Please help to solve with steps. Determine the Laplace transform of: cos (3t b) f(t) J te 2tcos(t) Solution 1) Since L {cos(3t)} = s/(s^2 + 9), L{t*f(t))= -F\'(s) , L {t cos(3t)} = -(d/ds) s/(s^2 + 9) = (s^2 -9)/(s^2+9)^2 2)since L(t) = 1/s^2 L(e^at*f(t))= F(s-a) , L(t*e^-t) = 1/(s+1)^2, - (1) Since L {cos(t)} = s/(s^2 + 1), L{t*f(t))= -F\'(s) , L {2t cos(t)} = -(2)(d/ds) s/(s^2 + 1) = (2)(s^2 -1)/(s^2 + 1)^2. - (2) adding both (1) + (2) L( t*e^-t + 2t cos(t) ) = 1/(s+1)^2 + (2)(s^2 -1)/(s^2 + 1)^2. .