SlideShare uma empresa Scribd logo
1 de 13
Prof.: Rodrigo CarvalhoProf.: Rodrigo Carvalho
EQUAÇÕES
ALGÉBRICAS
Prof.: Rodrigo Carvalho
DEFINIÇÃO
Chamamos de equações algébricas de grau n N
na variável x C, toda equação que pode ser
reduzida à forma:
∈
Ax + B x + ... + Cx + D = 0
n n-1
Exemplos:
a) 3x – 1 = 0 é uma equação algébrica de 1º grau.
b) x – 3x + 4 = 0 é uma equação algébrica do 3º grau.
3
*OBS.: Toda equação polinomial de grau n, com
n natural, possui n raízes complexas.
∈
Prof.: Rodrigo Carvalho
TEOREMA DA
DECOMPOSIÇÃO
Todo polinômio
P(x) = Ax + B. x + ... + C. x + D
n n-1
P(x) = A . (x – x1).(x – x2).(x – x3)...(x – xn),
pode ser fatorado de maneira única como
sendo x1, x2, x3, ..., xn, as raízes de P(x) = 0.
Exemplo:
Fatorar o polinômio P(x) =2x – 14x + 20.
2
Prof.: Rodrigo Carvalho
MULTIPLICIDADE DE
UMA RAIZ
Chamamos de multiplicidade de uma raiz a
quantidade de vezes que um número é solução de
uma equação.
Exemplos:
a) 3 é raiz com multiplicidade dois da equação x – 6x + 9 = 0.
2
b) -2 é raiz com multiplicidade um da equação 4x + 8 = 0.
c) 0 é raiz com multiplicidade três da equação x - 7x = 0.
4
*Obs.: Podemos afirmar que as raízes dos itens
anteriores são dupla, simples e tripla, respectivamente.
3
Prof.: Rodrigo Carvalho
RESOLUÇÃO DE UMA
EQUAÇÃO ALGÉBRICA
I) Quando a soma dos coeficientes de uma
equação é zero, então 1 é raiz dessa equação.
II) Quando o termo independente de uma
equação é zero, então essa equação tem raiz nula
com multiplicidade igual ao seu menor expoente.
x – 2x + 5x - 4 = 03 2
x – 7x + 12x = 04 3 2
Prof.: Rodrigo Carvalho
IV) Caso uma equação com coeficientes inteiros
possua raiz inteira, então essa raiz é um dos
divisores da razão entre o termo independente e o
coeficiente de maior grau.
x – 6x – 11x + 10 = 03 2
III) Caso seja possível, podemos recorrer à
fatoração por agrupamento.
x – 4x + 3x - 12 = 03 2
Prof.: Rodrigo Carvalho
TEOREMA DAS RAÍZES
COMPLEXAS
Se um número complexo(não real) é raiz de uma
equação cujos coeficientes são reais, então seu
conjugado também é raiz dessa equação.
Exemplo:
Determine as raízes da equação 5x – 10x + 50x = 0.
3 2
*OBS: Esse teorema também é válido para raízes
irracionais.
Prof.: Rodrigo Carvalho
RELAÇÕES DE GIRARD
São relações estabelecidas entre as raízes de
uma equação algébrica e seus coeficientes.
EQUAÇÕES DE GRAU 2
0CBxAx2
=++
A
B
xx 21 −=+
A
C
x.x 21 =
EQUAÇÕES DE GRAU 3
0DCxBxAx 23
=+++
A
B
xxx 321 −=++
A
D
x.x.x 321 −=
A
C
xxxxxx 323121 =++
Prof.: Rodrigo Carvalho
EQUAÇÕES DE GRAU 4
0EDxCxBxAx 234
=++++
A
B
xxxx 4321 −=+++
A
E
x.x.x.x 4321 =
A
C
xxxxxxxxxxxx 434232413121 =+++++
A
D
xxxxxxxxx 432431421321 −=+++ xxx
Prof.: Rodrigo Carvalho
Considere a equação , com k real.
Se o número complexo 2 – i é uma das raízes dessa
equação, então o valor de k é:
A) irracional.
B) natural.
C) ímpar.
D) cubo perfeito.
E) racional não inteiro.
015kxxx 23
=++−
Prof.: Rodrigo Carvalho
Se a equação x − 3x − 4x + 12 = 0 tem duas raízes
simétricas, a outra raiz é um número:
3 2
a) negativo;
b) irracional;
c) maior que 12;
d) entre 2 e 4;
e) entre 0 e 1.
Prof.: Rodrigo Carvalho
A soma dos inversos das raízes da equação
2x − 5x −3x + 2 = 0 é igual a:
3 2
2
5
e)
2
3
d)
2
1
c)
2
3
b)
2
5
a) −−−
Prof.: Rodrigo Carvalho

Mais conteúdo relacionado

Mais procurados

Divisores e múltiplos de números naturais
Divisores e múltiplos de números naturaisDivisores e múltiplos de números naturais
Divisores e múltiplos de números naturaisAntonio Magno Ferreira
 
Permutação circulares repetição
Permutação circulares repetiçãoPermutação circulares repetição
Permutação circulares repetiçãoAristóteles Meneses
 
Multiplicacao de matrizes
Multiplicacao de matrizesMultiplicacao de matrizes
Multiplicacao de matrizesGlauber Cruz
 
CIÊNCIAS DA NATUREZA - NOTAÇÃO CIENTÍFICA - AULA 3
CIÊNCIAS DA NATUREZA - NOTAÇÃO CIENTÍFICA - AULA 3CIÊNCIAS DA NATUREZA - NOTAÇÃO CIENTÍFICA - AULA 3
CIÊNCIAS DA NATUREZA - NOTAÇÃO CIENTÍFICA - AULA 3Alexander Mayer
 
Lista de exercícios de porcentagem
Lista de exercícios de porcentagemLista de exercícios de porcentagem
Lista de exercícios de porcentagemPriscila Lourenço
 
GEOMETRIA ANALÍTICA cap 01
GEOMETRIA ANALÍTICA cap  01GEOMETRIA ANALÍTICA cap  01
GEOMETRIA ANALÍTICA cap 01Andrei Bastos
 
Volume do cubo e do paralelepípedo
Volume do cubo e do paralelepípedoVolume do cubo e do paralelepípedo
Volume do cubo e do paralelepípedomatematica3g
 
Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º graubetontem
 
Potenciação - Propriedades das potências
Potenciação - Propriedades das potênciasPotenciação - Propriedades das potências
Potenciação - Propriedades das potênciasJosé Antônio Silva
 
Lex operações com frações 2
Lex operações com frações 2Lex operações com frações 2
Lex operações com frações 2SENAI/FATEC - MT
 
Geometria espacial: Prismas
Geometria espacial: PrismasGeometria espacial: Prismas
Geometria espacial: PrismasAndré Aleixo
 
Congruência de triângulos
Congruência de triângulos Congruência de triângulos
Congruência de triângulos Helena Borralho
 

Mais procurados (20)

Radianos
RadianosRadianos
Radianos
 
Divisores e múltiplos de números naturais
Divisores e múltiplos de números naturaisDivisores e múltiplos de números naturais
Divisores e múltiplos de números naturais
 
Permutação circulares repetição
Permutação circulares repetiçãoPermutação circulares repetição
Permutação circulares repetição
 
Multiplicacao de matrizes
Multiplicacao de matrizesMultiplicacao de matrizes
Multiplicacao de matrizes
 
CIÊNCIAS DA NATUREZA - NOTAÇÃO CIENTÍFICA - AULA 3
CIÊNCIAS DA NATUREZA - NOTAÇÃO CIENTÍFICA - AULA 3CIÊNCIAS DA NATUREZA - NOTAÇÃO CIENTÍFICA - AULA 3
CIÊNCIAS DA NATUREZA - NOTAÇÃO CIENTÍFICA - AULA 3
 
Lista de exercícios de porcentagem
Lista de exercícios de porcentagemLista de exercícios de porcentagem
Lista de exercícios de porcentagem
 
Potenciação
PotenciaçãoPotenciação
Potenciação
 
GEOMETRIA ANALÍTICA cap 01
GEOMETRIA ANALÍTICA cap  01GEOMETRIA ANALÍTICA cap  01
GEOMETRIA ANALÍTICA cap 01
 
Volume do cubo e do paralelepípedo
Volume do cubo e do paralelepípedoVolume do cubo e do paralelepípedo
Volume do cubo e do paralelepípedo
 
Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
 
Poliedros
PoliedrosPoliedros
Poliedros
 
Monômios
MonômiosMonômios
Monômios
 
Potenciação - Propriedades das potências
Potenciação - Propriedades das potênciasPotenciação - Propriedades das potências
Potenciação - Propriedades das potências
 
01 - Conjuntos
01 - Conjuntos01 - Conjuntos
01 - Conjuntos
 
Lex operações com frações 2
Lex operações com frações 2Lex operações com frações 2
Lex operações com frações 2
 
Circunferência
CircunferênciaCircunferência
Circunferência
 
Geometria espacial: Prismas
Geometria espacial: PrismasGeometria espacial: Prismas
Geometria espacial: Prismas
 
Equações e inequações
Equações e inequaçõesEquações e inequações
Equações e inequações
 
Congruência de triângulos
Congruência de triângulos Congruência de triângulos
Congruência de triângulos
 
Exercício proposto matemática - 2º ens.médio
Exercício proposto   matemática - 2º ens.médioExercício proposto   matemática - 2º ens.médio
Exercício proposto matemática - 2º ens.médio
 

Destaque (20)

Polígonos regulares
Polígonos regularesPolígonos regulares
Polígonos regulares
 
áReas de regiões elementares
áReas de regiões elementaresáReas de regiões elementares
áReas de regiões elementares
 
Polinômios..
Polinômios..Polinômios..
Polinômios..
 
Ciclo trigonométrico
Ciclo trigonométricoCiclo trigonométrico
Ciclo trigonométrico
 
Polígonos..
Polígonos..Polígonos..
Polígonos..
 
ângulos na circunferência
ângulos na circunferênciaângulos na circunferência
ângulos na circunferência
 
Razões trigonométricas
Razões trigonométricasRazões trigonométricas
Razões trigonométricas
 
Lógica
LógicaLógica
Lógica
 
Poliedros
PoliedrosPoliedros
Poliedros
 
Circunferência
CircunferênciaCircunferência
Circunferência
 
Quadriláteros
Quadriláteros Quadriláteros
Quadriláteros
 
Pirâmides
PirâmidesPirâmides
Pirâmides
 
Circunferências
CircunferênciasCircunferências
Circunferências
 
Espacial posição
Espacial posiçãoEspacial posição
Espacial posição
 
Teorema dos senos e cossenos
Teorema dos senos e cossenosTeorema dos senos e cossenos
Teorema dos senos e cossenos
 
Relações métricas na circunferência
Relações métricas na circunferênciaRelações métricas na circunferência
Relações métricas na circunferência
 
Semelhança de triângulos
Semelhança de triângulosSemelhança de triângulos
Semelhança de triângulos
 
Teorema de tales
Teorema de talesTeorema de tales
Teorema de tales
 
Triângulos
TriângulosTriângulos
Triângulos
 
âNgulos
âNgulosâNgulos
âNgulos
 

Semelhante a Equações algébricas 2011

Lista polinomio equaçoes_3_ano_2012_pdf
Lista polinomio equaçoes_3_ano_2012_pdfLista polinomio equaçoes_3_ano_2012_pdf
Lista polinomio equaçoes_3_ano_2012_pdfcristianomatematico
 
Equações Algébricas e Transcendentes - Isolamento de Raízes - @professorenan
Equações Algébricas e Transcendentes - Isolamento de Raízes - @professorenanEquações Algébricas e Transcendentes - Isolamento de Raízes - @professorenan
Equações Algébricas e Transcendentes - Isolamento de Raízes - @professorenanRenan Gustavo
 
2317 equacao-do-2c2ba-grau-8c2aa-ef
2317 equacao-do-2c2ba-grau-8c2aa-ef2317 equacao-do-2c2ba-grau-8c2aa-ef
2317 equacao-do-2c2ba-grau-8c2aa-efelainepalasio
 
Educogente 9° ano -aula 1 - equação do 2° grau -
Educogente   9° ano -aula 1 - equação do 2° grau -Educogente   9° ano -aula 1 - equação do 2° grau -
Educogente 9° ano -aula 1 - equação do 2° grau -Patrícia Costa Grigório
 
Equações do 1º grau ppt
Equações do 1º grau pptEquações do 1º grau ppt
Equações do 1º grau pptktorz
 
Janepaulla ativ5
Janepaulla ativ5Janepaulla ativ5
Janepaulla ativ5janepaulla
 
Power point equacao do 2 grau por fatoracao
Power point equacao do 2 grau por fatoracaoPower point equacao do 2 grau por fatoracao
Power point equacao do 2 grau por fatoracaodebyrivoiro
 
CfSd 2016 matematica - 2 v1
CfSd 2016   matematica - 2 v1CfSd 2016   matematica - 2 v1
CfSd 2016 matematica - 2 v1profNICODEMOS
 
Módulo 01 - 8 ano / Ens.Fundamental
Módulo 01 - 8 ano / Ens.Fundamental  Módulo 01 - 8 ano / Ens.Fundamental
Módulo 01 - 8 ano / Ens.Fundamental Adriana De Moraes
 
Revisão de polinômios
Revisão de polinômiosRevisão de polinômios
Revisão de polinômiosmatheuslw
 
Exercicios Resolvidos Equacao 2 Grau 0
Exercicios Resolvidos Equacao 2 Grau 0Exercicios Resolvidos Equacao 2 Grau 0
Exercicios Resolvidos Equacao 2 Grau 0Adriana Bonato
 

Semelhante a Equações algébricas 2011 (20)

Equações algébricas
Equações algébricas   Equações algébricas
Equações algébricas
 
Polinomios 17122016
Polinomios 17122016Polinomios 17122016
Polinomios 17122016
 
Polinomios
PolinomiosPolinomios
Polinomios
 
Slides Aula - Equações.pdf
Slides Aula - Equações.pdfSlides Aula - Equações.pdf
Slides Aula - Equações.pdf
 
matematica
matematica matematica
matematica
 
Lista polinomio equaçoes_3_ano_2012_pdf
Lista polinomio equaçoes_3_ano_2012_pdfLista polinomio equaçoes_3_ano_2012_pdf
Lista polinomio equaçoes_3_ano_2012_pdf
 
Equações Algébricas e Transcendentes - Isolamento de Raízes - @professorenan
Equações Algébricas e Transcendentes - Isolamento de Raízes - @professorenanEquações Algébricas e Transcendentes - Isolamento de Raízes - @professorenan
Equações Algébricas e Transcendentes - Isolamento de Raízes - @professorenan
 
Discurssão.pptx
Discurssão.pptxDiscurssão.pptx
Discurssão.pptx
 
2317 equacao-do-2c2ba-grau-8c2aa-ef
2317 equacao-do-2c2ba-grau-8c2aa-ef2317 equacao-do-2c2ba-grau-8c2aa-ef
2317 equacao-do-2c2ba-grau-8c2aa-ef
 
Educogente 9° ano -aula 1 - equação do 2° grau -
Educogente   9° ano -aula 1 - equação do 2° grau -Educogente   9° ano -aula 1 - equação do 2° grau -
Educogente 9° ano -aula 1 - equação do 2° grau -
 
Ap matematica
Ap matematicaAp matematica
Ap matematica
 
Equações do 1º grau ppt
Equações do 1º grau pptEquações do 1º grau ppt
Equações do 1º grau ppt
 
Janepaulla ativ5
Janepaulla ativ5Janepaulla ativ5
Janepaulla ativ5
 
Polinomios
PolinomiosPolinomios
Polinomios
 
Power point equacao do 2 grau por fatoracao
Power point equacao do 2 grau por fatoracaoPower point equacao do 2 grau por fatoracao
Power point equacao do 2 grau por fatoracao
 
CfSd 2016 matematica - 2 v1
CfSd 2016   matematica - 2 v1CfSd 2016   matematica - 2 v1
CfSd 2016 matematica - 2 v1
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
 
Módulo 01 - 8 ano / Ens.Fundamental
Módulo 01 - 8 ano / Ens.Fundamental  Módulo 01 - 8 ano / Ens.Fundamental
Módulo 01 - 8 ano / Ens.Fundamental
 
Revisão de polinômios
Revisão de polinômiosRevisão de polinômios
Revisão de polinômios
 
Exercicios Resolvidos Equacao 2 Grau 0
Exercicios Resolvidos Equacao 2 Grau 0Exercicios Resolvidos Equacao 2 Grau 0
Exercicios Resolvidos Equacao 2 Grau 0
 

Mais de Rodrigo Carvalho (14)

Unidades de medidas de arcos e ângulos
Unidades de medidas de arcos e ângulosUnidades de medidas de arcos e ângulos
Unidades de medidas de arcos e ângulos
 
Sistemas lineares
Sistemas linearesSistemas lineares
Sistemas lineares
 
Relações métricas do triângulo retângulo
Relações métricas do triângulo retânguloRelações métricas do triângulo retângulo
Relações métricas do triângulo retângulo
 
Prismas
PrismasPrismas
Prismas
 
P.a. e p.g.
P.a. e p.g.P.a. e p.g.
P.a. e p.g.
 
Números complexos
Números complexosNúmeros complexos
Números complexos
 
Matrizes 2014
Matrizes 2014Matrizes 2014
Matrizes 2014
 
Matemática básica
Matemática básicaMatemática básica
Matemática básica
 
Juros simples e compostos
Juros simples e compostosJuros simples e compostos
Juros simples e compostos
 
Funcoes trigonometricas.ppt
Funcoes trigonometricas.pptFuncoes trigonometricas.ppt
Funcoes trigonometricas.ppt
 
Estatisitica
EstatisiticaEstatisitica
Estatisitica
 
Esferas
EsferasEsferas
Esferas
 
Cones
ConesCones
Cones
 
Cilindros
CilindrosCilindros
Cilindros
 

Equações algébricas 2011

  • 1. Prof.: Rodrigo CarvalhoProf.: Rodrigo Carvalho EQUAÇÕES ALGÉBRICAS
  • 2. Prof.: Rodrigo Carvalho DEFINIÇÃO Chamamos de equações algébricas de grau n N na variável x C, toda equação que pode ser reduzida à forma: ∈ Ax + B x + ... + Cx + D = 0 n n-1 Exemplos: a) 3x – 1 = 0 é uma equação algébrica de 1º grau. b) x – 3x + 4 = 0 é uma equação algébrica do 3º grau. 3 *OBS.: Toda equação polinomial de grau n, com n natural, possui n raízes complexas. ∈
  • 3. Prof.: Rodrigo Carvalho TEOREMA DA DECOMPOSIÇÃO Todo polinômio P(x) = Ax + B. x + ... + C. x + D n n-1 P(x) = A . (x – x1).(x – x2).(x – x3)...(x – xn), pode ser fatorado de maneira única como sendo x1, x2, x3, ..., xn, as raízes de P(x) = 0. Exemplo: Fatorar o polinômio P(x) =2x – 14x + 20. 2
  • 4. Prof.: Rodrigo Carvalho MULTIPLICIDADE DE UMA RAIZ Chamamos de multiplicidade de uma raiz a quantidade de vezes que um número é solução de uma equação. Exemplos: a) 3 é raiz com multiplicidade dois da equação x – 6x + 9 = 0. 2 b) -2 é raiz com multiplicidade um da equação 4x + 8 = 0. c) 0 é raiz com multiplicidade três da equação x - 7x = 0. 4 *Obs.: Podemos afirmar que as raízes dos itens anteriores são dupla, simples e tripla, respectivamente. 3
  • 5. Prof.: Rodrigo Carvalho RESOLUÇÃO DE UMA EQUAÇÃO ALGÉBRICA I) Quando a soma dos coeficientes de uma equação é zero, então 1 é raiz dessa equação. II) Quando o termo independente de uma equação é zero, então essa equação tem raiz nula com multiplicidade igual ao seu menor expoente. x – 2x + 5x - 4 = 03 2 x – 7x + 12x = 04 3 2
  • 6. Prof.: Rodrigo Carvalho IV) Caso uma equação com coeficientes inteiros possua raiz inteira, então essa raiz é um dos divisores da razão entre o termo independente e o coeficiente de maior grau. x – 6x – 11x + 10 = 03 2 III) Caso seja possível, podemos recorrer à fatoração por agrupamento. x – 4x + 3x - 12 = 03 2
  • 7. Prof.: Rodrigo Carvalho TEOREMA DAS RAÍZES COMPLEXAS Se um número complexo(não real) é raiz de uma equação cujos coeficientes são reais, então seu conjugado também é raiz dessa equação. Exemplo: Determine as raízes da equação 5x – 10x + 50x = 0. 3 2 *OBS: Esse teorema também é válido para raízes irracionais.
  • 8. Prof.: Rodrigo Carvalho RELAÇÕES DE GIRARD São relações estabelecidas entre as raízes de uma equação algébrica e seus coeficientes. EQUAÇÕES DE GRAU 2 0CBxAx2 =++ A B xx 21 −=+ A C x.x 21 = EQUAÇÕES DE GRAU 3 0DCxBxAx 23 =+++ A B xxx 321 −=++ A D x.x.x 321 −= A C xxxxxx 323121 =++
  • 9. Prof.: Rodrigo Carvalho EQUAÇÕES DE GRAU 4 0EDxCxBxAx 234 =++++ A B xxxx 4321 −=+++ A E x.x.x.x 4321 = A C xxxxxxxxxxxx 434232413121 =+++++ A D xxxxxxxxx 432431421321 −=+++ xxx
  • 10. Prof.: Rodrigo Carvalho Considere a equação , com k real. Se o número complexo 2 – i é uma das raízes dessa equação, então o valor de k é: A) irracional. B) natural. C) ímpar. D) cubo perfeito. E) racional não inteiro. 015kxxx 23 =++−
  • 11. Prof.: Rodrigo Carvalho Se a equação x − 3x − 4x + 12 = 0 tem duas raízes simétricas, a outra raiz é um número: 3 2 a) negativo; b) irracional; c) maior que 12; d) entre 2 e 4; e) entre 0 e 1.
  • 12. Prof.: Rodrigo Carvalho A soma dos inversos das raízes da equação 2x − 5x −3x + 2 = 0 é igual a: 3 2 2 5 e) 2 3 d) 2 1 c) 2 3 b) 2 5 a) −−−