino salicylic acid (PAS) • PAS acts by the same mechanism as sulfonamides. • It is tuberculostatic and one of the least active drug. • It is absorbed completely by the oral route and distributed all over body except in CSF. • Some of the common side effects are anorexia, nausea, epigastric pain, rashes, fever, malaise, hypokalaemia, goiter, liver dysfunction and rarely blood dyscrasias. • PAS is used only in resistant TB when one of the tuberculocidal drugs or static drugs cannot be used. • PAS is given in divided doses of 10–12 gm daily.
  • 51. TREATMENT OF TUBERCULOSIS • In the previous days, the full treatment course for a tuberculosis patient used to be for nine to twelve months. • The therapy of tuberculosis has undergone remarkable changes now. • The ‘conventional’ treatment has been replaced by more effective and less toxic 6 months (short course) treatment. Due to shortening of duration of treatment, the treatment completion rate has increased.
  • 52. SHORT COURSE CHEMOTHERAPY(DOTS) • After several years of trials, the WHO introduced 6–8 months multidrug ‘short course’ regimens in 1995 under DOTS programme (Directly Observed Treatment, Short course chemotherapy). • In DOTS Programme, the patients are treated in two phases. • All regimens have an initial intensive phase with 4–5 drugs given for 2–3 months and a continuation phase with 2–3 drugs lasting 4–5 months.
  • 53. • The aim of intensive phase is: • To kill the Mycobacterium rapidly. • To bringing about rapid sputum conversion (from sputum positive to sputum negative). • To provide fast symptomatic relief. • The aim of continuation phase is: • To eliminate there manning bacilli so that relapse does not occur.
  • 54. • Previously, there used to be three categories of tuberculosis patients for the purpose of treatment under DOTS. • These were Category I, Category II and Category III. • New guidelines with revised categorization of patients were brought out in 2010. According to these guidelines, the category III was merged with category I, and patients of TB are now classified as • ‘New cases’ or category I patients , • ‘Previously treated’ or category II patients, and • Drug resistant MDR-TB patients.
  • 55. New patients (Category I patients) • The new smear positive TB patients who in the past have never been exposed to anti-TB drugs are called New patients or Category I patients. • In these type of patients, the intensive phase treatment for two months is started with Four drugs (HRZE) which includes three bactericidal drugs. This reduces the risk of bacilli becoming resistant. • After the intensive phase, the continuation phase is started which includes two highly effective mycobactericidal drugs (HR). This phase is continued for four months, which is enough for effective cure as only few bacilli are left after the intensive phase.
  • 56. Previously treated patients (Category II patients) • The smear positive TB patients who in the past had been exposed to anti- TB drugs, but did not complete the course or took inadequate/irregular medication, or relapsed after responding, or failed to respond run a higher risk of harboring drug resistant (DR) bacilli. • These type of patients are included in previously treated or Category II patients. • In these type of patients, the intensive phase treatment is started with Five drugs (HRZES) which includes four bactericidal drugs. The 1st line drugs HRZES (5 drugs) are given daily for 2 months and HRZE (4 drugs) for another one month. • This is followed by the continuation phase of 3 drugs (HRE) for the next 5 months.
  • 57. Recommended doses of antitubercular drugs DRUG Daily dose maximum mg/kg dose 3 times per week dose mg/kg daily maximum Isoniazid (H) 5 (4–6) 300 mg 10 (8–12) 900 mg Rifampin (R) 10 (8–12) 600 mg 10 (8–12) 600 mg Pyrazinamide (Z) 25 (20–30) - 35 (30–40) - Ethambutol (E) 15 (15–20) - 30 (25–35) - Streptomycin (S)* 15 (12–18) - 15 (12–18) 1000 mg * Patients over 60 years age—10 mg/kg or 500–750 mg/day (i.m.). [Adopted from Treatment of Tuberculosis: Guidelines, 4th edition (2010), WHO, Geneva]
  • 58. Category-wise treatment regimens for tuberculosis Category Intensive phase Continuation phase Duration (months) Comment I New patient 2* HRZE daily 4* HR daily 6* Optimal 2 HRZE daily 4 HR thrice weekly 6 Acceptable if DOT ensured 2 HRZE thrice weekly 4 HR thrice weekly 6 Acceptable if DOT ensured, and no HIV coinfection or its risk II Previously treated patients pending DST result 2 HRZES daily + 1 HRZE daily 5 HRE daily 8 For patient with low/medium risk of MDR-TB (failure, default, etc.) Empirical** (Standardized) MDR-regimen Empirical (Standardized) MDR-regimen 18–24 or till DST result For patient with high risk of MDR- TB (failure, 2nd default, contact of MDR-TB. DST—Drug sensitivity testing; DOT—Directly observed therapy H, R, Z, E, S—Standard codes for isoniazid, rifampin, pyrazinamide, ethambutol and streptomycin, respectively. *—The neumerals indicate duration of a phase/total duration in months. **—Empirical (Standardized) MDR regimen is country specific depending upon local data and situation (adopted from WHO guidelines 2010)
  • 59.
  • 60. MULTIDRUG-RESISTANT (MDR) TUBERCULOSIS • When the tuberculosis is due to the tubercular bacilli resistant to both INH & rifampicin and may be any number of other first line drug/drugs, it is called multidrug-resistant (MDR) tuberculosis. • It has a more rapid course with worse outcomes. • Its treatment requires complex multiple 2nd line drug regimens, which are more expensive, more toxic, and has to be given for longer duration.
  • 61. GENERAL PRINCIPLES OF MDR-TB TREATMENT • The regimen often includes 5–6 drugs, out of which at least 4 drugs should be certainly effective as efficacy of some drugs may be uncertain. • The regimen includes drugs from group I to group IV (alternative classification) in a hierarchical order. • Group I drugs (except H and R) can be included, add one injectable drug (group II), One FQ (group III) and one or two group IV drugs.
  • 62. Cont… • Bedaquiline fumarate, a newer anti-tubercular drug has been recently approved by US-FDA for multi-drug resistant tuberculosis. • Pyridoxine 100 mg/day is given to all patients during the whole course of therapy to prevent neurotoxicity of the anti-TB drugs.
  • 63. RNTCP regimen for MDR-TB Intensive phase (6–9 months) Continuation phase (18 months) Kanamycin (Km) Ofloxacin or Levofloxacin Ofloxacin or Levofloxacin Ethionamide Ethionamide (Eto) Cycloserine Cycloserine (Cs) Ethambutol Pyrazinamide (Z) Ethambutol (E) + Pyridoxine 100 mg/day
  • 64. Extensively drug-resistant tuberculosis (XDR- TB)  The MDR-TB cases, which are also resistant to o Fluoroquinolones, o One of the injectable second line drugs and o May be any number of other drugs, are called as XDR-TB patients.  The bacilli are resistant to at least 4 most effective mycobactericidal drugs, viz. H, R,FQs and one of kanamycin or amikacin or capreomycin.  The Extensively drug-resistant tuberculosis (XDR-TB) patients are very difficult to treat.
  • 65. • The RNTCP (2016) has recommended a treatment regimen for XDR-TB consisting of 7 drugs in the intensive phase (6-12 months) and 6 drugs in the continuation phase ( 18 months). • The drugs and their adult daily doses (for 46-70 kg body weight). Drugs Doses Capreomycin 1000 mg Moxifloxacin 400 mg High dose isoniazid 900 mg Clofazimine 200 mg Linezolid 600 mg PAS 12 g Amoxicillin/clavulanate (875+125 mg tab) 2 tab morning + one tab evening. In the continuation phase, injection capreomycin is stopped and the remaining 6 drugs are continued for another 18 months.
  • 66. Tuberculosis treatment in pregnant women • The standard 6 months (2HRZE +4HR) regimen can be given to pregnant women with TB (The WHO and British Thoracic Society recommendations). • Streptomycin is contraindicated because it is ototoxic to the foetus. • Treatment of TB should not be withheld or delayed because of pregnancy. • All pregnant women being treated with INH should also receive pyridoxine 10–25 mg/day
  • 67. Tuberculosis treatment in breastfeeding women • All anti-TB drugs are compatible with breastfeeding. • Full course of ATT should be given to the mother. • The infant should receive BCG vaccination and6-months isoniazid preventive treatment after ruling out active TB. • The children are given INH in a dose of 10mg/kg for 6months.
  • 68. Chemoprophylaxis of Tuberculosis • The Aim of chemoprophylaxis is to prevent progression of latent tubercular infection to active disease. • The standard drug for chemoprophylaxis of TB is Isoniazid (H) 300 mg (10 mg/kg in children) daily for 6 months. • The candidates for chemoprophylaxis are as follows: • Contacts of open cases that show recent Montoux conversion. • Children with positive Montoux test and a TB patient in the family. • Neonate of the tubercular mother. • Patients of leukaemia, diabetes, silicosis, or those who are HIV positive but are not anergic, or are on corticosteroid therapy who show a positive Montoux test. • Patients with old inactive disease who are assessed to have received inadequate therapy.
  • 69. CORTICOSTEROIDS THERAPY IN TUBERCULOSIS • Corticosteroids should not be used in routine in tubercular patients. However, they are used: • In miliary or severe pulmonary TB patients till the antitubercular drugs start acting • When patients show sensitivity to antitubercular drugs. • To reduce exudation and to prevent strictures formation in organ TB. • Corticosteroids are contraindicated in intestinal tuberculosis as because perforation of intestines remains silent(painless and with poorly localized symptoms) . *Precaution: Corticosteroids should always be tapered gradually when the general condition of the patient improves.
  • 70. TUBERCULOSIS TREATMENT IN AIDS PATIENTS • In case of M. tuberculosis infection in HIV patients, drugs used are the same as in non-HIV cases. • Initial intensive phase therapy with daily HRZE for 2 months is started immediately on the diagnosis of TB. • It is followed by a continuation phase of HR for 4–7 months (total 6–9 months). • Thrice weekly regimen is not advised due to chances of relapse among HIV positive patients. • In addition, the risk of acquiring resistance to Rifampicin is increased as compared to daily treatment.
  • 71. Mycobacterium avium complex (MAC} infection • MAC is an opportunistic pathogen which causes disseminated and multi focal disease in immunocompromised (HIV-AIDS) patients. • The disease develops when cell mediated immunity is markedly depressed, i.e. when CD4 count drops to <50 cells/μL , HIV-RNA load is high and other opportunistic infections (P. jirovecii, etc.) are also present.
  • 72. BEDAQUILINE • Bedaquiline fumarate, a newer anti-tubercular drug has been recently approved by US-FDA for multi-drug resistant tuberculosis. • It is included in the WHO list of essential drugs. • Mechanism of Action • It inhibits mycobacterial ATP (adenosine 5’-triphosphate) synthase, by binding to subunit c of the enzyme. This enzyme is essential for the production of energy [ATP] in M. tuberculosis.
  • 73. • Pharmacokinetics • It is well absorbed orally with wide distribution in all compartments of body. • The metabolism occurs in liver and excretion via faeces. • The plasma t ½ is approximately 5.5 months. • Indications: Pulmonary MDR TB. • Dosage schedule: • 400 mg once daily orally for initial two weeks then 200 mg thrice weekly upto 24th week. • The total duration of treatment is upto 24th week only. • Adverse effects • Commonly seen adverse effects are, nausea, headache, arthralgia. • It also leads to QT prolongation and increases liver enzyme levels. https://tbcindia.gov.in/showfile.php?lid=3246
  • 74.
  • 75.
  • 76.
  • 78. • Leprosy is also known as Hansen’s disease and is caused by Mycobacterium laprae. • It primarily affects skin, mucous membranes and nerves. • It is more prevalent among the lowest socioeconomic population. • It was considered incurable since ages. • The antileprotic drugs can cure the disease but not the deformities or defects which have already in occurred. The deformities can be corrected to some extent by surgery only. • In India, Multi-Drug Therapy [MDT] was introduced for the treatment of leprosy as apart of National Leprosy Eradication Programme (NLEP)in 1982.
  • 79. Status in the Country • The year 2016-17 started with 0.86 lakh leprosy cases on record as on 1st April 2016, with PR 0.66/10,000. • Till then 34 States/ UTs had attained the level of leprosy elimination. 554 districts (81.23%) out of total 682 districts also achieved elimination by March 2017.
  • 80.
  • 81.
  • 82.
  • 83. Sign & symptoms • The first noticeable sign of leprosy is often the development of pale or pinkish patches of skin that may be insensitive to temperature or pain. • This is sometimes accompanied or preceded by nerve problems including numbness or tenderness in the hands or feet.
  • 84. Types
  • 85. Risk factors • The greatest risk factor for developing leprosy is contact with another case of leprosy. • Contacts of people with leprosy are five to eight times more likely to develop leprosy than members of the general population. • Leprosy also occurs more commonly among those living in poverty.
  • 87. Management Drug Class Drugs Sulfone Dapsone (DDS) Phenazine derivatives Clofazimine Antitubercular drugs Rifampicin & Ethionamide Other antibiotics Ofloxacin, Minocycline, Moxifloxacin & Clarithromycin
  • 88. DAPSONE (DDS) • Dapsone is the oldest, most active and most commonly used drug. • At very low concentrations, it is leprostatic and at relatively higher concentrations, it is cidal to many other sulfonamide sensitive bacteria. • Dapsone is active against certain protozoa and shows some anti- inflammatory activity also.
  • 89. Mechanism of Action: Dapsone is chemically related to sulfonamides and has the same mechanism of action i.e. inhibition of PABA incorporation into folic acid by folate synthase
  • 90. Pharmacokinetics • It is well absorbed orally with a widely distribution in different body parts but, penetration in CSF is poor. • It is concentrated in skin (especially lepromatous skin), muscles, liver and kidney. The plasma protein binding is 70%. • The metabolism occurs in liver & excretion occurs in urine. • The Metabolites undergo enterohepatic circulation. • The plasma t½ is more than 24 hrs. Due to retention in tissues and enterohepatic circulation, the elimination may take 1–2 weeks or longer.
  • 91. Adverse effects • Dapsone is generally well tolerated. • Some dose related side effects like haemolytic anaemia and gastric intolerance can occur in some patients. • Patients with G-6-PD deficiency are more susceptible to haemolysis at doses > 50 mg/day. • It is contraindicated in severe anaemia (Hb < 7 g/dl), G-6-PD deficiency and in patients who are hypersensitive to dapsone.
  • 92. Indications • Multibacillary and paucibacillary leprosy. • Other than leprosy: • Chloroquine resistant malaria, • toxoplasmosis, and • P. jirovecii infection [in combination with pyrimethamine].
  • 93. SULFONE SYNDROME • This reaction develops 4–6 weeks after starting dapsone therapy. • It appears with fever, malaise, lymphadenopathy, desquamation of skin, jaundice, and anaemia. • This reaction has become frequent after the introduction of MDT and mostly seen in malnourished patients. • Some or all of the above symptoms may occur. • The treatment of this syndrome includes • Stopping dapsone, • Corticosteroid therapy and • Supportive measures.
  • 94. CLOFAZIMINE (Clo) • Clofazimine is a dye with leprostatic and anti- inflammatory properties. Mechanism of action • In M. leprae, it inhibits the mycobacterial growth by interfering with the template function of DNA, altering the membrane structure and disrupting the mitochondrial electron transport chain.
  • 95. Pharmacokinetics • It is absorbed orally (40–70%) and accumulates in macrophages and gets deposited in many tissues including subcutaneous fat. • The CSF penetration is poor. • The plasma t½ is 70 days. • Dose: 50 -100 mg once daily.
  • 96. Adverse effects • clofazimine may lead to photosensitivity in which reddish-black discolouration of skin (specially exposed parts) occurs. • Discolouration of hair, conjunctiva and body secretions cause cosmetic problems. • Dryness of skin and itching can also occur. • Clofazimine should be avoided during early pregnancy and in patients with poor liver or kidney functions.
  • 97. Indications • Leprosy [as a component of multidrug therapy (MDT)] • Lepra reaction [due to its anti-inflammatory property]
  • 98. RIFAMPICIN (R) • It is the most potent cidal drug for M.leprae. • The leprosy patients are made noncontagious within 3–7 days of starting therapy with rifampicin as 99.99% M.lepraeare killed within this period. • It is not given alone but has been included in the MDT of leprosy whereby it shortens the duration of treatment and prevents the development of resistance.
  • 99. • In MDT, rifampicin is given in a 600 mg monthly dose. It is effective and practically non-toxic. • It should not be given during ‘erythema nodosum leprosum’ (ENL) and ‘reversal reaction’ in leprosy patients, because it can release large quantities of mycobacterial antigens by inducing rapid bacillary killing. • It should be avoided in renal and hepatic compromised patients.
  • 100. FLUOROQUINOLONES • Many fluoroquinolones like ofloxacin and moxifloxacin are highly effective against Myocobacterium leprae. • The most commonly used FQ in leprosy is ofloxacin. • It is cidal to M. leprae. • It is used only when rifampicin is intolerable. • Dose: 400 mg daily.
  • 101. MINOCYCLINE • It has good antileprotic activity, but lesser than rifampicin. • It penetrates the M. leprae as well. • It is a part of alternative MDT regimens.
  • 102. TREATMENT OF LEPROSY • The most commonly used classification of leprosy was given by Ridley and Jopling in 1966 and leprosy was divided into: • Lepromatous (LL) • Borderline lepromatous (BL) • Borderline (BB) • Borderline tuberculoid (BT) • Tuberculoid (TT) • The two extreme types are Tuberculoid (mild form) and Lepromatous (severe form) types.
  • 103. Tuberculoid leprosy (TT) Lepromatous leprosy (LL) Anaesthetic patch Diffuse skin and mucous membrane infiltration, nodules Cell mediated immunity (CMI) is normal CMI is absent Lepromin test—positive, Bacilli rarely found in biopsies Lepromin test-negative, Skin and mucous membrane lesions teeming with bacilli Prolonged remissions with periodic exacerbations Progresses to anaesthesia of distal parts, atrophy, ulceration, absorption of digits, etc.
  • 104. For operational purposes WHO has divided leprosy into: • Paucibacillary leprosy (PBL) • Patient has few bacilli and is noninfectious. • It includes the TT and BT types. • Multibacillary leprosy (MBL) • Patient has large bacillary load and is infectious. • It includes the LL, BL and BB types.
  • 105. WHO reclassified leprosy in 1998 into • Single lesion paucibacillary leprosy (SLPB): • With a solitary cutaneous lesion. • Paucibacillary leprosy (PB): • With 2–5 skin lesions. • Both SLPB and PB cases are skin smear negative for M. leprae. • Multibacillary leprosy (MB): • With > 6 skin lesions, as well as all smear positive cases.
  • 106. The classification being followed by NLEP since 2009 Paucibacillary (PB) Multibacillary (MB)  1-5 skin lesions  No nerve/only one nerve involvement, + 1–5 skin lesions.  Skin smear negative at all sites.  6 or more skin lesions  >1 nerve involved irrespective of number of skin lesions.  Skin smear positive at any one site.
  • 107. Multidrug therapy (MDT) of leprosy Drugs Multibacillary Leprosy Paucibacillary Leprosy Rifampicin 600 mg once in a month (under supervision) 600 mg once in a month (under supervision) Dapsone 100 mg daily self administered 100 mg daily self administered Clofazimine 300 mg once a month supervised and 50 mg daily self administered - Duration 12 months 6 months Doses should be reduced suitably for children.
  • 108. ALTERNATIVE REGIMENS • The alternative regimens are used only in case of rifampin-resistance or when it is not possible to employ the standard MDT regimen. • Some of these regimens are : • Intermittent ROM: Rifampin 600 mg + Ofloxacin 400 mg+ Minocycline 100 mg are given once a month for 3–6 months for PBL and for 12 or 24 months for MBL cases • Single dose ROM: A single dose of rifampin + ofloxacin+ minocycline was given for single lesion PBL, but this has been discontinued now. • Intermittent RMMx: Moxifloxacin 400 mg + Minocycline 200 mg + Rifampicin 600 mg is given once a month: Total six doses for PBL and 12 doses for MBL are given.
  • 109. Reactions in leprosy • Two types of reactions can occur in the patients of leprosy. • The reaction occurring on start of treatment is known as Lepra reaction and that on completion of therapy is known as Reversal reaction.
  • 110. Lepra reaction (ENL) Reversal reaction Seen in LL TT and BL Time of Start Coincides with institution of chemotherapy and/or any intercurrent infection. Occurs suddenly even after completion of therapy. Cause Jarish Herxheimer (Arthus) type of reaction due to release of antigens from the killed bacilli. A manifestation of delayed hypersensitivityto M. leprae antigens. Symptoms Abrupt onset; existing lesions enlarge, become red, swollen and painful; several new lesions may appear. Malaise, fever and other constitutional symptoms generally accompany and may be marked. Cutaneous ulceration, multiple nerve involvement with swollen, painful and tender nerves, occurs suddenly. Severity May be mild, severe or life-threatening, i.e. erythema nodosum leprosum (ENL) Moderately severe form. Treatment 1.Temporary discontinuation of dapsone. 2. Clofazimine(200 mg daily) 3. Prednisolone 40–60 mg/day 4.Thalidomide100–300 mg OD at bed time as an alternative to Prednisolone. 1. Clofazimine (200 mg daily) 2. Prednisolone 40–60 mg/day 3. Thalidomide is ineffective.
  • 111. Post Exposure Chemoprophylaxis Post Exposure Chemoprophylaxis is any preventive medical treatment started immediately after exposure to a pathogen, in order to prevent infection by the pathogen and the development of disease
  • 112. Eligibility criteria for PEP •Inclusion criteria •A person who has been living/working/having social activities for more than three months and 20 hrs/wk with a newly detected case of leprosy in the last 1 yr. •Age ≥2 years.
  • 113. Exclusion criteria • Pregnant women (PEP can be given after delivery). • People receiving rifampicin therapy for any reason in the last two years (e.g. for tuberculosis [TB] or 5 leprosy treatment, or as a contact from another index case). • People with a history of liver disorders (ask for H/o jaundice, right sided abdominal pain and swelling, swelling in legs and ankles, pale coloured stool) or renal disorders (ask for H/o decreased urine output, swelling in legs and ankles, H/o high BP). • People who have possible signs and/or symptoms of leprosy.
  • 114. Cont… • People who have possible signs and/or symptoms of TB (patients having any of the following symptoms should be screened for TB: cough for more than two weeks, night sweats, unexplained fever, weight loss). • Person with acute febrile illness.
  • 115.
  • 116. Single-dose rifampicin prophylaxis • > 35 kg – 600 mg • 20 – 35 kg – 450 mg • < 20 kg – 10-15 mg/kg