SlideShare a Scribd company logo
1 of 28
Download to read offline
Non-Bayesian Additive Regularization for
Multimodal Topic Modeling of Large
Collections
Konstantin Vorontsov1,3 • Oleksandr Frei4 • Murat Apishev2
Peter Romov3 • Marina Suvorova2 • Anastasia Yanina1
1Moscow Institute of Physics and Technology,
2Moscow State University • 3Yandex • 4Schlumberger
Topic Models: Post-Processing and Applications,
CIKM’15 Workshop
October 19, 2015 • Melbourne, Australia
Probabilistic Topic Model (PTM) generating a text collection
Topic model explains terms w in documents d by topics t:
p(w|d) =
t
p(w|t)p(t|d)
Разработан спектрально-аналитический подход к выявлению размытых протяженных повторов
в геномных последовательностях. Метод основан на разномасштабном оценивании сходства
нуклеотидных последовательностей в пространстве коэффициентов разложения фрагментов
кривых GC- и GA-содержания по классическим ортогональным базисам. Найдены условия
оптимальной аппроксимации, обеспечивающие автоматическое распознавание повторов
различных видов (прямых и инвертированных, а также тандемных) на спектральной матрице
сходства. Метод одинаково хорошо работает на разных масштабах данных. Он позволяет
выявлять следы сегментных дупликаций и мегасателлитные участки в геноме, районы синтении
при сравнении пары геномов. Его можно использовать для детального изучения фрагментов
хромосом (поиска размытых участков с умеренной длиной повторяющегося паттерна).
•( |!)
•("| ):
, … , #$
" , … , "#$
:
0.018 распознавание
0.013 сходство
0.011 паттерн
… … … …
0.023 днк
0.016 геном
0.009 нуклеотид
… … … …
0.014 базис
0.009 спектр
0.006 ортогональный
… … … …
! "" #" $•
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 2 / 28
Inverse problem: text collection → PTM
Given: D is a set (collection) of documents
W is a set (vocabulary) of terms
ndw = how many times term w appears in document d
Find: parameters φwt =p(w|t), θtd =p(t|d) of the topic model
p(w|d) =
t
φwtθtd .
under nonnegativity and normalization constraints
φwt 0,
w∈W
φwt = 1; θtd 0,
t∈T
θtd = 1.
The ill-posed problem of matrix factorization:
ΦΘ = (ΦS)(S−1
Θ) = Φ Θ
for all S such that Φ , Θ are stochastic.
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 3 / 28
PLSA — Probabilistic Latent Semantic Analysis [Hofmann, 1999]
Constrained maximization of the log-likelihood:
L (Φ, Θ) =
d,w
ndw ln
t
φwtθtd → max
Φ,Θ
EM-algorithm is a simple iteration method for the nonlinear system
E-step:
M-step:



ptdw = norm
t∈T
φwtθtd
φwt = norm
w∈W d∈D
ndw ptdw
θtd = norm
t∈T w∈d
ndw ptdw
where norm
t∈T
xt = max{xt ,0}
s∈T
max{xs ,0} is vector normalization.
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 4 / 28
Graphical Models and Bayesian Inference
In Bayesian approach, Graphical Models are used to make
sophisticated generative models.
David M. Blei. Probabilistic topic models // Communications of the ACM,
2012. Vol. 55, No. 4., Pp. 77–84.
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 5 / 28
Graphical Models and Bayesian Inference
In Bayesian approach, a lot of calculus to be done for each model
to go from the problem statement to the solution algorithm:
Yi Wang. Distributed Gibbs Sampling of Latent Dirichlet Allocation: The Gritty
Details. 2008.
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 6 / 28
ARTM — Additive Regularization of Topic Model
Maximum log-likelihood with additive regularization criterion R:
d,w
ndw ln
t
φwtθtd + R(Φ, Θ) → max
Φ,Θ
EM-algorithm is a simple iteration method for the system
E-step:
M-step:



ptdw = norm
t∈T
φwtθtd
φwt = norm
w∈W d∈D
ndw ptdw + φwt
∂R
∂φwt
θtd = norm
t∈T w∈d
ndw ptdw + θtd
∂R
∂θtd
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 7 / 28
Example: Latent Dirichlet Allocation [Blei, Ng, Jordan, 2003]
Maximum a posteriori (MAP) with Dirichlet prior:
d,w
ndw ln
t
φwtθtd
log-likelihood L (Φ,Θ)
+
t,w
βw ln φwt +
d,t
αt ln θtd
regularization criterion R(Φ,Θ)
→ max
Φ,Θ
EM-algorithm is a simple iteration method for the system
E-step:
M-step:



ptdw = norm
t∈T
φwtθtd
φwt = norm
w∈W d∈D
ndw ptdw + βw
θtd = norm
t∈T w∈d
ndw ptdw + αt
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 8 / 28
Many Bayesian PTMs can be reinterpreted as regularizers in ARTM
smoothing (LDA) for background and stop-words topics
sparsing (anti-LDA) for domain-specific topics
topic decorrelation
topic coherence maximization
supervised learning for classification and regression
semi-supervised learning
using document citations and links
determining number of topics via entropy sparsing
modeling topical hierarchies
modeling temporal topic dynamics
using vocabularies in multilingual topic models
etc.
Vorontsov K. V., Potapenko A. A. Additive Regularization of Topic Models //
Machine Learning. Volume 101, Issue 1 (2015), Pp. 303-323.
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 9 / 28
ARTM — Additive Regularization of Topic Model
Maximum log-likelihood with additive combination of regularizers:
d,w
ndw ln
t
φwtθtd +
n
i=1
τi Ri (Φ, Θ) → max
Φ,Θ
,
where τi are regularization coefficients.
EM-algorithm is a simple iteration method for the system
E-step:
M-step:



ptdw = norm
t∈T
φwtθtd
φwt = norm
w∈W d∈D
ndw ptdw + φwt
n
i=1
τi
∂Ri
∂φwt
θtd = norm
t∈T w∈d
ndw ptdw + θtd
n
i=1
τi
∂Ri
∂θtd
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 10 / 28
Assumptions: what topics would be well-interpretable?
Topics S ⊂ T contain domain-specific terms
p(w|t), t ∈ S are sparse and different (weakly correlated)
Topics B ⊂ T contain background terms
p(w|t), t ∈ B are dense and contain common lexis words
ΦW ×T ΘT×D
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 11 / 28
Smoothing regularization (rethinking LDA)
The non-sparsity assumption for background topics t ∈ B:
φwt are similar to a given distribution βw ;
θtd are similar to a given distribution αt.
t∈B
KLw (βw φwt) → min
Φ
;
d∈D
KLt(αt θtd ) → min
Θ
.
We minimize the sum of these KL-divergences to get a regularizer:
R(Φ, Θ) = β0
t∈B w∈W
βw ln φwt + α0
d∈D t∈B
αt ln θtd → max .
The regularized M-step applied for all t ∈ B coincides with LDA:
φwt ∝ nwt + β0βw , θtd ∝ ntd + α0αt,
which is new non-Bayesian interpretation of LDA [Blei 2003].
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 12 / 28
Sparsing regularizer (further rethinking LDA)
The sparsity assumption for domain-specific topics t ∈ S:
distributions φwt, θtd contain many zero probabilities.
We maximize the sum of KL-divergences KL(β φt) and KL(α θd ):
R(Φ, Θ) = −β0
t∈S w∈W
βw ln φwt − α0
d∈D t∈S
αt ln θtd → max .
The regularized M-step gives “anti-LDA”, for all t ∈ S:
φwt ∝ nwt − β0βw +
, θtd ∝ ntd − α0αt +
.
Varadarajan J., Emonet R., Odobez J.-M. A sparsity constraint for topic
models — application to temporal activity mining // NIPS-2010 Workshop on
Practical Applications of Sparse Modeling: Open Issues and New Directions.
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 13 / 28
Regularization for topics decorrelation
The dissimilarity assumption for domain-specific topics t ∈ S:
if topics are interpretable then they must differ significantly.
We maximize covariances between column vectors φt:
R(Φ) = −
τ
2
t∈S s∈St w∈W
φwtφws → max .
The regularized M-step makes columns of Φ more distant:
φwt ∝ nwt − τφwt
s∈St
φws
+
.
Tan Y., Ou Z. Topic-weak-correlated latent Dirichlet allocation // 7th Int’l
Symp. Chinese Spoken Language Processing (ISCSLP), 2010. — Pp. 224–228.
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 14 / 28
Example: Combination of sparsing, smoothing, and decorrelation
smoothing background topics B in Φ and Θ
sparsing domain-specific topics S = TB in Φ and Θ
decorrelation of topics in Φ
R(Φ, Θ) = + β1
t∈B w∈W
βw ln φwt + α1
d∈D t∈B
αt ln θtd
− β0
t∈S w∈W
βw ln φwt − α0
d∈D t∈S
αt ln θtd
− γ
t∈T s∈Tt w∈W
φwtφws
where β0, α0, β1, α1, γ are regularization coefficients.
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 15 / 28
Multimodal Probabilistic Topic Modeling
Given a text document collection Probabilistic Topic Model finds:
p(t|d) — topic distribution for each document d,
p(w|t) — term distribution for each topic t.
Topics of documents
Words and keyphrases of topics
doc1:
doc2:
doc3:
doc4:
...
Text documents
Topic
Modeling
D
o
c
u
m
e
n
t
s
T
o
p
i
c
s
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 16 / 28
Multimodal Probabilistic Topic Modeling
Multimodal Topic Model finds topical distribution for terms p(w|t),
authors p(a|t), time p(y|t),
Topics of documents
Words and keyphrases of topics
doc1:
doc2:
doc3:
doc4:
...
Text documents
Topic
Modeling
D
o
c
u
m
e
n
t
s
T
o
p
i
c
s
Metadata:
Authors
Data Time
Conference
Organization
URL
etc.
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 17 / 28
Multimodal Probabilistic Topic Modeling
Multimodal Topic Model finds topical distribution for terms p(w|t),
authors p(a|t), time p(y|t), objects on images p(o|t),
linked documents p(d |t), advertising banners p(b|t), users p(u|t)
Topics of documents
Words and keyphrases of topics
doc1:
doc2:
doc3:
doc4:
...
Text documents
Topic
Modeling
D
o
c
u
m
e
n
t
s
T
o
p
i
c
s
Metadata:
Authors
Data Time
Conference
Organization
URL
etc.
Ads Images Links
Users
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 18 / 28
Multimodal extension of ARTM
W m is a vocabulary of tokens of m-th modality, m ∈ M
W = W 1 · · · W M is a joint vocabulary of all modalities
Maximum multimodal log-likelihood with regularization:
m∈M
λm
d∈D w∈W m
ndw ln
t
φwtθtd + R(Φ, Θ) → max
Φ,Θ
EM-algorithm is a simple iteration method for the system
E-step:
M-step:



ptdw = norm
t∈T
φwtθtd
φwt = norm
w∈W m
d∈D
λm(w)ndw ptdw + φwt
∂R
∂φwt
θtd = norm
t∈T w∈d
λm(w)ndw ptdw + θtd
∂R
∂θtd
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 19 / 28
Example: Multi-lingual topic model of Wikipedia
Top 10 words with p(wt) probabilities (in %) from two-language
topic model, based on Russian and English Wikipedia articles with
mutual interlanguage links.
Topic 68 Topic 79
research 4.56 институт 6.03 goals 4.48 матч 6.02
technology 3.14 университет 3.35 league 3.99 игрок 5.56
engineering 2.63 программа 3.17 club 3.76 сборная 4.51
institute 2.37 учебный 2.75 season 3.49 фк 3.25
science 1.97 технический 2.70 scored 2.72 против 3.20
program 1.60 технология 2.30 cup 2.57 клуб 3.14
Topic 88 Topic 251
opera 7.36 опера 7.82 windows 8.00 windows 6.05
conductor 1.69 оперный 3.13 microsoft 4.03 microsoft 3.76
orchestra 1.14 дирижер 2.82 server 2.93 версия 1.86
wagner 0.97 певец 1.65 software 1.38 приложение 1.86
soprano 0.78 певица 1.51 user 1.03 сервер 1.63
performance 0.78 театр 1.14 security 0.92 server 1.54
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 20 / 28
Example: Recommending articles from blog
The quality of recommendations for baseline matrix factorization
model, unimodal model with only modality of user likes, and two
multimodal models incorporating words and user-specified data
(tags and categories).
Model Recall@5 Recall@10 Recall@20
collaborative filtering 0.591 0.652 0.678
likes 0.62 0.59 0.65
likes + words 0.79 0.64 0.68
all modalities 0.80 0.71 0.69
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 21 / 28
BigARTM project
BigARTM features:
Parallel + Online + Multimodal + Regularized Topic Modeling
Out-of-core one-pass processing of Big Data
Built-in library of regularizers and quality measures
BigARTM community:
Code on GitHub: https://github.com/bigartm
Links to docs, discussion group, builds
http://bigartm.org
BigARTM license and programming environment:
Freely available for commercial usage (BSD 3-Clause license)
Cross-platform — Windows, Linux, Mac OS X (32 bit, 64 bit)
Programming APIs: command-line, C++, and Python
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 22 / 28
The BigARTM project: parallel architecture
Concurrent processing of batches D = D1 · · · DB
Simple single-threaded code for ProcessBatch
User controls when to update the model in online algorithm
Deterministic (reproducible) results from run to run
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 23 / 28
Online EM-algorithm for Multi-ARTM
Input: collection D split into batches Db, b = 1, . . . , B;
Output: matrix Φ;
1 initialize φwt for all w ∈ W , t ∈ T;
2 nwt := 0, ˜nwt := 0 for all w ∈ W , t ∈ T;
3 for all batches Db, b = 1, . . . , B
4 iterate each document d ∈ Db at a constant matrix Φ:
(˜nwt) := (˜nwt) + ProcessBatch (Db, Φ);
5 if (synchronize) then
6 nwt := nwt + ˜ndw for all w ∈ W , t ∈ T;
7 φwt := norm
w∈W m
nwt + φwt
∂R
∂φwt
for all w ∈W m, m∈M, t ∈T;
8 ˜nwt := 0 for all w ∈ W , t ∈ T;
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 24 / 28
Online EM-algorithm for Multi-ARTM: ProcessBatch
ProcessBatch iterates documents d ∈ Db at a constant matrix Φ.
matrix (˜nwt) := ProcessBatch (set of documents Db, matrix Φ)
1 ˜nwt := 0 for all w ∈ W , t ∈ T;
2 for all d ∈ Db
3 initialize θtd := 1
|T| for all t ∈ T;
4 repeat
5 ptdw := norm
t∈T
φwtθtd for all w ∈ d, t ∈ T;
6 ntd :=
w∈d
λm(w)ndw ptdw for all t ∈ T;
7 θtd := norm
t∈T
ntd + θtd
∂R
∂θtd
for all t ∈ T;
8 until θd converges;
9 ˜nwt := ˜nwt + λm(w)ndw ptdw for all w ∈ d, t ∈ T;
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 25 / 28
BigARTM vs Gensim vs Vowpal Wabbit
3.7M articles from Wikipedia, 100K unique words
procs train inference perplexity
BigARTM 1 35 min 72 sec 4000
Gensim.LdaModel 1 369 min 395 sec 4161
VowpalWabbit.LDA 1 73 min 120 sec 4108
BigARTM 4 9 min 20 sec 4061
Gensim.LdaMulticore 4 60 min 222 sec 4111
BigARTM 8 4.5 min 14 sec 4304
Gensim.LdaMulticore 8 57 min 224 sec 4455
procs = number of parallel threads
inference = time to infer θd for 100K held-out documents
perplexity is calculated on held-out documents.
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 26 / 28
Running BigARTM in parallel
3.7M articles from Wikipedia, 100K unique words
Amazon EC2 c3.8xlarge (16 physical cores + hyperthreading)
No extra memory cost for adding more threads
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 27 / 28
Summary / Questions?
1 Additive Regularization
PLSA algorithm with regularization on M-step
simple way to incorporate assumptions on the topic model
2 Multimodal Topic Models
incorporate metadata into topic model
parallel text corpuses
3 BigARTM1: Open source implementation of Multi-ARTM
parallel online algorithm
ready for large collections
supports multimodal collections
collection of implemented regularizers
1
http://bigartm.org/
Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 28 / 28

More Related Content

What's hot

Radix Sorting With No Extra Space
Radix Sorting With No Extra SpaceRadix Sorting With No Extra Space
Radix Sorting With No Extra Spacegueste5dc45
 
Quantum Algorithms and Lower Bounds in Continuous Time
Quantum Algorithms and Lower Bounds in Continuous TimeQuantum Algorithms and Lower Bounds in Continuous Time
Quantum Algorithms and Lower Bounds in Continuous TimeDavid Yonge-Mallo
 
Introduction to Probabilistic Latent Semantic Analysis
Introduction to Probabilistic Latent Semantic AnalysisIntroduction to Probabilistic Latent Semantic Analysis
Introduction to Probabilistic Latent Semantic AnalysisNYC Predictive Analytics
 
Сергей Кольцов —НИУ ВШЭ —ICBDA 2015
Сергей Кольцов —НИУ ВШЭ —ICBDA 2015Сергей Кольцов —НИУ ВШЭ —ICBDA 2015
Сергей Кольцов —НИУ ВШЭ —ICBDA 2015rusbase
 
Cooperating Techniques for Extracting Conceptual Taxonomies from Text
Cooperating Techniques for Extracting Conceptual Taxonomies from TextCooperating Techniques for Extracting Conceptual Taxonomies from Text
Cooperating Techniques for Extracting Conceptual Taxonomies from TextUniversity of Bari (Italy)
 
Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passin...
Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passin...Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passin...
Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passin...Varad Meru
 
Mapping Subsets of Scholarly Information
Mapping Subsets of Scholarly InformationMapping Subsets of Scholarly Information
Mapping Subsets of Scholarly InformationPaul Houle
 
Topic models
Topic modelsTopic models
Topic modelsAjay Ohri
 
generative communication in Linda and tuplespace
generative communication in Linda and tuplespacegenerative communication in Linda and tuplespace
generative communication in Linda and tuplespaceSheng Tian
 
32 -longest-common-prefix
32 -longest-common-prefix32 -longest-common-prefix
32 -longest-common-prefixSanjeev Gupta
 
Common fixed point theorems for contractive maps of
Common fixed point theorems for contractive maps ofCommon fixed point theorems for contractive maps of
Common fixed point theorems for contractive maps ofAlexander Decker
 
Application of Boolean pre-algebras to the foundations of Computer Science
Application of Boolean pre-algebras to the foundations of Computer ScienceApplication of Boolean pre-algebras to the foundations of Computer Science
Application of Boolean pre-algebras to the foundations of Computer ScienceMarcelo Novaes
 
RFNM-Aranda-Final.PDF
RFNM-Aranda-Final.PDFRFNM-Aranda-Final.PDF
RFNM-Aranda-Final.PDFThomas Aranda
 
Suffix Tree and Suffix Array
Suffix Tree and Suffix ArraySuffix Tree and Suffix Array
Suffix Tree and Suffix ArrayHarshit Agarwal
 
Icitam2019 2020 book_chapter
Icitam2019 2020 book_chapterIcitam2019 2020 book_chapter
Icitam2019 2020 book_chapterBan Bang
 

What's hot (19)

Cwkaa 2010
Cwkaa 2010Cwkaa 2010
Cwkaa 2010
 
Radix Sorting With No Extra Space
Radix Sorting With No Extra SpaceRadix Sorting With No Extra Space
Radix Sorting With No Extra Space
 
Quantum Algorithms and Lower Bounds in Continuous Time
Quantum Algorithms and Lower Bounds in Continuous TimeQuantum Algorithms and Lower Bounds in Continuous Time
Quantum Algorithms and Lower Bounds in Continuous Time
 
Introduction to Probabilistic Latent Semantic Analysis
Introduction to Probabilistic Latent Semantic AnalysisIntroduction to Probabilistic Latent Semantic Analysis
Introduction to Probabilistic Latent Semantic Analysis
 
Сергей Кольцов —НИУ ВШЭ —ICBDA 2015
Сергей Кольцов —НИУ ВШЭ —ICBDA 2015Сергей Кольцов —НИУ ВШЭ —ICBDA 2015
Сергей Кольцов —НИУ ВШЭ —ICBDA 2015
 
Cooperating Techniques for Extracting Conceptual Taxonomies from Text
Cooperating Techniques for Extracting Conceptual Taxonomies from TextCooperating Techniques for Extracting Conceptual Taxonomies from Text
Cooperating Techniques for Extracting Conceptual Taxonomies from Text
 
Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passin...
Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passin...Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passin...
Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passin...
 
Mapping Subsets of Scholarly Information
Mapping Subsets of Scholarly InformationMapping Subsets of Scholarly Information
Mapping Subsets of Scholarly Information
 
Topic models
Topic modelsTopic models
Topic models
 
Canini09a
Canini09aCanini09a
Canini09a
 
Extracting biclusters of similar values with Triadic Concept Analysis
Extracting biclusters of similar values with Triadic Concept AnalysisExtracting biclusters of similar values with Triadic Concept Analysis
Extracting biclusters of similar values with Triadic Concept Analysis
 
generative communication in Linda and tuplespace
generative communication in Linda and tuplespacegenerative communication in Linda and tuplespace
generative communication in Linda and tuplespace
 
32 -longest-common-prefix
32 -longest-common-prefix32 -longest-common-prefix
32 -longest-common-prefix
 
Common fixed point theorems for contractive maps of
Common fixed point theorems for contractive maps ofCommon fixed point theorems for contractive maps of
Common fixed point theorems for contractive maps of
 
Application of Boolean pre-algebras to the foundations of Computer Science
Application of Boolean pre-algebras to the foundations of Computer ScienceApplication of Boolean pre-algebras to the foundations of Computer Science
Application of Boolean pre-algebras to the foundations of Computer Science
 
RFNM-Aranda-Final.PDF
RFNM-Aranda-Final.PDFRFNM-Aranda-Final.PDF
RFNM-Aranda-Final.PDF
 
Suffix Tree and Suffix Array
Suffix Tree and Suffix ArraySuffix Tree and Suffix Array
Suffix Tree and Suffix Array
 
Icitam2019 2020 book_chapter
Icitam2019 2020 book_chapterIcitam2019 2020 book_chapter
Icitam2019 2020 book_chapter
 
H-MLQ
H-MLQH-MLQ
H-MLQ
 

Viewers also liked

Antecedentes Historicos
Antecedentes Historicos Antecedentes Historicos
Antecedentes Historicos Emanuel Mata
 
Asset accounting config step
Asset accounting config stepAsset accounting config step
Asset accounting config stepShailendra Surana
 
Operaciones 1 i
Operaciones 1 iOperaciones 1 i
Operaciones 1 iKateRamos5
 
Bankreconciliation ff67-130519130827-phpapp02
Bankreconciliation ff67-130519130827-phpapp02Bankreconciliation ff67-130519130827-phpapp02
Bankreconciliation ff67-130519130827-phpapp02Shailendra Surana
 
Resumen el bosón de higgs
Resumen el bosón de higgsResumen el bosón de higgs
Resumen el bosón de higgsEdithDavila23
 
Deep learning: Тооцоолон бодох машиныг яаж зураг ойлгодог болгох вэ?
Deep learning: Тооцоолон бодох машиныг яаж зураг ойлгодог болгох вэ? Deep learning: Тооцоолон бодох машиныг яаж зураг ойлгодог болгох вэ?
Deep learning: Тооцоолон бодох машиныг яаж зураг ойлгодог болгох вэ? Bilgee Bayaraa
 
Chapter 14 - Glucose utilization and biosynthesis - Biochemistry
Chapter 14 - Glucose utilization and biosynthesis - BiochemistryChapter 14 - Glucose utilization and biosynthesis - Biochemistry
Chapter 14 - Glucose utilization and biosynthesis - BiochemistryAreej Abu Hanieh
 
Chapter 16 - The citric acid cycle - Biochemistry
Chapter 16 - The citric acid cycle - BiochemistryChapter 16 - The citric acid cycle - Biochemistry
Chapter 16 - The citric acid cycle - BiochemistryAreej Abu Hanieh
 
Cell and cell organelles
Cell and cell organellesCell and cell organelles
Cell and cell organellesAshok Katta
 
Hub AI&BigData meetup / Вадим Кузьменко: Как машинное обучение помогает снизи...
Hub AI&BigData meetup / Вадим Кузьменко: Как машинное обучение помогает снизи...Hub AI&BigData meetup / Вадим Кузьменко: Как машинное обучение помогает снизи...
Hub AI&BigData meetup / Вадим Кузьменко: Как машинное обучение помогает снизи...Hub-IT-School
 

Viewers also liked (17)

Antecedentes Historicos
Antecedentes Historicos Antecedentes Historicos
Antecedentes Historicos
 
Asset accounting config step
Asset accounting config stepAsset accounting config step
Asset accounting config step
 
Operaciones 1 i
Operaciones 1 iOperaciones 1 i
Operaciones 1 i
 
Kkpi powerpoint
Kkpi powerpointKkpi powerpoint
Kkpi powerpoint
 
EXAMEN
EXAMENEXAMEN
EXAMEN
 
Bankreconciliation ff67-130519130827-phpapp02
Bankreconciliation ff67-130519130827-phpapp02Bankreconciliation ff67-130519130827-phpapp02
Bankreconciliation ff67-130519130827-phpapp02
 
GS E&C Ceritification
GS E&C CeritificationGS E&C Ceritification
GS E&C Ceritification
 
Resumen el bosón de higgs
Resumen el bosón de higgsResumen el bosón de higgs
Resumen el bosón de higgs
 
Intercultural management
Intercultural managementIntercultural management
Intercultural management
 
Ventas 1 i
Ventas 1 iVentas 1 i
Ventas 1 i
 
Bvleg2 logic
Bvleg2 logicBvleg2 logic
Bvleg2 logic
 
Deep learning: Тооцоолон бодох машиныг яаж зураг ойлгодог болгох вэ?
Deep learning: Тооцоолон бодох машиныг яаж зураг ойлгодог болгох вэ? Deep learning: Тооцоолон бодох машиныг яаж зураг ойлгодог болгох вэ?
Deep learning: Тооцоолон бодох машиныг яаж зураг ойлгодог болгох вэ?
 
Chapter 14 - Glucose utilization and biosynthesis - Biochemistry
Chapter 14 - Glucose utilization and biosynthesis - BiochemistryChapter 14 - Glucose utilization and biosynthesis - Biochemistry
Chapter 14 - Glucose utilization and biosynthesis - Biochemistry
 
Chapter 16 - The citric acid cycle - Biochemistry
Chapter 16 - The citric acid cycle - BiochemistryChapter 16 - The citric acid cycle - Biochemistry
Chapter 16 - The citric acid cycle - Biochemistry
 
Cell and cell organelles
Cell and cell organellesCell and cell organelles
Cell and cell organelles
 
Hub AI&BigData meetup / Вадим Кузьменко: Как машинное обучение помогает снизи...
Hub AI&BigData meetup / Вадим Кузьменко: Как машинное обучение помогает снизи...Hub AI&BigData meetup / Вадим Кузьменко: Как машинное обучение помогает снизи...
Hub AI&BigData meetup / Вадим Кузьменко: Как машинное обучение помогает снизи...
 
1584-09
1584-091584-09
1584-09
 

Similar to Non-Bayesian Additive Regularization for Multimodal Topic Modeling of Large Collections

Konstantin Vorontsov - BigARTM: Open Source Library for Regularized Multimoda...
Konstantin Vorontsov - BigARTM: Open Source Library for Regularized Multimoda...Konstantin Vorontsov - BigARTM: Open Source Library for Regularized Multimoda...
Konstantin Vorontsov - BigARTM: Open Source Library for Regularized Multimoda...AIST
 
Tdm probabilistic models (part 2)
Tdm probabilistic  models (part  2)Tdm probabilistic  models (part  2)
Tdm probabilistic models (part 2)KU Leuven
 
Oleksandr Frei and Murat Apishev - Parallel Non-blocking Deterministic Algori...
Oleksandr Frei and Murat Apishev - Parallel Non-blocking Deterministic Algori...Oleksandr Frei and Murat Apishev - Parallel Non-blocking Deterministic Algori...
Oleksandr Frei and Murat Apishev - Parallel Non-blocking Deterministic Algori...AIST
 
Topic Models - LDA and Correlated Topic Models
Topic Models - LDA and Correlated Topic ModelsTopic Models - LDA and Correlated Topic Models
Topic Models - LDA and Correlated Topic ModelsClaudia Wagner
 
Discovering Novel Information with sentence Level clustering From Multi-docu...
Discovering Novel Information with sentence Level clustering  From Multi-docu...Discovering Novel Information with sentence Level clustering  From Multi-docu...
Discovering Novel Information with sentence Level clustering From Multi-docu...irjes
 
lecture_mooney.ppt
lecture_mooney.pptlecture_mooney.ppt
lecture_mooney.pptbutest
 
Bag of Timestamps: A Simple and Efficient Bayesian Chronological Mining
Bag of Timestamps: A Simple and Efficient Bayesian Chronological MiningBag of Timestamps: A Simple and Efficient Bayesian Chronological Mining
Bag of Timestamps: A Simple and Efficient Bayesian Chronological MiningTomonari Masada
 
Calculating Projections via Type Checking
Calculating Projections via Type CheckingCalculating Projections via Type Checking
Calculating Projections via Type CheckingDaisuke BEKKI
 
Language Technology Enhanced Learning
Language Technology Enhanced LearningLanguage Technology Enhanced Learning
Language Technology Enhanced Learningtelss09
 
A Quest for Subexponential Time Parameterized Algorithms for Planar-k-Path: F...
A Quest for Subexponential Time Parameterized Algorithms for Planar-k-Path: F...A Quest for Subexponential Time Parameterized Algorithms for Planar-k-Path: F...
A Quest for Subexponential Time Parameterized Algorithms for Planar-k-Path: F...cseiitgn
 
Topic model an introduction
Topic model an introductionTopic model an introduction
Topic model an introductionYueshen Xu
 
Steering Time-Dependent Estimation of Posteriors with Hyperparameter Indexing...
Steering Time-Dependent Estimation of Posteriors with Hyperparameter Indexing...Steering Time-Dependent Estimation of Posteriors with Hyperparameter Indexing...
Steering Time-Dependent Estimation of Posteriors with Hyperparameter Indexing...Tomonari Masada
 
Bayesian phylogenetic inference_big4_ws_2016-10-10
Bayesian phylogenetic inference_big4_ws_2016-10-10Bayesian phylogenetic inference_big4_ws_2016-10-10
Bayesian phylogenetic inference_big4_ws_2016-10-10FredrikRonquist
 
Dictionary Learning for Massive Matrix Factorization
Dictionary Learning for Massive Matrix FactorizationDictionary Learning for Massive Matrix Factorization
Dictionary Learning for Massive Matrix FactorizationArthur Mensch
 
Minimizing cost in distributed multiquery processing applications
Minimizing cost in distributed multiquery processing applicationsMinimizing cost in distributed multiquery processing applications
Minimizing cost in distributed multiquery processing applicationsLuis Galárraga
 
Research Summary: Hidden Topic Markov Models, Gruber
Research Summary: Hidden Topic Markov Models, GruberResearch Summary: Hidden Topic Markov Models, Gruber
Research Summary: Hidden Topic Markov Models, GruberAlex Klibisz
 
ECO_TEXT_CLUSTERING
ECO_TEXT_CLUSTERINGECO_TEXT_CLUSTERING
ECO_TEXT_CLUSTERINGGeorge Simov
 
Finding similar items in high dimensional spaces locality sensitive hashing
Finding similar items in high dimensional spaces  locality sensitive hashingFinding similar items in high dimensional spaces  locality sensitive hashing
Finding similar items in high dimensional spaces locality sensitive hashingDmitriy Selivanov
 

Similar to Non-Bayesian Additive Regularization for Multimodal Topic Modeling of Large Collections (20)

Konstantin Vorontsov - BigARTM: Open Source Library for Regularized Multimoda...
Konstantin Vorontsov - BigARTM: Open Source Library for Regularized Multimoda...Konstantin Vorontsov - BigARTM: Open Source Library for Regularized Multimoda...
Konstantin Vorontsov - BigARTM: Open Source Library for Regularized Multimoda...
 
Tdm probabilistic models (part 2)
Tdm probabilistic  models (part  2)Tdm probabilistic  models (part  2)
Tdm probabilistic models (part 2)
 
Oleksandr Frei and Murat Apishev - Parallel Non-blocking Deterministic Algori...
Oleksandr Frei and Murat Apishev - Parallel Non-blocking Deterministic Algori...Oleksandr Frei and Murat Apishev - Parallel Non-blocking Deterministic Algori...
Oleksandr Frei and Murat Apishev - Parallel Non-blocking Deterministic Algori...
 
Topic Models - LDA and Correlated Topic Models
Topic Models - LDA and Correlated Topic ModelsTopic Models - LDA and Correlated Topic Models
Topic Models - LDA and Correlated Topic Models
 
Discovering Novel Information with sentence Level clustering From Multi-docu...
Discovering Novel Information with sentence Level clustering  From Multi-docu...Discovering Novel Information with sentence Level clustering  From Multi-docu...
Discovering Novel Information with sentence Level clustering From Multi-docu...
 
lecture_mooney.ppt
lecture_mooney.pptlecture_mooney.ppt
lecture_mooney.ppt
 
Bag of Timestamps: A Simple and Efficient Bayesian Chronological Mining
Bag of Timestamps: A Simple and Efficient Bayesian Chronological MiningBag of Timestamps: A Simple and Efficient Bayesian Chronological Mining
Bag of Timestamps: A Simple and Efficient Bayesian Chronological Mining
 
Calculating Projections via Type Checking
Calculating Projections via Type CheckingCalculating Projections via Type Checking
Calculating Projections via Type Checking
 
Language Technology Enhanced Learning
Language Technology Enhanced LearningLanguage Technology Enhanced Learning
Language Technology Enhanced Learning
 
Topic Models
Topic ModelsTopic Models
Topic Models
 
A Quest for Subexponential Time Parameterized Algorithms for Planar-k-Path: F...
A Quest for Subexponential Time Parameterized Algorithms for Planar-k-Path: F...A Quest for Subexponential Time Parameterized Algorithms for Planar-k-Path: F...
A Quest for Subexponential Time Parameterized Algorithms for Planar-k-Path: F...
 
Topic model an introduction
Topic model an introductionTopic model an introduction
Topic model an introduction
 
Incremental Evolving Grammar Fragments
Incremental Evolving Grammar FragmentsIncremental Evolving Grammar Fragments
Incremental Evolving Grammar Fragments
 
Steering Time-Dependent Estimation of Posteriors with Hyperparameter Indexing...
Steering Time-Dependent Estimation of Posteriors with Hyperparameter Indexing...Steering Time-Dependent Estimation of Posteriors with Hyperparameter Indexing...
Steering Time-Dependent Estimation of Posteriors with Hyperparameter Indexing...
 
Bayesian phylogenetic inference_big4_ws_2016-10-10
Bayesian phylogenetic inference_big4_ws_2016-10-10Bayesian phylogenetic inference_big4_ws_2016-10-10
Bayesian phylogenetic inference_big4_ws_2016-10-10
 
Dictionary Learning for Massive Matrix Factorization
Dictionary Learning for Massive Matrix FactorizationDictionary Learning for Massive Matrix Factorization
Dictionary Learning for Massive Matrix Factorization
 
Minimizing cost in distributed multiquery processing applications
Minimizing cost in distributed multiquery processing applicationsMinimizing cost in distributed multiquery processing applications
Minimizing cost in distributed multiquery processing applications
 
Research Summary: Hidden Topic Markov Models, Gruber
Research Summary: Hidden Topic Markov Models, GruberResearch Summary: Hidden Topic Markov Models, Gruber
Research Summary: Hidden Topic Markov Models, Gruber
 
ECO_TEXT_CLUSTERING
ECO_TEXT_CLUSTERINGECO_TEXT_CLUSTERING
ECO_TEXT_CLUSTERING
 
Finding similar items in high dimensional spaces locality sensitive hashing
Finding similar items in high dimensional spaces  locality sensitive hashingFinding similar items in high dimensional spaces  locality sensitive hashing
Finding similar items in high dimensional spaces locality sensitive hashing
 

More from romovpa

Машинное обучение для ваших игр и бизнеса
Машинное обучение для ваших игр и бизнесаМашинное обучение для ваших игр и бизнеса
Машинное обучение для ваших игр и бизнесаromovpa
 
Applications of Machine Learning in DOTA2: Literature Review and Practical Kn...
Applications of Machine Learning in DOTA2: Literature Review and Practical Kn...Applications of Machine Learning in DOTA2: Literature Review and Practical Kn...
Applications of Machine Learning in DOTA2: Literature Review and Practical Kn...romovpa
 
Проекты для студентов ФКН ВШЭ
Проекты для студентов ФКН ВШЭПроекты для студентов ФКН ВШЭ
Проекты для студентов ФКН ВШЭromovpa
 
A Simple yet Efficient Method for a Credit Card Upselling Prediction
A Simple yet Efficient Method for a Credit Card Upselling PredictionA Simple yet Efficient Method for a Credit Card Upselling Prediction
A Simple yet Efficient Method for a Credit Card Upselling Predictionromovpa
 
Dota Science: Роль киберспорта в обучении анализу данных
Dota Science: Роль киберспорта в обучении анализу данныхDota Science: Роль киберспорта в обучении анализу данных
Dota Science: Роль киберспорта в обучении анализу данныхromovpa
 
Машинное обучение с элементами киберспорта
Машинное обучение с элементами киберспортаМашинное обучение с элементами киберспорта
Машинное обучение с элементами киберспортаromovpa
 
RecSys Challenge 2015: ensemble learning with categorical features
RecSys Challenge 2015: ensemble learning with categorical featuresRecSys Challenge 2015: ensemble learning with categorical features
RecSys Challenge 2015: ensemble learning with categorical featuresromovpa
 
Факторизационные модели в рекомендательных системах
Факторизационные модели в рекомендательных системахФакторизационные модели в рекомендательных системах
Факторизационные модели в рекомендательных системахromovpa
 
Структурный SVM и отчет по курсовой
Структурный SVM и отчет по курсовойСтруктурный SVM и отчет по курсовой
Структурный SVM и отчет по курсовойromovpa
 
Fields of Experts (доклад)
Fields of Experts (доклад)Fields of Experts (доклад)
Fields of Experts (доклад)romovpa
 
Структурное обучение и S-SVM
Структурное обучение и S-SVMСтруктурное обучение и S-SVM
Структурное обучение и S-SVMromovpa
 
Глобальная дискретная оптимизация при помощи разрезов графов
Глобальная дискретная оптимизация при помощи разрезов графовГлобальная дискретная оптимизация при помощи разрезов графов
Глобальная дискретная оптимизация при помощи разрезов графовromovpa
 

More from romovpa (12)

Машинное обучение для ваших игр и бизнеса
Машинное обучение для ваших игр и бизнесаМашинное обучение для ваших игр и бизнеса
Машинное обучение для ваших игр и бизнеса
 
Applications of Machine Learning in DOTA2: Literature Review and Practical Kn...
Applications of Machine Learning in DOTA2: Literature Review and Practical Kn...Applications of Machine Learning in DOTA2: Literature Review and Practical Kn...
Applications of Machine Learning in DOTA2: Literature Review and Practical Kn...
 
Проекты для студентов ФКН ВШЭ
Проекты для студентов ФКН ВШЭПроекты для студентов ФКН ВШЭ
Проекты для студентов ФКН ВШЭ
 
A Simple yet Efficient Method for a Credit Card Upselling Prediction
A Simple yet Efficient Method for a Credit Card Upselling PredictionA Simple yet Efficient Method for a Credit Card Upselling Prediction
A Simple yet Efficient Method for a Credit Card Upselling Prediction
 
Dota Science: Роль киберспорта в обучении анализу данных
Dota Science: Роль киберспорта в обучении анализу данныхDota Science: Роль киберспорта в обучении анализу данных
Dota Science: Роль киберспорта в обучении анализу данных
 
Машинное обучение с элементами киберспорта
Машинное обучение с элементами киберспортаМашинное обучение с элементами киберспорта
Машинное обучение с элементами киберспорта
 
RecSys Challenge 2015: ensemble learning with categorical features
RecSys Challenge 2015: ensemble learning with categorical featuresRecSys Challenge 2015: ensemble learning with categorical features
RecSys Challenge 2015: ensemble learning with categorical features
 
Факторизационные модели в рекомендательных системах
Факторизационные модели в рекомендательных системахФакторизационные модели в рекомендательных системах
Факторизационные модели в рекомендательных системах
 
Структурный SVM и отчет по курсовой
Структурный SVM и отчет по курсовойСтруктурный SVM и отчет по курсовой
Структурный SVM и отчет по курсовой
 
Fields of Experts (доклад)
Fields of Experts (доклад)Fields of Experts (доклад)
Fields of Experts (доклад)
 
Структурное обучение и S-SVM
Структурное обучение и S-SVMСтруктурное обучение и S-SVM
Структурное обучение и S-SVM
 
Глобальная дискретная оптимизация при помощи разрезов графов
Глобальная дискретная оптимизация при помощи разрезов графовГлобальная дискретная оптимизация при помощи разрезов графов
Глобальная дискретная оптимизация при помощи разрезов графов
 

Recently uploaded

Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptxRajatChauhan518211
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSSLeenakshiTyagi
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPirithiRaju
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfSumit Kumar yadav
 
fundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyfundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyDrAnita Sharma
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000Sapana Sha
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 

Recently uploaded (20)

Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSS
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
fundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyfundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomology
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 

Non-Bayesian Additive Regularization for Multimodal Topic Modeling of Large Collections

  • 1. Non-Bayesian Additive Regularization for Multimodal Topic Modeling of Large Collections Konstantin Vorontsov1,3 • Oleksandr Frei4 • Murat Apishev2 Peter Romov3 • Marina Suvorova2 • Anastasia Yanina1 1Moscow Institute of Physics and Technology, 2Moscow State University • 3Yandex • 4Schlumberger Topic Models: Post-Processing and Applications, CIKM’15 Workshop October 19, 2015 • Melbourne, Australia
  • 2. Probabilistic Topic Model (PTM) generating a text collection Topic model explains terms w in documents d by topics t: p(w|d) = t p(w|t)p(t|d) Разработан спектрально-аналитический подход к выявлению размытых протяженных повторов в геномных последовательностях. Метод основан на разномасштабном оценивании сходства нуклеотидных последовательностей в пространстве коэффициентов разложения фрагментов кривых GC- и GA-содержания по классическим ортогональным базисам. Найдены условия оптимальной аппроксимации, обеспечивающие автоматическое распознавание повторов различных видов (прямых и инвертированных, а также тандемных) на спектральной матрице сходства. Метод одинаково хорошо работает на разных масштабах данных. Он позволяет выявлять следы сегментных дупликаций и мегасателлитные участки в геноме, районы синтении при сравнении пары геномов. Его можно использовать для детального изучения фрагментов хромосом (поиска размытых участков с умеренной длиной повторяющегося паттерна). •( |!) •("| ): , … , #$ " , … , "#$ : 0.018 распознавание 0.013 сходство 0.011 паттерн … … … … 0.023 днк 0.016 геном 0.009 нуклеотид … … … … 0.014 базис 0.009 спектр 0.006 ортогональный … … … … ! "" #" $• Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 2 / 28
  • 3. Inverse problem: text collection → PTM Given: D is a set (collection) of documents W is a set (vocabulary) of terms ndw = how many times term w appears in document d Find: parameters φwt =p(w|t), θtd =p(t|d) of the topic model p(w|d) = t φwtθtd . under nonnegativity and normalization constraints φwt 0, w∈W φwt = 1; θtd 0, t∈T θtd = 1. The ill-posed problem of matrix factorization: ΦΘ = (ΦS)(S−1 Θ) = Φ Θ for all S such that Φ , Θ are stochastic. Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 3 / 28
  • 4. PLSA — Probabilistic Latent Semantic Analysis [Hofmann, 1999] Constrained maximization of the log-likelihood: L (Φ, Θ) = d,w ndw ln t φwtθtd → max Φ,Θ EM-algorithm is a simple iteration method for the nonlinear system E-step: M-step:    ptdw = norm t∈T φwtθtd φwt = norm w∈W d∈D ndw ptdw θtd = norm t∈T w∈d ndw ptdw where norm t∈T xt = max{xt ,0} s∈T max{xs ,0} is vector normalization. Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 4 / 28
  • 5. Graphical Models and Bayesian Inference In Bayesian approach, Graphical Models are used to make sophisticated generative models. David M. Blei. Probabilistic topic models // Communications of the ACM, 2012. Vol. 55, No. 4., Pp. 77–84. Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 5 / 28
  • 6. Graphical Models and Bayesian Inference In Bayesian approach, a lot of calculus to be done for each model to go from the problem statement to the solution algorithm: Yi Wang. Distributed Gibbs Sampling of Latent Dirichlet Allocation: The Gritty Details. 2008. Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 6 / 28
  • 7. ARTM — Additive Regularization of Topic Model Maximum log-likelihood with additive regularization criterion R: d,w ndw ln t φwtθtd + R(Φ, Θ) → max Φ,Θ EM-algorithm is a simple iteration method for the system E-step: M-step:    ptdw = norm t∈T φwtθtd φwt = norm w∈W d∈D ndw ptdw + φwt ∂R ∂φwt θtd = norm t∈T w∈d ndw ptdw + θtd ∂R ∂θtd Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 7 / 28
  • 8. Example: Latent Dirichlet Allocation [Blei, Ng, Jordan, 2003] Maximum a posteriori (MAP) with Dirichlet prior: d,w ndw ln t φwtθtd log-likelihood L (Φ,Θ) + t,w βw ln φwt + d,t αt ln θtd regularization criterion R(Φ,Θ) → max Φ,Θ EM-algorithm is a simple iteration method for the system E-step: M-step:    ptdw = norm t∈T φwtθtd φwt = norm w∈W d∈D ndw ptdw + βw θtd = norm t∈T w∈d ndw ptdw + αt Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 8 / 28
  • 9. Many Bayesian PTMs can be reinterpreted as regularizers in ARTM smoothing (LDA) for background and stop-words topics sparsing (anti-LDA) for domain-specific topics topic decorrelation topic coherence maximization supervised learning for classification and regression semi-supervised learning using document citations and links determining number of topics via entropy sparsing modeling topical hierarchies modeling temporal topic dynamics using vocabularies in multilingual topic models etc. Vorontsov K. V., Potapenko A. A. Additive Regularization of Topic Models // Machine Learning. Volume 101, Issue 1 (2015), Pp. 303-323. Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 9 / 28
  • 10. ARTM — Additive Regularization of Topic Model Maximum log-likelihood with additive combination of regularizers: d,w ndw ln t φwtθtd + n i=1 τi Ri (Φ, Θ) → max Φ,Θ , where τi are regularization coefficients. EM-algorithm is a simple iteration method for the system E-step: M-step:    ptdw = norm t∈T φwtθtd φwt = norm w∈W d∈D ndw ptdw + φwt n i=1 τi ∂Ri ∂φwt θtd = norm t∈T w∈d ndw ptdw + θtd n i=1 τi ∂Ri ∂θtd Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 10 / 28
  • 11. Assumptions: what topics would be well-interpretable? Topics S ⊂ T contain domain-specific terms p(w|t), t ∈ S are sparse and different (weakly correlated) Topics B ⊂ T contain background terms p(w|t), t ∈ B are dense and contain common lexis words ΦW ×T ΘT×D Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 11 / 28
  • 12. Smoothing regularization (rethinking LDA) The non-sparsity assumption for background topics t ∈ B: φwt are similar to a given distribution βw ; θtd are similar to a given distribution αt. t∈B KLw (βw φwt) → min Φ ; d∈D KLt(αt θtd ) → min Θ . We minimize the sum of these KL-divergences to get a regularizer: R(Φ, Θ) = β0 t∈B w∈W βw ln φwt + α0 d∈D t∈B αt ln θtd → max . The regularized M-step applied for all t ∈ B coincides with LDA: φwt ∝ nwt + β0βw , θtd ∝ ntd + α0αt, which is new non-Bayesian interpretation of LDA [Blei 2003]. Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 12 / 28
  • 13. Sparsing regularizer (further rethinking LDA) The sparsity assumption for domain-specific topics t ∈ S: distributions φwt, θtd contain many zero probabilities. We maximize the sum of KL-divergences KL(β φt) and KL(α θd ): R(Φ, Θ) = −β0 t∈S w∈W βw ln φwt − α0 d∈D t∈S αt ln θtd → max . The regularized M-step gives “anti-LDA”, for all t ∈ S: φwt ∝ nwt − β0βw + , θtd ∝ ntd − α0αt + . Varadarajan J., Emonet R., Odobez J.-M. A sparsity constraint for topic models — application to temporal activity mining // NIPS-2010 Workshop on Practical Applications of Sparse Modeling: Open Issues and New Directions. Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 13 / 28
  • 14. Regularization for topics decorrelation The dissimilarity assumption for domain-specific topics t ∈ S: if topics are interpretable then they must differ significantly. We maximize covariances between column vectors φt: R(Φ) = − τ 2 t∈S s∈St w∈W φwtφws → max . The regularized M-step makes columns of Φ more distant: φwt ∝ nwt − τφwt s∈St φws + . Tan Y., Ou Z. Topic-weak-correlated latent Dirichlet allocation // 7th Int’l Symp. Chinese Spoken Language Processing (ISCSLP), 2010. — Pp. 224–228. Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 14 / 28
  • 15. Example: Combination of sparsing, smoothing, and decorrelation smoothing background topics B in Φ and Θ sparsing domain-specific topics S = TB in Φ and Θ decorrelation of topics in Φ R(Φ, Θ) = + β1 t∈B w∈W βw ln φwt + α1 d∈D t∈B αt ln θtd − β0 t∈S w∈W βw ln φwt − α0 d∈D t∈S αt ln θtd − γ t∈T s∈Tt w∈W φwtφws where β0, α0, β1, α1, γ are regularization coefficients. Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 15 / 28
  • 16. Multimodal Probabilistic Topic Modeling Given a text document collection Probabilistic Topic Model finds: p(t|d) — topic distribution for each document d, p(w|t) — term distribution for each topic t. Topics of documents Words and keyphrases of topics doc1: doc2: doc3: doc4: ... Text documents Topic Modeling D o c u m e n t s T o p i c s Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 16 / 28
  • 17. Multimodal Probabilistic Topic Modeling Multimodal Topic Model finds topical distribution for terms p(w|t), authors p(a|t), time p(y|t), Topics of documents Words and keyphrases of topics doc1: doc2: doc3: doc4: ... Text documents Topic Modeling D o c u m e n t s T o p i c s Metadata: Authors Data Time Conference Organization URL etc. Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 17 / 28
  • 18. Multimodal Probabilistic Topic Modeling Multimodal Topic Model finds topical distribution for terms p(w|t), authors p(a|t), time p(y|t), objects on images p(o|t), linked documents p(d |t), advertising banners p(b|t), users p(u|t) Topics of documents Words and keyphrases of topics doc1: doc2: doc3: doc4: ... Text documents Topic Modeling D o c u m e n t s T o p i c s Metadata: Authors Data Time Conference Organization URL etc. Ads Images Links Users Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 18 / 28
  • 19. Multimodal extension of ARTM W m is a vocabulary of tokens of m-th modality, m ∈ M W = W 1 · · · W M is a joint vocabulary of all modalities Maximum multimodal log-likelihood with regularization: m∈M λm d∈D w∈W m ndw ln t φwtθtd + R(Φ, Θ) → max Φ,Θ EM-algorithm is a simple iteration method for the system E-step: M-step:    ptdw = norm t∈T φwtθtd φwt = norm w∈W m d∈D λm(w)ndw ptdw + φwt ∂R ∂φwt θtd = norm t∈T w∈d λm(w)ndw ptdw + θtd ∂R ∂θtd Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 19 / 28
  • 20. Example: Multi-lingual topic model of Wikipedia Top 10 words with p(wt) probabilities (in %) from two-language topic model, based on Russian and English Wikipedia articles with mutual interlanguage links. Topic 68 Topic 79 research 4.56 институт 6.03 goals 4.48 матч 6.02 technology 3.14 университет 3.35 league 3.99 игрок 5.56 engineering 2.63 программа 3.17 club 3.76 сборная 4.51 institute 2.37 учебный 2.75 season 3.49 фк 3.25 science 1.97 технический 2.70 scored 2.72 против 3.20 program 1.60 технология 2.30 cup 2.57 клуб 3.14 Topic 88 Topic 251 opera 7.36 опера 7.82 windows 8.00 windows 6.05 conductor 1.69 оперный 3.13 microsoft 4.03 microsoft 3.76 orchestra 1.14 дирижер 2.82 server 2.93 версия 1.86 wagner 0.97 певец 1.65 software 1.38 приложение 1.86 soprano 0.78 певица 1.51 user 1.03 сервер 1.63 performance 0.78 театр 1.14 security 0.92 server 1.54 Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 20 / 28
  • 21. Example: Recommending articles from blog The quality of recommendations for baseline matrix factorization model, unimodal model with only modality of user likes, and two multimodal models incorporating words and user-specified data (tags and categories). Model Recall@5 Recall@10 Recall@20 collaborative filtering 0.591 0.652 0.678 likes 0.62 0.59 0.65 likes + words 0.79 0.64 0.68 all modalities 0.80 0.71 0.69 Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 21 / 28
  • 22. BigARTM project BigARTM features: Parallel + Online + Multimodal + Regularized Topic Modeling Out-of-core one-pass processing of Big Data Built-in library of regularizers and quality measures BigARTM community: Code on GitHub: https://github.com/bigartm Links to docs, discussion group, builds http://bigartm.org BigARTM license and programming environment: Freely available for commercial usage (BSD 3-Clause license) Cross-platform — Windows, Linux, Mac OS X (32 bit, 64 bit) Programming APIs: command-line, C++, and Python Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 22 / 28
  • 23. The BigARTM project: parallel architecture Concurrent processing of batches D = D1 · · · DB Simple single-threaded code for ProcessBatch User controls when to update the model in online algorithm Deterministic (reproducible) results from run to run Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 23 / 28
  • 24. Online EM-algorithm for Multi-ARTM Input: collection D split into batches Db, b = 1, . . . , B; Output: matrix Φ; 1 initialize φwt for all w ∈ W , t ∈ T; 2 nwt := 0, ˜nwt := 0 for all w ∈ W , t ∈ T; 3 for all batches Db, b = 1, . . . , B 4 iterate each document d ∈ Db at a constant matrix Φ: (˜nwt) := (˜nwt) + ProcessBatch (Db, Φ); 5 if (synchronize) then 6 nwt := nwt + ˜ndw for all w ∈ W , t ∈ T; 7 φwt := norm w∈W m nwt + φwt ∂R ∂φwt for all w ∈W m, m∈M, t ∈T; 8 ˜nwt := 0 for all w ∈ W , t ∈ T; Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 24 / 28
  • 25. Online EM-algorithm for Multi-ARTM: ProcessBatch ProcessBatch iterates documents d ∈ Db at a constant matrix Φ. matrix (˜nwt) := ProcessBatch (set of documents Db, matrix Φ) 1 ˜nwt := 0 for all w ∈ W , t ∈ T; 2 for all d ∈ Db 3 initialize θtd := 1 |T| for all t ∈ T; 4 repeat 5 ptdw := norm t∈T φwtθtd for all w ∈ d, t ∈ T; 6 ntd := w∈d λm(w)ndw ptdw for all t ∈ T; 7 θtd := norm t∈T ntd + θtd ∂R ∂θtd for all t ∈ T; 8 until θd converges; 9 ˜nwt := ˜nwt + λm(w)ndw ptdw for all w ∈ d, t ∈ T; Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 25 / 28
  • 26. BigARTM vs Gensim vs Vowpal Wabbit 3.7M articles from Wikipedia, 100K unique words procs train inference perplexity BigARTM 1 35 min 72 sec 4000 Gensim.LdaModel 1 369 min 395 sec 4161 VowpalWabbit.LDA 1 73 min 120 sec 4108 BigARTM 4 9 min 20 sec 4061 Gensim.LdaMulticore 4 60 min 222 sec 4111 BigARTM 8 4.5 min 14 sec 4304 Gensim.LdaMulticore 8 57 min 224 sec 4455 procs = number of parallel threads inference = time to infer θd for 100K held-out documents perplexity is calculated on held-out documents. Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 26 / 28
  • 27. Running BigARTM in parallel 3.7M articles from Wikipedia, 100K unique words Amazon EC2 c3.8xlarge (16 physical cores + hyperthreading) No extra memory cost for adding more threads Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 27 / 28
  • 28. Summary / Questions? 1 Additive Regularization PLSA algorithm with regularization on M-step simple way to incorporate assumptions on the topic model 2 Multimodal Topic Models incorporate metadata into topic model parallel text corpuses 3 BigARTM1: Open source implementation of Multi-ARTM parallel online algorithm ready for large collections supports multimodal collections collection of implemented regularizers 1 http://bigartm.org/ Peter Romov (peter@romov.ru) ARTM of Large Multimodal Collections 28 / 28