SlideShare ist ein Scribd-Unternehmen logo
1 von 95
Volume 16, Supplement Nucleic Acids Research
A compilation of large subunit RNA sequences presented inaastructural format
Robin R.Gutell* and George E.Fox'
Department of Microbiology, University of Illinois, Urbana, IL 61801 and 'Department of
Biochemical and Biophysical Sciences, University of Houston, TX 77004, USA
INTRODUCTION
The present review provides a summary of all the published
large subunit rRNAs as of December 1987. Instead of the usual
linear alignment the sequences are tabulated here as a series of
secondary structure diagrams in which individual nucleotides are
indicated. The reasons for this departure from past practice are
several. The foremost is simply that in our experience this
format is more useful. For example, considerable effort is now
being expended to study the higher order structure of the large
rRNAs. Thus it is common to be reading a paper only to find
reference to position X in Sequence Y. With diagrams such as
those provided here the reader will be able to readily identify
such statements in the context of the known major outline of the
secondary structure of Sequence Y or for that matter any other
published sequence. Secondarily this collection, as is
traditional, tabulates all the currently known sequences in one
place. Finally we believe the collection as a whole is
educational in that it will make the reader aware of the extent
of secondary structure variation in the large subunit RNAs and
the magnitude of work that still could be done to further refine
the secondary structures by collection of appropriate additional
data.
ORIGIN OF THE STRUCTURE
All of the structure diagrams are drawn in a format that
coincides with that used for Escherichia coli. The E. coli
structure itself is based on a seconda-y structure model first
published in 1981 (1). The present version contains important
unpublished modifications made by Gutell, Noller and Woese (2)
and further unpublished refinements (Gutell, Noller and Woese,
unpublished results; Jurka and Fox, unpublished results). All of
the structures shown were established by comparative sequence
analysis as discussed below. Due to data limitations some
regions of some of the sequences are best regarded as of unknown
structural content at this time. No attempt has been made here
to compare the structures presented to the various sequence
specific secondary structures that frequently accompany the
publication of each sequence, though excellent agreement exists
with one recently published general model (3). Likewise no
putative tertiary interactions have been indicated on the
figures though a few are known (Gutell, unpublished results and
ref (3). In many cases there is evidence for a pseudoknot in the
©) IRL Press Limited, Oxford, England. rl 75
Nucleic Acids Research
vicinity of E. coli position 2350 (Gutell, unpublished results
and ref (3)) and when that evidence is favorable the interaction
is indicated on the f igures.
COMPARATIVE SEQUENCE ANALYSIS
For pragmatic reasons the primary tool used in constructing
the individual structures has been comparative (or phylogenetic)
analysis. This approach had its origin in the discovery of the
cloverleaf structure for tRNA (4). It first began to reach its
modern form with the analysis of 5S rRNA (5) and has emerged as
a well documented procedure (2,6-8) The underlying assumption is
that functionally equivalent regions of the large rRNAs from
phylogentically diverse sources will have biologically
equivalent structures. The procedure begins by aligning the
primary sequences using conserved sequence segments as a guide.
Next the various columns of bases are individually intercompared
to detect compensating base changes that maintain Watson-Crick
complementarity between the potential pairing regions. If an
individual helical element is independently tested several times
it is considered phylogenetically proven.
The comparative method has certain limitations that the
reader should appreciate in perusing the figures presented here.
First and foremost is the need for sequences that exhibit the
structure being studied. For highly conserved features this may
be the entire data base. In other cases features may be
extremely variable so that particular versions are only found in
individual phylogenetic groups, mammamalian mitochondria for
example. Secondly the feature must exhibit sequence variation
within the subset of sequences that contain the feature. Without
such variation a region can not be structured. Thirdly it should
be recognized that the approach necessarily produces minimal
structures. It is the nature of the method to allow the
identification of additional features as the data base grows.
Thus, for example, the continuing refinement of the E. coli
structure discussed above. Finally it should be appreciated that
it is very difficult to assess the significance of base pairs
that that can extend a particular helix in some organisms but
not all. Such base pairs are strongly supported by thermodynamic
arguements but conflict with the comparative concept. The proper
resolution in such circumstances may have to wait until such
time that more high resolution structure data is available.
CURRENT DATA BASE
As of late in 1987 there were 40 distinct complete large
subunit RNA sequences published and at least five extensive
partial sequences in which at least 500 bases of the large
subunit RNA have been sequenced (We have not exhaustively
searched for these). In addition in some instances sequence
information is available from more than one large subunit RNA
gene from the same organism. Multiple rRNA genes frequently
exhibit heterogeneity in sequence and this phenomenona may be of
more than academic interest. The present collection does not
address this matter however and in those few instances where
information from more than one large subunit rRNA gene is
available we have arbitrarily picked one sequence for inclusion
r176
Nucleic Acids Research
here. The 40 known sequences provide a diverse sample covering
the three major urkingdoms; eubacteria, archaebacteria and
eukaryotes as well as the organelles. Table 1 lists the
sequences, the common name of the RNAs involved, the total
length of the large subunit RNA inclusive of fragments such as
5.8S and 4.5S rRNAs, at least one relevant GENBANK/EMBL
accession numbers if the sequence is in the data bases, a highly
abbreviated reference and a key to the complete references that
accompany this text.
HOW TO READ THE DIAGRAMS
The structure diagrams were drawn to a single scale so that
they may be readily superimposed or intercompared. This was
accomplished by a computer program described elsewhere (6). Each
diagram encompasses two pages with a crossover point to the next
page indicated. In most bacterial cases a possible helical
structure exists between the 5'and 3' termini of the molecule.
It is uncertain whether this helix is present in the functional
RNA or is simply a remnant of processing. In any event the
reader needs to be aware that when it is possibly present it
appears on both halves of the figure. Extensive base numbering
occurs on the E. coli diagram. On the other sequence diagrams
only occasional numbers are included. These occasional numbers
refer to the specific sequence on which they appear. In those
cases in which more than one molecule is include (eg 5.8S and
28S RNAs) each is numbered separately.
When a region contains no known structure it is drawn by
the computer program as a circular loop. In order to maintain
the scale and layout of the drawings it is not always possible
to draw large uncharacterized regions as unstructured loops.
When this occurs the region of unknown structure is included as
a detached linear array listed from 5' to 3'. The Homo sapiens
and other eukaryotic cytoplasmic sequences contain many examples
of this, though the same phenomenon will also be seen on
mitochondrial and chloroplast diagrams. These linear arrays are
labeled with a bold letter and the positions included in the
array indicated. A second bold letter specifies where in the
sequence the linear array belongs. These bold letters are used
in a consistent fashion so that a large unstructured area at the
same location in several diagrams always receives the same bold
letter. In a few instances the uncharacterized array is small
enough to be shown as a loop in some but not all the diagrams.
In those instances a bold letter is used to label the loops so
that it is obvious that an equivalent unstructured region is
present.
The reader should not conclude that the regions assigned
bold letters are the only unstructured regions. Whenever room
exists the computer program draws the unstructured regions as a
large loop. A letter has only been assigned if the computer has
used the linear array display in at least one case. Many of the
unlabeled unstructured regions are rather large. Obvious
examples can be seen by examining any of the mammalian
mitochondria structures. Thus in many of the sequences presented
here local regions which are often substantial in size are shown
as unstructured. These regions clearly have a different
r177
Nucleic Acids Research
Table 1. Listing of Large Subunit RWA Sequences that have been campletely or extensively sequenced.
ORGANISM
A: EUBACrERIA
1. Escherichia coli
2. Pseucasonas ae.ruginosa
3. Bacillus subtilis
4. Bacillus stearothermDphilus
5. Anacystis nidulans
Chloroplasts
6. Zea m'ays
7. Nicotiana tabacum
8. Marchantia polymorpha
9. Chlorella ellipsoidea
Mitochondria
10. Zea mays
11. Oenothera berteriana
12. Aspergillus nidulans
13. Sacchar-anyces cerevisiae
14. Schizo. pambe
15. Paranecium primaurelia
16. Paramecium tetraurelia
17. Haso sapiens
18. Mouse
19. Rat
20. Bovine
21. Xenopus laevis
22. Drosophila yakuba
23. Aedes albopictus (mosquito)
24. Crithidia fasciculata
25. Trypanosas brucei
26. Leisthania tarentolae
B: A}HAEBWrERIA
27. Halococcus morrhuae
28. Halobacterius halobiun
29. Methanoooccus vanniellii
30. Methanobacterium
theoautotrophicum
31. Desulfurococcus mobilis
32. Thermoproteus tenax
C: EUKARYOTIC CYTOPLASMIC
33. Saccharauyces cerevisiae
34. S. carlsbergensis
35. Hcao sapiens
36. Mouse
37. Rat
38. Xenopus laevis
39. Oriza sativa
40. Caenohbsditis elegans
41. Physarus polycephalum
42. Crithidia fasciculata
Major Partial Sequences
43. Mycoplasma PG50
44. Apis mellifera mito.
45. Dictylostellium discoidiun
46. Lytechinus variegatus
47. Chiapanzee
RMA TYPE LENGHT SHORT REFERENCE ACCESSICN # FIGURE # REFERENCE #
23S 2904 PNAS 77: 201 1980
23S 2893 NMAR 15:7182 1987
23S 2927 GENE 37: 261 1985
23S 2928 DNA 3: 347 1984
23S 2876 GENE 24: 219 1983
NAR 12: 3373 1984
23S & 4.5S
23S & 4.5S
23S & 4.5S
23S
J01695
Y00432
K00637, M10606
X00512
X00343
2981 NAR 9: 2853 1981 X01365
2907 EJB 124: 13 1982 J01446, J01447
2914 Nature 322:572 1986 X04465, X01647
3207 Cur.Gen. 11:347 1987 --
26S 3549 PLASMID 11: 1984
26S 3265 Cur.Gen. 9: 1985
2768 MR 10: 4795 1982
21S 3273 NAR 11: 339 1983
-- 2705 EJB 169: 527 1987
7S & 20S 2634 NAR 9: 6391 1981
7S & 20S 2631 JBC 259: 5173 1984
16S 1559 Nature 290: 457 1981
16S 1582 Cell 22:157 1980
16S 1559 NMR 9:4139 1981
16S 1571 JMB 156: 683 1982
16S 1640 JBC 260: 9759 1985
-- 1326 MAR 13: 4029 1985
-- 1335 NAR 12: 7771 1984
12S 1141 NAR 13: 4171 1985
12S 1152 NAR 13: 4171 1985
12S 1157 MAR 13: 2337 1985
23S 2927 JMB 195: 43 1987
23S 2905 MOG 202: 152 1986
23S 2958 M3G 200: 305 1985
23S 3019 3MB 195: 43 1987
23S 3077 JMB 195: 43 1987
23S 3031 MAR 15: 4821 1987
K01868
J01527
K00634
K01749
J01415
J01420
J01438
J01394
M10217,X00136
X01078
X02548
X02547
X03047,X00872
Y00346
5.8S & 25S 3549 NAR 9: 6953 1981 J01355
JBC 248: 3860 1973
5.8S & 26S 3550 NAR 9: 6935 1981 V01285
5.8S & 28S 5184 RNAS 82: 7666 1985 K03433,K03434
MAR 4: 2495 1977
5.8S & 28S 4869 NAR 12: 3563 1984 X00525
NAR 10: 5273 1982
5.8S & 28S 4943 NAR 11: 7819 1983 X01069,K01591
MR 12: 3677 1984 X00521
RIBOSCMES 86: 391
5.8S & 28S 4270 MAR 11: 7795 1983 X00136
JBC 260: 9759 1985
5.8S & 25S 3541 GENE 37: 255 1985 M11585
5.8S & 266 3662 NAR 14: 2345 1986 X03680
5.8S & 26S 3943 PNAS 80:3163 1983 V01159
NAR 10: 2379 1982
5.8S & frag. 4085 EMBO J. 6: 1063 1987
23S 869
1267
5.8S & 28S 3471
5.8S & 28S 664
28S 1429
NAR 15: 1327 1987
MAR 15: 2388 1987
MAR 12: 4171 1984
NAR 12: 1737 1984
PNAS 82: 766 1985
X00601
X00350
K03433
*
Lengths indicated represent the portion of the molecule for which sequence has been published.
r178
1 17
2 18
3 19
4 20
5 21
13
6 22
7 23
8 24
9 14
11 25
12 26
13 27
14 28
- 29
15 30
31
17 32
18 33
19 34
20 35
21 36
22 37
23 38
25 39
26 39
27 40
29 3
30 41
31 42
32 3
33 3
43
35 44
45
- 46
36 47
48
37 49
50
38 51
52
16
39 53
54
40 55
41 56
42 57
58
43 12
-- 59
-- 60
- 61
-- 62
__ 47
5
Nucleic Acids Research
structure than is seen in E. coli or some of the other molecules
but we do not as yet know what it is.
This should not be seen as bothersome but rather as
defining an opportunity to obtain data from additional organisms
in order to allow resolution of the problem area. In many cases
the difficulty stems from the fact that too few sequences are
available or too little sequence variation has been displayed in
the known sequences to deduce a structure. In a few cases time
did not permit a though analysis and a recognizeable structulral
feature may have been overlooked. Also the reader should realize
that the comparative approach is a convergent one. The current
model should at best be perceived as a minimal one awaiting the
discovery of additional interactions. Thus small two and three
base helices may ultimately be found even in regions in which
considerable structure has already been identified as more data
accumulates.
5.8S RNA, 4.5S RNA AND OTHER LARGE SUBUNIT FRAGMENTS
It is one of the pecularities of the large subunit RNA that
it is sometimes genetically fragmented. The most well known
example is the 5.8S rRNA and its equivalents that are found in
most eukaryotic o.ganisms. This RNA has been shown (9,10) to be
homologous to approximately the first 150 positions of the E.
coli 23S rRNA. Although genetically distinct it interacts with
the large subunit RNA through base pairing. In effect then the
two together form a single RNA with a backbone nick in one of
its loops. The same phenomenon is also seen at the 3' end of
several chloroplast large subunit RNAs where the last 100 or so
bases are separately encoded as a 4.5S RNA (11). In this case
the homology to the E. coli 3' terminus is obvious but the the
mechanism by which the 4.5S rRNA and the main large subunit RNA
component are held together is not. The most extreme case of
this fragmentation phenomenon that is known is in Crithidia
fasciculata where the large subunit RNA is actually assembled
from six f-ragments plus a 5.8S rRNA (12). These various
fragmentation phenomenon are indicated on the diagram by labels
that indicate where the respective 5' and 3' ends are located.
The Crithidia fragments are labeled with the same lower case
letters that were used in the original publication (12) and
numbered as if they were a single large RNA.
OVERLAY DIAGRAMS AND COLLECTION ARRANGEMENT
It is very useful in comparing structures to produce
overlay diagrams that display one structure relative to another.
Several such diagrams are included here. In each case the
underlying structure is that of E. coli. Where the E. coli is
unique it can be seen as a light gray. The bold structure is
that of the other organism indicated in the legend. Base numbers
on these diagrams always refer to E. coli. These overlay figures
show immediately where the sites of structural variation between
the two RNAs are located. The overlay figures are used to
introduce the various sections of the collection. In each case a
particularly representative overlay is chosen so that the major
variations in the group relative to E. coli can be seen.
The collection begins with the five eubacterial sequences.
r179
Nucleic Acids Research
These are virtually identical structurally and therefore no
overlay figure is included. They are followed by the four
chloroplast figures which again follow the virtually identical
structural pattern. The Anacystis sequence used was arbitrarily
that of Douglas and Doolittle (13). The plant chloroplasts all
have a detached 4.5S at the 3' terminus but the alga, Chlorella
ellipsoidea does not. The C. ellipsoidea sequence also is unusal
in that it is claimed to contain an intron (14). We believe that
this assertion is not convincingly established and thus the
putative intron is shown on Figure 9a as an insertion region of
class D. Several large subunit sequences have an insertion at
this location. If the C. ellipsoidea insertion is in fact an
intron this would be very atypical as none of the known large
subunit introns correspond with common insertion regions. It is
possibile that experimental difficulties may have arisen due to
the propensity of large subunit RNAs such as E. coli 23S rRNA
(15) to readily fragment. The location of this fragmentation
site has been localized in E. coli (1) to the region of the RNA
that corresponds to that which contains the putative intron in
C. ellipsoidea.
The largest portion of the collection contains the
mitochondrial sequences. These are assembled into three groups
each prefaced by a separate overlay figure. The first and most
internally variable gLoup are those with large mitochondrial
RNAs as typified by the overlay of Zea mays, Fig. 10. These
mitochondrial RNAs resemble the eubacterial ones in size and
structure more than any of the other mitochondria do.
Nevertheless they are marked by considerable varibility even
within the group. One unifying feature is the presence of an
unstructured region H in the vicinity of E. coli position 1400
in all cases. Structures are provided for all of these RNAs
except Paramecium tetraaurelia which is virtually identical to
P. primaurelia, Fig. 15. and Schizosaccharomyces pombe which was
published after the structures were completed. The second major
mitochondrial group are the rather small 16S RNAs that are found
in most higher organisms. Although much smaller, as the human
overlay shows, Fig. 16, considerable structural similarity with
the eubacterial RNAs continues to exist. Finally the three
kinetoplast mitochondrial 12S rRNAs follow. Here as is indicated
by the overlay, Fig. 24, virtually none of the structure in the
5' half of the molecule is preserved, though considerable
structural conservation does exist in the 3' half of the
molecule.
The remaining figures are devoted to the archaebacteria and
eucaryotic cytoplasm. As indicated by the Halococcus morrhuae
structural overlay, Fig. 28, the archaebacteria exhibit
significant variation that exceeds anything that is seen among
the eubacteria alone. Close examination of the archaebacterial
figures also reveals that unlike the eubacteria, the
archaebacteria, do exhibit some variation within the group as a
whole. A figure is not included for Thermoproteus tenax because
this sequence was inadvertantly overlooked. The main theme from
the eucaryotic cytoplasmic sequences sems to be growth in size.
Although not all the RNAs exhibit the effect to the same extent
it is clear that several regions seem to be favored for
macroscopic insertions of new material. As indicated by the
Saccharomyces cerevisiae overlay, Fig. 34, the main theme of
rl 80
Nucleic Acids Research
secondary structure is again repeated in the eukaryotic
cytoplasmic RNAs. Excluding the large insertions, the eukaryotic
RNA structure is remarkably like that of the eubacteria and
archaebacteria. The sequence of S. carlsbergenesis 26S rRNA is
very similar to that of S. cerevislae and thus is not shown as a
separate figure. In the case of rat, the corrected sequence (16)
has been chosen for the figure presented here.
AVAILABILITY AND ACCURACY OF THE DATA
The sequences presented here are maintained in aligned data
bases according to phylogenetic type. Due to the numerous
macroscopic insertions and deletions no attempt is made to
maintain a single aligned data base of all the sequences. We
therefore cannot provide such an alignment on electronic medium.
We can however provide individual sequences. Alternatively the
interested reader may get sequences directly from the electronic
databases. When base ambiguity existed the IUPAC nomenclature
recommendations were followed. Post-transcriptional
modifications have not been indicated since these have not been
determined in most cases. The reader should be aware however
that the large rRNAs do have a number of such modified
nucleotides. In the case of the 5.8S rRNAs which mostly have
been sequenced at the RNA level the post-transcriptional
modifications are frequently known, though not indicated here.
The sequences presented here and the position number labels have
been extensively checked but nevertheless may contain an
occasional error. The structures themselves are the best we
currently have available. Although occasionally a helix
indicated may be in error it is far more likely that one will
have been overlooked. Readers are invited to inform us about
errors and ommissions of published sequences.
ACKNOWLEDGEMENTS
Dr. Robin Gutell's efforts in this undertaking were
supported by NIH grant #GM-17129 to Dr. Harry F. Noller of the
University of Santa Cruz and NASA grant NSG-7044 to Dr. Carl R..
Woese at the University of Illinois. Dr. George E. Fox's efforts
were supported by NASA grant NSG-7440 and NIH grant GM-37655.
*Present address: GENPROBE Inc., 9880 Campus Point Drive, San Diego, CA 92121, USA
RE FERENCES
1. Noller,H.F., Kop,J.A., Wheaton,V., Brosius,J., Gutell,R.R.,
Kopylov,A.M., Dohme,F., and Herr,W. (1981) Nucl. Acids Res.
9,6167-6189.
2. Noller,H.F. (1984) Ann. Rev. Biochem. 53, 119-162.
3. Leffers,H., Kjems,J., Ostergaard,L., Larsen,N., and
Garrett,R.A. (1987) J. Mol. Biol. 195,43-61.
4. Holley,R.W., Apgar,J., Everett,G.A., Madison,J.T.,
Marquise,M., Merrill,S.H., Penswick ,J.R., and Zamir,A.,
(1965) Science 147, 1462-1465.
5. Fox,G.E. and Woese,C.R. (1975) J.Mol.Evol. 6, 61-76.
6. Gutell,R., Weiser,B., Woese,C.R., and Noller,H.F. (1985)
Prog. Nucl. Acids Res. & Mol. Biol. 32,155-216.
7. Fox,G.E., (1985) in 'The Bacteria" (C.R. Woese and R.S.
Wolfe, eds.) 9,257-310.
r1 81
Nucleic Acids Research
8. Olsen,G.J. (1983) Ph.D. thesis, Univ. Colorado
9. Nazar,R.N. (1980) FEBS Lett. 119,212-214.
10. Walker,W.F. (1981) FEBS Lett. 126,150-151.
11. MacKay,R.M. (1981) FEBS Lett. 123,17-18.
12. Spencer,D.F., Collings,J.C., Schnare,M.N., and Gray, M.W.,
(1987) EMBO J. 6,1063-1071.
13. Douglas,S.E. and Doolittle,W.F. (1984) Nucleic Acids Res.
12,3373-3386.
14. Yamada,T.,and Shimaji,M. (1987) Curr.Genet. 11, 347-352.
15. Allet,B., and Rochaix,J.D., (1979) Cell 18,55-60
16. Wool,I.G. (1986) in Hardesty,B. and Kramer,G. (eds.),
Structure, Function and Genetics of Ribosomes,
Springer-Verlag, pp.391-412.
17. Brosius,J., Dull,T.J., and Noller,H.F. (1980) Proc. Natl.
Acad. Sci. USA 77,201-204.
18. Toschka,H.Y., Hopfl,P., Ludwig,W., Schleifer,K.H., Ulbrich,
N. and Erdmann,V.A. (1987) Nucleic Acids Res. 15,7182.
19. Green, C.J., Stewart, G.C., Hollis, M.A., Vold, B.S. and
Bott, K.F. (1985) Gene 37,261-266.
20. Kop, J., Wheaton, V., Gupta, R., Woese, C.R. and Noller,
H.F. (1984) DNA 3:347-357.
21. Kumano,M., Tomioka,N. and Sugiura,M. (1983) Gene 24,219-225.
22. Edwards,K. and Kossel,H. (1981) Nucleic Acids Res.
9,2853-2860.
23. Takaiwa,F. and Sugiura,M. (1982) Eur.J.Biochem. 124,13-19.
24. Ohyama,K., Fukuzawa,H., Kohchi,T., Shirai,H., Sano,T.,
Sano,S., Umesono,K., Shiki,Y., Takeuchi,M., Chang,Z.,
Aota,S., Inokuchi,H., Ozeki,H. (1986) Nature 322, 572-574.
25. Dale,R.M.K., Mendu,N., Ginsburg,H. and Kridl,J.C. (1984)
Plasmid 11,141-150.
26. Manna,E. and Brennicke,A. (1985) Curr. Genet. 9,505-515.
27. Kochel,H.G. and Kuntzel,H. (1982) Nucleic Acids Res. 10,
4795-4801.
28. Sor,F. and Fukuhara,H. (1983) Nucleic Acids Res. 11,339-348
29. Lang,B.F., Cedergren,R., and Gray,M.W. (1987) Eur. J.
Biochem. 169, 527-537.
30. Seilhamer,J.J. and Cummings,D.J. (1981) Nucleic Acids Res.
9,6391-6406.
31. Seilhamer,J.J., Gutell,R.R., and Cummings,D.J., (1984) J.
Biol. Chem. 259, 5173-5181.
32. Anderson,S., Bankier,A.T., Barrell,B.G., de Bruijn,M.H.L.,
Coulson,A.R., Drouin,J., Eperon,I.C., Nierlich,D.P., Roe,
B.A., Sanger,F., Schreier,P.H., Smith,A.J., Staden,R. and
Young,I.G. (1981) Nature 290, 457-465.
33. van Etten,R.A., Walberg,M.W., and Clayton,D.A. (1980) Cell
22, 157-170.
34. Saccone,C., Cantatore,P., Gadaleta,G., Gallerani,R., Lanave,
C., Pepe,G. and Kroon,A.M. (1981) Nucleic Acids Res.
9,4139-4148.
35. Anderson,A., de Bruijn,M.H.L., Coulson,A.R., Eperon,I.C.,
Sanger,F. and Young,I.G. (1982) J. Mol. Biol. 156, 683-717.
36. Roe, B.A., Ma, D-P., Wilson, R.K., and Wong, J.F-H. (1985)
J. Biol. Chem. 260,9759-9774.
37. Clary,D.O. and Wolstenholme,D.R. (1985) Nucleic Acids Res.
13,4029-4045.
38. HsuChen,C-C., Kotin,R.M. and Dubin,D.T. (1984) Nucleic Acids
Res. 12,7771-7785.
rl 82
Nucleic Acids Research
39. Sloof,P., Van den Burg,J., Voogd,A., Benne,R., Agostinelli,
M., Borst,P., Gutell,R., and Noller,H. (1985) Nucleic Acids
Res. 13,4171-4190.
40. de la Cruz, V.F., Simpson, A.M., Lake, J.A. and Simpson, L.
(1985) Nucleic Acids Res. 13,2337-2354.
41. Mankin, A.S. and Kagramanova, V.K. (1986) Mol. Gen. Genet.
202,152-161.
42. Jarsch,M. and Bock,A. (1985) Mol. Gen. Genet. 200, 305-312.
43. Kjems,J., Leffers,H., Garrett,R.A., Wich,G., Leinfelder,W.,
and Bock,A. (1987) Nucleic Acids Res. 15,4821-4835.
44. Georgiev,O.I., Nikolaev,N., Hadjiolov,A.A., Skryabin,K.G.,
Zakharyev,V.M. and Bayev,A.A. (1981) Nucleic Acids Res. 9,
6953-6958.
45. Rubin,G.M. (1973) J. Biol. Chem. 248,3860-3875.
46. Veldman,G.M., Klootwijk,J., de Regt,V., Planta,R.J.,
Branlant,C., Krol,A. and Ebel,J-P. (1981) Nucleic Acids Res.
9,6935-6952.
47. Gonzalez,I.L., Gorski,J.L., Campen,T.J., Dorney,D.J.,
Erickson,J.M., Sylvester,J.E. and Schmickel,R.D. (1985)
Proc. Natl. Acad. Sci. USA 82,7666-7670.
48. Khan,M.S.N. and Maden,B.E.H. (1977) Nucleic Acids Res.
4,2495-2505.
49. Hassouna,N., Michot,B. and Bachellerie,J-P. (1984) Nucleic
Acids Res. 12,3563-3583.
50. Michot,B., Bachellerie,J.P., and Raynal,F. (1982) Nucleic
Acids Res. 10,5273-5283.
51. Chan,Y.L., Olvera,J.,and Wool,I.G. (1983) Nucleic Acids Res.
11, 7819-7831.
52. Hadjiolov,A.A., Georgiev,O.I., Nosikov,V.V., and
Yavachev,L.P., (1984) Nucleic Acids Res. 12, 3677-3693.
53. Ware,V.C., Tague,B.W., Clark,C.G., Gourse,R.L., Brand,R.C.
and Gerbi,S.A. (1983) Nucleic Acids Res. 11,7795-7817.
54. Roe,B.A., Ma,D.-P., Wilson,R.K., and Wong,J.F.H. (1985) J.
Biol. Chem. 260, 9759-9774.
55. Takaiwa,F., Oono,K., Iida,Y. and Sugiura,M. (1985) Gene 37,
255-259.
56. Ellis,R.E., Sulston,J.E. and Coulson,A.R. (1986) Nucleic
Acids Res. 14,2345-2364.
57. Otsuka,T., Nomiyama,H., Yoshida,H., Kukita,T., Kuhara,S.,
and Sakaki,Y. (1983) Proc. Natl. Acad. Sci. USA 80,
3163-3167.
58. Otsuka,T. Nomiyama,H., Sakaki,Y., and Takagi,Y. (1982)
Nucleic Acids Res. 10, 2379-2385.
59. Rasmussen,O.F. and Christiansen (1987) Nucleic Acids Res.
15, 1327.
60. Vlasak,I., Burgshwaiger,S. and Kreil,G. (1987) Nucleic Acids
Res. 15,2388.
61. Ozaki,T., Hoshikawa,Y., Iida,Y. and Iwabuchi,M. (1984)
Nucleic Acids Res. 12,4171-4184.
62. Hindenach,B.R. and Stafford,D.W. (1984) Nucleic Acids Res.
12, 1737-1747.
rl 83
Nucleic Acids Research
Secondary Structure of eubacterial 23S Ribosomal RNA: Escherichia coli
AAA tA
ACCAuCCAUCAu GAA^C ACC A A %CGCC Gu
GAUCGGUAGUA%XCIof IAtCCG AAAUI IC G
GA
c G5cA ... I. CACAC C
A01 AA,0A IUG
*oxo^C-C~~~~~~~~~~~~~~~g-CC A
A' CG CUACCC Gu C GCC Cu u CCu G C C C ^ '<o G C
OW
Gw .w
A
CA8 A
A UCG~~~~~~~~~~~~~~~~~~~~~~~
GoeU^uc .GxcGGc&s,
ACC AG`A A GAAAA :
A
~~~~~~~~~aAA~~~~~~~~~~~~~~~~~~~~~~
A A
AjA A'A ACA.A
AAAAC AAC AA AAAAAC GA c
A A ~~~~~~~~~~~~~~~~~~~~~~~~~AC
A:CC AACAAAAAAAAUC2:
EGAA cAWAAGAAA AAA
AG AA'AGA 3 A A0 UA "OGA-
AAAA A C U
AfA AGCCUCC AGUGGUC .G
v A AAI¼AA 'A
AAAG*GCJGAAAcc AACUCA uGA
%A A A9CCrGA
AAjGF 31 AACCAAAAA
ACAA- A-A ~~~~~~~~~~~~~~G
A
Fig. Ica
Esclwr,ch/o coil
rir84
Nucleic Acids Research
1870
GC AA
uGAU G
G *UUGCG
Ac GC-G*fu A-
C 2 e-G210
G 2 8i0
A-,g
AG UG
AG-C G GG AC UU -
ACUu GGAkU 2 20 Ai GA6TU-AA GU.A UA A' G GAGC AGG GGUGG C
UE : U CCACC U
J^GC 2110t- GAUG CGAA AGUU C 9130 U UU- UAA
UUCC A C -G
A UUA u GGA
AC2100 G C C
%ACGUGCCA2% Y-GU-A
U A C~~~~A 8 22
CCGGCU AGA G 220 C^^
UGAA:.AI GC CCGA
GGGUGCCGUCU_~CGCCCCUI <1.l
4--66161 A UA
GCUUGGGGCU A G
8GAG 'ACUUi
8
A AGAGUU-AG
G
A A
AUC U- A-4.au
G :8U
C
UG
G G
C
20,0A-AA C--
GA
0 GU G
^A-u
u ~~~~GGG
__ U~~~~~A~ A
AUUAGA2G7UA
-GAA GCA
A20MGAAA%UA
GU %G UA %U
AAc~~~~G
GCUGA UA CC GCC/
I AUL CG%UUGUGGCGG C
C 262 2610 A l CAG,
G C
ACAC-USA CAUG
A " AGGCC G.v>G §UG
GC .G G- AC CUGGGCUG
UCj,A U AA
G?UU8fAUGG(GAA(?CCUGGA0
276 C A 2120 tA' C8I?
GAG GAACC' 2260220
A Gm
kCG AA 0-G A G
27010 8 A
uAX%%% A ~ ~ A
A N~~~~~~A
Fig.Ib
£scherichic co/i
rl85
Nucleic Acids Research
Secondary Structure of eubacterial 23S Ribosomal RNA: 5'half
Fig.2a
Pseudomonas aeruginosa
r186
Nucleic Acids Research
Secondary Structure of eubacterial 23S Ribosomal RNA: 3'half
ac
a
2300
C
0
Fig.2b
Pseudomonas aeruginosa
,187
Nucleic Acids Research
Secondary Structure of eubacteral 23S Ribosomal RNA: 5'half
1000
Fig.3o
Bacillus subtilis
rl88
Nucleic Acids Research
Secondary Structure of eubacterial 23S Ribosomal RNA: 3'half
c
c
2730
Fig.3b
Bacillus subtilis
rl89
Nucleic Acids Research
Secondary Structure of eubacterial 23S Ribosomal RNA: 5'half
Fig.4o
Bacillus stearothermophilus
ri90
Nucleic Acids Research
Secondary Structure of eubactenal 23S Ribosomal RNA: 3'half
Fig.4b
Bacillus stearothermophilus
ri 91
Nucleic Acids Research
Secondary Structure of eubacterial 23S Ribosomal RNA: 5'half
-100
Fig. Sa
Anacystis nidulans
rl92
Nucleic Acids Research
Secondary Structure of eubacterial 23S Ribosomal RNA: 3'half
%
AXAG C - GA
'le a
-CACGGGUAo
U
A
11111 A
C U AUUGCCCACA
3 c-^ 2800
G-UA U
UG C
C U GA^
AAA
G
U: UAGA
UA- u
G^ cGA
Fig.5b
Anacystis nidulans
rl 93
Nucleic Acids Research
Secondary Structure of chloroplast 23S Ribosomal RNA: 5'half
Fig.6o
Zea mays
r094
Nucleic Acids Research
Secondary Structure of chloroplast 23S Ribosomal RNA: 3'half
AC-G%
o CC*g
UA0 U
GA
A GA
1895-C-C AcU8 CAG
A AG 6SPG AGGC
GACGG A A
UAUACU a#X0 G AGGUGG C
:1C2 OCAC
IIIIIIII I OACAAUCUCC G U
AGC
-a tl A
2O&C UAGAGUO ^°4 ^s
AAG C
CUU UGCGG A A
C
A 0A*u U UAG au
AGC A A U A GUG
eCAA-C A 1L
10(;Ac
A%~~~~~~~~~~~~~~~~~~~~~=A~~-A ACGCCCA ,
a8 GU u 00-G~~~~Zamay
UA U-AA 230020tU4 A~~.~CGCAGUGACCAG4:2 G CUdGUCAGAC S8
ikoAGoeau
~~A oi *llc111cc
UCAAUGCCCCGAUACGCUCAI c U- GAA4ACGGGCGC C- c
1800 1c AGU 8S
UG A A u .GGA
C-u.GGa U-A
U-A VSAG
AC-G C ~~~~~~~AG-: UA AAAUG
G GAu
u ACUGCAAGAU
U=A A c ~ ~~~~~~~~~~~ACGAGCUGCC
GAAAUAG GC
AGC20C CGGCGC
A= U-AAJGA
CAGACAUAUA A UI
U C
CCUIGCACc!'GGACAG
A
AAG
GGGUGUGGCCUACI.*ltl It C
U9 CG%bUUGGAAGGG CU ACC
AGA
U ~~~~~GC
ACG%%eAGAC A
",A AG'Gca CuUGuGau 2600
4.5S CUCU"% aUG&
A
CG,6GA
5CU3AAt
G
UC% %GCA
AUO 23S $
,
UC.4CC.GA
C- CAG AGAACCC9%ACCUU%%AGG Aj. U
9
G 1 11A
A
345S
'Gt
C AU CACCUGGAGCUGU
S
A A cUAAA~CA
G A A C C~~~~~~~, A C lllIU.
AGCA_ U C O 'C C UUGUM1CUGU
U = G C A A GAUcA
C U G~~ ~~~~AACA U
G
G C
COA AG AAAU,e.C
U-A-50 2QU
Zea mays
r195
Nucleic Acids Research
Secondary Structure of chloroplast 23S Ribosomal RNA: 5'half
'A~A0A c
1100 A
ACACA C CC A 'tCA AA~~UcCAUAUAAA%?CACAAA
C~~~~~~GGAACGACCA C,AGGCGtACCCA A CAAAU
AACG GUACUCo,A A oIl-fill fiA AGC
'A,CGUUUGGAu cuc~~~~~~~~~~~~~~~AA
A0 eCLCCA AAA CAG
A~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~50A tI
CAIA C.
ACA a1400 -G
AG '~~~~~~~~~A' AC
Aic-dk~~ ~ ~ ~ ~ G A C C. A CG A
A AAGCAGAC GA GCCCAAAA C A -U
A G ACA A A"'~~~~~~~~~~~~~~~~~~~~~~~~~CA A ~~~~~~~~~ AGAA U-A
G-U ACC~~~~~~~~ACC
A U C 160
A G u2:CGGACAGGAA
cRcP GAC AAA0~ ~ ~ ~ ~ ~
Ad3~~~~~~GA AGAG A-
UA G
A- ACAeAA-CGGACG
IA A
ACCG GAAAC
A A-A~~~~~~~~~~C
A eC
OUAHAaCAAAAC
A 16007
Fig.7a
tobacco
rl96
c4
Nucleic Acids Research
Secondary Structure of chloroplast 23S Ribosomal RNA: 3'half
AUGAG-C
C-AAC-G
00p8-t
Ae U SC uC Cc
A "A U G
a C
U A G C
G A A a c7o
C- 0 A AA
A CA A AAG C
A u AG-CC
A6- A
C-G
A AU a. Ug AG . AUU A U GCUU AMAUU:'.A A A A Au
. toCGCGUCAC
CG-CUG
CAGC P.. G oilI A
18OO- 6. C UCACC c
G G *
AA CA Ga U Cu UAG UAGAGU
A AAACA ACGCC uAAGGU AC U - A
C .... 11CG U-A
CACUUUGUUGCCA U G C
ACC 2A C LA A G GG
GAGCA C U 7u
GC
U
GGC ACGCA^ %760 G^UGUA A A
U~~~~~~~~~..G50 ^
cu UuG-0 220078
UA~~~~UCU
GCGCAGUGA UGGU~A A j .
G BCCAGSCCUU,?GUCAG)5C
A
G C
UU1111-10 G A
1700GCUA 27GA Ad A
u-2000 C§C
AC G -U U A5
G A- GAGU C8170A-U U-AL A U7 AG
AC ~~~~~~~-ALA
u GFGcig. 7 A
AGACGAuLG%Uoa
8-A A A
-:UUAAACCA GA
CAG-G G C 2500
4.5SCUCU~~~~~~~~A~UUGGUG c
C GU C1AC/'UsCUUCG§
A~~~~ U~~~ %.uG U~~~~~ a U0-CA
u5~G~100~:S 23S~C'AAUAuG AU~ UA GAMGGA
G-ACGGGA GA:ACGCA.7
111 CCA U(A3A
4.5SA L~~ ~ ~~~~~~ACCA A *iG-i
uc %~C G U:U AU
a GCAU A U :
uAA%.G C cA C -GAU %U
AGCL U IF~~CA C G A
0 A A G ~ ~~ ~~~A UU
U 0 C A 2760LUGGAA
C U GAL C0~~~'o'LI'GUGUCUCC G
A 0 AA~~~~~~~J'. CCA
CG*AL
G c
u C 2 600 u~AC. 271
u AGUUG/G ig. l
A~~C%% tobacc
rl97
Nucleic Acids Research
Secondary Structure of chloroplast 23S Ribosomal RNA: 5'half
-,00
Fig.&o
Marchantiapolymorpha: liverwort
rl 98
Nucleic Acids Research
Secondary Structure of chloroplast 23S Ribosomal RNA: 3'half
5'
4.5S
4.5S 3'
Fig.8b
Marchantia polymorpha: liverwort
rl 99
Nucleic Acids Research
Secondary Structure of chloroplast 23S Ribosomal RNA: 5'half
intron!?
D: 1197 .1445
UUUuuACA UAOAA@ACUuAACUU
aUGCUCAA C:,AA,GUUAACOCA
CUGAAUUAUACCOUAAAUUUAUUUUU OUUCU C :gAUU^CUUCUGC
oacouoouucuucoAC uu
CA G
Fig.9a
Chlorella elllpsoidea
r200
Nucleic Acids Research
Secondary Structure of chloroplast 23S Ribosomal RNA: 3'half
C A
A
C-2
CAA
A
u
u A
2100C' ° .u
u *7
uGAA AAAACAC AC
C 11111
II
CAUUUGU UG
cA AA
-C
C-
,A
Au 3200 U a
A
~ ~ ~
A
A A AUGS GA AAc
G - ACAGUAA
A 11111 A
C fGUCAAuC
AG-CA U
A A
U Gb C
C U G
a ab
ACo , Au
U
0-C
AGAU-
Fig.9b
Chlorella ellipsoidea
r201
Nucleic Acids Research
Secondary Structure of mitochondinal 23S Ribosomal RNA: 5'half
Fig.1Oa
Zee mays over
Escherichia coi
r202
Nucleic Acids Research
Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half
Fig.lOb
Zea mays over
Escherichia coli
r203
0
*no
I
Nucleic Acids Research
Secondary Structure of mitochondrial 23S Ribosomal RNA: 5'half
COAUGOGUACACOAAAGuACOAAGUUGCUUUCUACUAACCAUGCCU
GOAUCOUCG"GCGAAUUGGAUOAUCGGGCCOAGOOCUGCCCCCUCUUCC
CCUCoCUCUCCUUUCCUUAAUAUUCACCoUCoAGuC AUCAA GCCGuCAA
CUAAUUCOGAGGOOCUCOOCUGOCCCGUCOCCCUACOCUACUGOCGCUU
CCAAAGCOAACOUCUCOUCUUUGGCGACCAOCAAAOCAAACCOAGOGAO
GoCUAAAACCUUUCGUUUUGAAoCAAGGoAUGAGCocoAAACGuuocG
CUUCCoUACACOCoCAUACUCUUUGCCG UCOCOCGUoUAUUAMGU UA
UACUUAGUACUUAACUUAGUACAAUAACOCGCAOCCGUUUUMGGCUACA
CGOUUCUCUAAAGOCOAAGACUCU"AGUUOOCOAACACUCOCC AGUG
GOCOAACAUMCCGGCUCCCGGCUCCOCOCACCUGCUUACACCUUUCGMAG
CACUUUCACOUGUMAACCOAAGUCOUCUUGUCCUUCCUUUCUCAUUUCAG
UCCUCOCCUUUUUCAUCUUCCOUAMGGMCCUUUAGUCUUUUGAUUAOAOU
AGAGUUCoC""oAaCAGAGcGUACCcCCCU CAUAMUCocooGGAUCUUAAUAGUCOGUCGCOACUGUUGUCAUAGUCAACOACGGUUUAAACUUCC
AOGAAAAAACUuCGUUUUGMGAGGGCAUCCUCCCoGUGAACuGA
F: 1559-2303
2351
Fig.IIo
Zea mays
r204
Nucleic Acids Research
Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half
OU
GAA
AG
G u
2495.UAA A OGA G
02
AA: aC A2A CA CA
A"AA8:8 ~~~%AA
AA...1 ACC
Uo--C^CCU
8~~~~~~~~-Ca^CAU 0GA
I:G U~AAA A A:
8-e U-A ~A-20
UA 0 A
eVcA-2600 AAOGUGO
cu:A -c^ ^c ^ccc ^o -
eo
8,6 Al-i
C
U UCACC
U
U GAAA°
A C eAeCUUUUUA C A U
A AAAACA ACACC AA U:8
UAUUUGUC UGUOG Sl
C A U uACC A
A UU AAy A UUA GU
a- AC-UC A%0CGCACC GAU
ema ayU
2400=CGG~~~~~~~~AAGGGGU UGA C~~~~~~~~~ACC u
OAA ~~A A0*GUS
CCA UGA ALAAC~~~~~t~. GAu 31
24W-A&AGQGGU1GI G~~~~~~~~Au
G
2f95 A ~~~~~~~~~~~aGCAC U
AAUeCCC'GUAAAAAUU ~~~~~~A- U=AiA
AGO AAGI JA AU A A A
A
U
GAC 2700A A C2 A
8-c A~~~~~~~~~~~~~~~~~~~~~~~~~~~~G-
GUG
AUUCCAJ'G U'e :'A
CAA 7 COU GAC
43A I-U~~~~~~G A GACACdI
A a 3100*GC_AAAAC
CCAACGJUAGACAAGG =A
A G ~~~~~~AC Ca :
A G ~~~~~~~~~CA A
3AA 200- U AA GU A
Gua CGk GCA
GA CA%JAGAUAG
~~JACAG% A ~~~~~~;S~*aGta A A%
AAGA C~~~~~uA l
A G-32A
A ~ ~ JAU~i~GSCAACGSRAA~CG 2AACAACCAGC
A CC~~~~~~~fiCA ill ,1"U U
2 G
GGUCAC AUGI
AA~~~~~~~~~~~~~ A
uU a c~~Za ay
r205
Nucleic Acids Research
Secondary Structure of mitochondral 23S Ribosomal RNA: 5'half
F: 1619-2022
LA GoG GA GC F
A II, .,
GCccA AGGACAGcc
1600 AU - G&
GA CA
U A
AUCU ACOCAOG c
A ....
IsI- A
AUGA UGCGUCUGU A
O GA A
C AAU^ALA AMA AGUA GA
-ACGAA 20
c6° 2070
,100
Fig.12a
Oenothera berteriana
r 206
COAUG"UACACGAAAGUGACOAAGUUGCUUUGACUACAOAACCAUGCCU
oucuouuo"ocaAAUUG"UGGUCG"CC"CUCUCGUCGCCUCUUCCC
CUCACUCUCCUUUCCCUAAUAUGAACCUUGAGUCAUCAAAGCCUUUCUGA
CUCOOCCUG"CCGGUCGCCCUAC"GACUGOCOCUUCAAAAGOCOAAAC
UCUCOUCOUAGUUUG"CUUUUGAAUCOACUGUUCUAGGGGG"CUAACG
UCUUUU"AACOAGUAGG"UCGCGA"GAGCAGGCGUACC"CCUGCCA
UAGUC"GAGUCUGUUUAUAGUCOCOACUGUUGUCAUAGUCAACAA4%GUU
"AACUUCUAGOAAAAAACUUCOAAUUGGGAGC4CC.AUCCUCCCGGUGAA
Nucleic Acids Research
Secondary Structure of mitochondfial 23S Ribosomal RNA: 3'half
311
Fig.12b
Oenothera berteriana
r207
a
3 ,'ACAAA
%~ A
39 A
Nucleic Acids Research
Secondary Structure of mitochondrial 23S Ribosomal RNA: 5'half
A-U
Ua-GaUAU AC GA
UUUUGAUGUUAUUU UJ' 9
U I I ll ll I- r
GUAAAACUAAUUAUAAA UGU
1250
A
u - u oUAUAUAAUACUCUUAAAUAAUAAAUAAUAAAAAAUUU AAAAACC UUAAAAA
uaU ; UAUAAAAGGUUCUGGUAAAAUUUUUA A A CAAUAAUVAUAUAUAUAUUAUUAUUU
A AAGCCAUUAGGAAUCAAUUAUAUAA
A U UCUUAuUAAAAGUUUUCAAGAUu
UAUUAAUUAUUUAUUAA
UAUUUAUAAAAUAAUAAUAUUAUAUAUAAU
U
'Al A AC F': 1299-1512
:a AAUUAUA
aUA
U
ACAUAA
A
A
U
"
_Caa-FSu99tS
^_.CG 1561
Fig. 13a
Aspergillus nidulans
r208
Nucleic Acids Research
Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half
A UU
AA CGUAGUAG
CG11IfA
AOCAUCACA
3,
,2605
Aspergillus nidulans
Fig. 13b
r209
Nucleic Acids Research
Secondary Structure of mitochondrial 23S Ribosomal RNA: 5'half
F: 1409 -1543
59
Fig.14a
Saccharomyces cerevisiae
r210
Nucleic Acids Research
Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half
I: 2438-2558
AAAUUGUAAGGAAAA
CAAUAAUAACUUUCU
CCUCUCUCGGUGGGO
GUUCACACCUAUUUU
UA AU A OGU GUGAA CC
CCUCUUCCGCCGUUCC
GOAACUUAAAUAAAA
AUCGAAAGAAUUAAA
U
AU
A A
Fig.14b
Saccharomces cerev,siae
r21 1
u
39
Nucleic Acids Research
Secondary Structure of mitochondrial 23S Ribosomal RNA: 5'half
F: 1027- 1116
Fig. 15a
Paramecium primaurelia
r21 2
u5'u20
afi20S
8
g
Au
Nucleic Acids Research
Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half
cGAAUUA A u
u A- U
c U-A AA
U A-U UUUAG G
U A A
UA UUAAAUCAUC
u
U
A-UA
-U
A A .G
U U-A
U U-A
A u -G
3 UUC UUu
c GCx c
GO C-G
G- G
U
U
A
G-C
AU0UU
2300
Fig.15b
Paramecium primaurelia
r213
u
A
Nucleic Acids Research
Secondary Structure of mitochondral 23S Ribosomal RNA: 5'half
Fig.16a
Homo saplens over
Escherichia cofi
r214
Nucleic Acids Research
Secondary Structure of mitochondral 23S Ribosomal RNA: 3'half
0
..........
:
Fig.16b
HMO sa s over
Escherichia coli
r215
Nucleic Acids Research
Secondary Structure of mitochondral 23S Ribosomal RNA: 5'half
oC4cocU GA AGAACoUAGCAGcCACCAA AUUA AGU
A
AACCGAUAU AACU CGAA
SOOC c
CAc
A
A CA
C C
cc~~~~~~~~~~fcA
AAUAAU CAUAUCUACAA^UCA
U A A
AcA
A
AC A
A AC
A 70f
A u~~~~~~~~~~~U
Ac~~~~~~~~~~~~~~
*U A- CA
U U ~ cs c
AAG CAGC A
A ~A-UU A
AAAAAAA
A60AAA
AUGUA|C UC A
AAUAAACUU AG
AGGAA U~~~G U
ucUcC 8-AUUACU^^ u^scCc^^
GA AAAA A
c c
~~GcccX
A G c0 0G Uc
A 2 C~~~~~~~~~~~~~~~~~~~~~-
AU A U A
CACU-A cc GUAAACCCCCAA
UcUcIlk c A C CU
400 A LA
cLce
AU-A-
A43 GCUA A C
U CCAC GAuGAc U A~~~U
uAAC WAU G
AACA
A
CA CA ACUGA78A
GAUA AeA
AGAA AG~~~~~~~~~~~~~~~AUAu u UU~~~~~~~~~~~~CUGAu C'', U~~~~~~~~~~~AC
uc A A~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A a~~~~~~~~~~~~~~~AA
A~~~ ~ ~ ~ ~ ~ ~ ~~CA
A_-UCOAA100 % CCAGA
Fig.17a
HWomo sapiens
r216
Nucleic Acids Research
Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half
cACCA C
AC A
C
CAU
A
A -UU C-G
C2-UA G *UX AC%C
C- C AG C
AAAAACA CACCGCCU 91 CAAGC C C AAG6C
CAUU GU*U C CO COO
CCAC U-UUACA G-CCACuc
C-G U'A
A iC cG - ^ c8^:o 3
AA al
AAAAACA C 900 AAAGG A/GC
c~~ ~ ~ ~ ~ ~ ^CIcI1I*a
A 0 C
CAUUUGU~ ~~~~~CcCG UCUCGUuC
ACACAGU
800-CA A CUAAACCC
ZCaA AGU G AA C A-C
A- CUUAAU0o
A-U U A 00 0 COCAC~~'uA
GA - A U
A-U U-AAA 6- A
AUUc C C
CCA-U U-ACUACGAA A UCAA0-1U00
UACCA cUAACC
80 A 0 0 U-A A G0C A U
A-C CGA CU A AU
A AG 0 U C
A-U UA-A GGGcAA AA c U AAG
A UA C c
COA6-A
A u u AU CA
Au U A G~~~~~~~~~~:S UZ~GCA UCC AG U CUAG U
AAA~ ~ ~ C~-CUU6AUA U
0 C 1G3000
A_ CA~~U
c1000 ~ C A~'G U-AUOC
G-C AU:CCAA0 ACGU
AAG C-G A cAAUU AAA CA
3,A GA U-A
AGUAA~A-UA CAC U UAG
UGA 0A AA:A A
ACJ -8A
At U~~~~~~~~~'
GCGtA
A A ~~~A CCA~~~~~~~~~~~~~~ A AG AC AUUC
IIII1UG6AUUACGCAACCUU0 G
C U
ll
uc GC UGGGiUU6
AU CC 1500~~~~~~~~u U AA A
CAACUCUACUAUAGUA ~ ~ L- % Au 40
UU
Fig.17b
Homo sapiens
r217
Nucleic Acids Research
Secondary Structure of mitochondrial 23S Ribosomal RNA: 5'half
AGA.OCACCAA AAA
AAUCCGAIUGUA ACU CGAAP
c A
C CA
A A
u Au A
500-A u
A U
OCAAUAAUCACAC
C UCs 44A UAUU A C A
A A
c u AAU'
c
u
u
A
u
A^^
A
-600
795
Fig.18a
Mouse
r218
u
n
Cc
A
AUC
A
C
C
cU
C
uu
Nucleic Acids Research
Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half
ACA 900
cOU^a
-ux
^^^^^C^ucu VA cAC^Ul u C-.
Co uA .Ut Ug
XCcAt.o10-c^"u
A AUc=UoU C
U gA g -A aA.JA9
UCA Ot UUCAC
C00 A A A
AACBC
AAAAAACA^AA A
AUA
AACAAUUUG'IA UUCACUAA UAAU%AoA
UfUO1 _U
O- %C CO C"¢sU
ACOAU.1 tiOOUCU A
Cza A AAAA
{~~~~10 C°40u^uou^uua^
A A A A 1200
A UUA
tAAAA~~~ ~ ~ ~ ~ ~~~~~~~~~d C
U
UCA 0 CUA -
UA~~% U-A UA
AA U=A AAA
8000AAUA C
-u 9-8 u A~ ~~~~~~~~~~u A
A5U0 A AA A
AA A- UAGCAUAGU
A-U UU 1^C OCA
%
CUA
A=U u~C A
c A
~~AAAA au U-A AA
A-u :iAC A A
AA-U AU U111 I CCAUCUAU AA a
AA
A-U ICluU~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~SIItII I
u U-A CAGUU-IJ~UCC UUGOUA C A
U U ~~~~~~~UACAU UCA A
U A
A
ioUGA~ ~ ~ A ACUUG UA c ACAA
AA AC AA d,AC,
U
/ ~~~~~~~~~~k AA =AU~
CCUUCAOUGaOA 1UGUUACA
u%'Be ~ ~ ig18
UUAAoA
A As0 A
UUG ~ ~ C aA
/ A
1550'AA%AAAUCUAA~~~~~~~A~zAl/
a c~Fg.8
u
K% Gcu ous
r219
Nucleic Acids Research
Secondary Structure of mitochondral 23S Ribosomal RNA: 5'half
pCAAGCCAUCAA A A
AkIt C aA
^^ *ucu AAtCAUA A
AA UI"GAUSU A Aoc^
A u
50u A
u
c
u
u
A
A
A c
c Ac c AUS
C 0A AAA
A cu
A S
U U CV _ C°
u u Avooc^ A
AACCA
A AA
A .uuc AA
AAA AA
A AA
G0a^@u V20X
C A up.c t c6
u~~ ~u
A Ag ACIA
A A A A
.A ACAA A AAACOUAA
A C A ~ ~~~A UUAC
A AG CGGAA
A AA AA:c A&-AA ~ ~~~~~~AA
.ACA A- AAc
AAA-A A
AA A iA
ACA AAA AV
A u ~ ~ ~ ~ ~ ~ ~ ~~~~~~~
A-600A GA ~~~~~~~A AG
AA A A 780~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
AOCUCI AACCCO u~~~~~~~~~~~~~~~~~U
uAAocuao, uCAAUU'Al ~ ~ ~ ~ ~ ~ ~ ~ A
cCOARA,:Uu c~~~~~~~~~~COAB
FAg. 1c9aRAUat
r220
Nucleic Acids Research
Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half
ACA
UA A
u
u A-A u a
^^^CG. uA oc R- ooUo^? l lo
CCA
A U S A
G.UAa u
AAAACA CC
CAUUUGU~ ~ A eA02 1100lcCocuauo^U
uCG U UU C
C~~~ ~~~A I^UUAC UCUAA4^y
uC0 A A A
A§AAAACAAGAUCA. COA AAA-9c25
cIIfI11
AA
00~~~~~~~~~~~A
Ac A lUCA UU U
O(IC
A ACA c
AAQACCA CC Ae
CA^u A
u A~~~AU
At-U U-AUAC C Au
A- U AU A
CA too~~~~~~CGG2C A A
%CUA ~~~~~~AC UAU ~ L
AA.0 XLIUC~~ U~AAUOA't~UlAAA AAU A A
UU-A UA A
AU U- AG_CC U
A-C U.A UU
0 AC A
AGUQ CThJUA A:UAUUU CU
1000 A ~ QG CA AAUGa
AU u~~~~~~~A0 UA
A A to
C%CUU-A u~~~~
ac U-A CAG-IIICOCO CU AUUA U
UA CU UUAA AA CAG
UGAA i-UAUU U CAB A
ACAA CUA UU
3' C ACA~~UCA
A C%CoAos
AGG A
a
A C-0
UGAUUUGA
A A-U
AU ~~~~~~AUAU GCAaUA G
AUAAUUA 1500
olIICGOACCAU G
Fig.19b
Rat
r221
Nucleic Acids Research
Secondary Structure of mitochondral 23S Ribosomal RNA: 5'half
AGCACCCAUCAAA GA A u
A
..h It A
AAUCGAGAGAU ACU CG.,A
AC
C
C
AC a
A A A500-c u
AAA AUA
A
A
AAU CC
A
U
A
OP
CAt
U U
UGAA A
U A OO-t A
u ~~~~A'
A C C U
AA A~~~~~~G
U A-CC
c600
A A
C AUCAAAA A<"A
,
.
A°C
u
793
Ftg.20a o00
Bovine
r222
Nucleic Acids Research
Secondary Structure of mitochondral 23S Ribosomal RNA: 3'half
900
U A A CUU 0 AU
cA u C-G G*
C UA A-UU
0 U 0UU AU%U
_cU-8 1000U-AA
C-C-GAGC
A- U- 2 G- u C
C-G
CA CAAAAAACAU U C GA1C
UUGCC~~ ~ AOUAOC I GA^CU^U GAU
C
ilIIIIIAICAUUUGU GCCGG UGGU C
COCAUAA
co-c~~ ~ACUA CUA CCUUAA
ACC
AU A A A A
c~~I
A-U U-C AUA A A CAACAC uA A U A
c c £_G
CUC
A 1 00AGA /Ci00G AAACC
2-s-1000 C-G AAAA-U
C A A AA C A-U A
F 1200A-U
AICA-U C U G
A
0-CC AAGACUAG-u -~~~~~~~~C UG
A:A- A U UA LeCA: U:A~~~~~~~~~AC8 UU C
U A aCU- ACG8 0AAA C
UU IIc AA
~~~~~A0CU80A- A CU A1U-
ACA00-C U
0
A
A-CC U C CA AGUo S. A U U-AUU UAU A
AAAA A UA 03 ACAAA UCUCACuu
CA~U
A A
C
U 0 A 1300
l1111 CGCAAUCCUAUUCAGA0UCUAUCU CU III*1II1 I CAUU OCUOOUACUUAU U A AU
CAAO C
O CA C U
C AG0Gk'% oCA %% 0C CUAUGUAU A0 UACC0
U
A U-A
UUC,~A 8JG:C/~~~~~~~~~~~~~~~~~~~AU A AAUu%%At? 1400 A:
Ai AG AUC CUGAUGGUGC
A-U~~~~~
C U
ACUCUACAAUAOUAACCAACA ~ ~ U GG CU UCCA
/~~~~~~~~~~~~~~~~~~~~~~~~A A
A 2:U Fg.20
Bovine
r223
Nucleic Acids Research
Secondary Structure of mitochondrial 23S Ribosomal RNA: 5'half
A GCCACCUG AGACACCGU
A ,,,II.,, i,,,
AA CGGGUGACU ACU CGAA
G cu
Au~~~~~~~~~~~~~~~~C
G A
uA~~~~~~~~~
UU
G C
500A AA
CU ^ UC~~~~~~~AC UAAU GA GA A AU^-
A C A-A
A Cu AAC U A AA
AUU
UA C CA
u U AAC A
u U-0 A c
AAA C A C
A A-AAU A-
A A A uAC AG
A A C U 8 2CAGACA
A AC'u^* C-C UA
Ca I'CUAACUU GACU^CA A A
^
G c U A2C tG
CtAAU AA CC
AC CAA C AC
A.CCAA A C G A
G~ A A CUAAUAUAAA
C
C--A400A AA A A A
A- A AA
A A C U G
GACC G AA
U G A A~ A
AGIA A G AG-C C
A -AC AUCAAUAUUC- A CCACG AGA -A
AAGAcG
AGA Ac
AA
G 2A CUAGC A
;AUUGAA A GCUAU
G A CU~~GA
GA GCUGAGAG U
FiC.AAA
G . C A
U
A'A?ZCCCU AC G~AAtCCA A
CGAA40 00 CAAAAAUAA
A,~~UAAAU Lf I AGAAAAU
u c "uc 87UA u~~~~~~~~~A
ucAU A 00-A~~~~~~~~~A A
A.~~~~~~~UAA~ ~ ~ AA4
AUU G UU GC u~~~~~~~~~~~AUUi
GACC~~~~~~~~~~~~~~~CAGA
AAA U 5~~~~~~~~~~~~~~~~UAG U
AUcUA u~~~~~~~~~~~CAACAAACC AG
GAUCAAU
UAAGC CUUACCU G
UA~~~~~~0
AiU.UAAXeou IaevA
r224
Nucleic Acids Research
Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half
G
3 u
Fig.21b
Xenopus laevis
r225
Nucleic Acids Research
Secondary Structure of mitochondinal 23S Ribosomal RNA: 3'half
500
UUAGCAAUUAUU AAAAAU
GACUUCGUAUUA A AU UA
U
A AA
u
U u
A A
A
A u
U A
u
UA
A
U
A u
A A U
A-
A A AU
U
A U UAUUAAU
A UU
U U A-
U U-
AA A AGAAA'62
A
A UUAAU /-0
AUUU A A
AI~~JU
U ~ ~ ~ ~~~~~~~U U-U A Au-UG
UAGGUAu U8- U Uu U_AuU X ^
A AGA
40 A AUAAGtU"A(AAAAUAA
AAs>UUAA
A?-% A uA
AA U UAAAUU A60
£AAA~~~~~~~
A UUAU=A30AU A U
A G A
U-A uUUAU
AUUUC U AcA UA
U-A A A
c
ze AJU A A
_A A
UiAU A%
e UA CAUU A £
-AAUU AuC A A
U A u~~~~~~~~~A A G U
A A u~~~~~~~~~~~A
U_YWAAAa u~~~AAA
A
UU:A UUAUAUUAAUUUU~~GUA2-U Auuu AAu
u~~~~~~~~~~~~~~~~A
U:A~ ~ ~ uAU A~~~~~~~~~~~AUp
Drosophila yakuba
r226
Nucleic Acids Research
Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half
700 AAU
AUUUI A-U
G u AAUUUU A CUAA G_
uu_ Au' uu
UU AU
U-A AU A
C-G
A A
UCU C U
c
C^
A0AAACAUAACC ACAAGGUAGC
AAUUUGU GUUGG UU U
C G u A
CGA ACU
65'cu^ U
~ A ,GUAAGGUC
800A8 UU AGAUUA
u~~~~U
AAAA U - A ^^
UU UUA A
AU-A U
A:U X- GU u
AAU A U- U A
%CUU~-^UC %U-A UCAUJ
650O U U-A G.U A-U
A-u A:~~~~U- AAAAio0 AAc ~~~ ~~~~~U-AUUA AA A
U-^ C~~~~~~~-U AAU..AUUUU A
U A
A U- U-
GUA-U C UAUUUAA_t
A-u~ ~ Gcuu^^^^uoGuy
A-U~ ~ ^ CU-A A-U
U-A U-A G-CA C
U-A C-GA U-AAA
AAU U U A ':UA:UUA AAU- AGA A-UA A U A.. uG U
A A UC AAA %AA
AQUAU UA
JUAQuU U:AUCUCCCA
UA U UA A UG
AA GAAUA
A A -U A
A A Cu
AA CGAGG GGAG
UIUUAIICGAAUUUUU GA
u3 0
AU0 A0 Au
AA AU GCUGAAAACAU A AG A
A AGd'A
UAUUAAGCGA AAACAG
A11 L UACGUUUUU GGU
3 U ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~UGAGUICUG A
U A AU-A
A aUak9b-
C-G
A~~~~~~~~~~~A AG A AG
u ~~UUGAUUUAACUC
AU~~~~~~~~~~~~~GG
u A~C
A UU% AeA1300 7UuG
u % A CC C~~~Fig22A U A %%UA -AU DrsopAl yaub
r227
Nucleic Acids Research
Secondary Structure of mitochondrial 23S Ribosomal RNA: 5'half
AU AAGUUAUCAU A AA UUU
A 1.1 A@
AA CGAAUGUAA A U UAAUU
500 A U
U U
U
A U
U~~~ ~ ~ ~ ~~~~~~A UU
U U
U U
U
U
G A
A U
A A
A u
U u
AA UU
AU U U-UU U UU
U A A-UAU A
U UU7AUXU UA U
5
Fig.23a
Aedes albopictus: mosquito
r228
Nucleic Acids Research
Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half
~UUUA -A
700Q G U G -UA AUUU uU U-AA U
U--A oAC-
C-G -
GU U Gc
GUACA AAACAU UAACC GA AU GC
C II A
U A UUUGU GUUGG AUGA U
C .A A AUGACAA A CU
CA-U A U A A
A GAAUAAUUG AUGUUC%...,U AAUA
AA^UUA-U ~ ~ AA~U uA UU
CUU-O A-G A A;%A
'
~UUA A
A
AAUX
WG
UAA U
U C A A
AAAUUAU u u~~~~UU AU
65G A-UAUU
U A-U U A
U_ U-A U uCA-U U-A GA
G u u /1000~~~~~UA-
A5-U U- GAA-UU
UA U- A U U
UA U A AU UAA
G U U:AUUU U
G U AU UG A-U
A U U A%UUA-A-U U-AU UGAUAUA
GU Y1UA.CC-AUAGA UU A AC.U
A^G^^ AC AAA UUU U
U Us  sUUAAUU-A U
UAGAA~ ~ AAUA U-
AAA A -CC AAA u
A A C^ GA AC1100~A
AUAAUUAAAGACGA G UUA GU
1 1 1 11111 II CGUAAUUuUUUUU AGA U
UAAUUUCU CU II* Ii I I C
A AUU GCGUUGAAAAAAUCU-U
u A % A U A A CG A
A G C%
G G C
ACU G
UA C UU AA~~~~~~~A
A U A~~~~~~~AA CU10
A u u G GUACGa G-U
A AUA G1UA0GG
lifilill1AUUAU GUAGGUGUU UU G
UAA p^A^U-AUUAUUCCUU GU
A AUU GCGUUAAUUUGAAAUUUGA
UUAU UA
A GU
U U~~~~~ A0oG0 UUAUG
Fig.23b
Aee aloitsUACGuito
r229
Nucleic Acids Research
Secondary Structure of mitochondrial 23S Ribosomal RNA: 5'half
Fig.24a
Crithidla fascIculb
Eschenchia coli
,,007,,
- _ ~ ~ ~ ~ ~~~~N
-. _~~~~~~~~~~~~~~~~~~~~~~~~~~o
... .~~~~~~~~~~~~~~~~~~1
,0~~~ ~ ~~~~~ 1..
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~._ .0
....~~~~~~~~~~~~~~~~~~~~~~~'7 gm300,.-...
...-.. ~ ~ 3
.-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~2
etk.netoplast ove
a,~~~~~~~~~~~~~~~~~~~~~~~~~~~30 ,,0,
r230
----------
'340
14"
1340 1.10 .jo
........
-,ON
'30 $70
... ......
'mo
1310
1030
lvo
Nucleic Acids Research
Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half
Fig.24b
Crithidla fasciculata kinetoplast over
Escherichia coli
r231
Nucleic Acids Research
Secondary Structure of mitochondrial 23S Ribosomal RNA: 5'half
uu uUAAUC U AuA UUAAAUUUUU US UAU
AIII U ~ ~~~~I390A AAUUUUUGAA UA
CUUAUUUAUUUAAAUUGAA
U UAAUUUAACUACA AUGCUAA
A GUUGUGAUUUUUGUUUUUAG
U UAUAUUUUUAGAUAUUUAAU
U AAAAACAACGUUAAAUUUUAA AUAUUUAAUAUUUGUUAAAA
U AAAAAGUGACGAAUUCUAGUA AAAAAAAAUUAUUUUUAUAAA AUUUAUUUUUAAAAAUACAU
A AUAUAUUGUUAAUAAAAUUA
A UUA
u 592
u
AAA
u
u
G
U
U
U
A
U
G
A
U
u
u
u
u
UK Xc UUU^UGSUUUGUUUUUAUUU^
CaS.^ '  AAUUUUAUUUAUACAUAUUA
AG  USGUUUASSAUUUSAUAUSU
uU U  SAUUAUA^ACSAUUGUC _
UCUUGU GU 1 77
U U-200
U U
A AU
AU AUGUUG
~AU U U U U
UUs
AGUUUU
Fig.25a
Crithidia fasciculata
r232
Nucleic Acids Research
Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half
uuCuAUUUAAUUA
A A A
u
C
uu
u uA C
UUU A A
700
U- U UU -A GU A
G UAA-UUA AU
U A
U-A AUA U
u
A A AUGCUU A UUCUu AUAAGUAGC
U AUUUGC AAGAC UUUAAGU
AA UA A G U
600 A -UU ~C UUUAA A
CA UUGU AA ACU
UA A A
GU U
u
A
UUA
U A
A- U
UA
C- UAC_G UU AA-U 900ooA U
A U
GGG C AG
G_c U-A
G U-A A
_AA-U -A U-A
A A UU:~A .AA- U ACU.GA
c GUU G A,
A A - U
u u A
A U -A A
A U-A A
UAAAUu~C-GU U A/-800 U U UAAGUU
AA C GC
U U -A
A AA C G
A UU A _CAAUUU AA U-A
AA% AA C G
UU A G A
A A c
AAAAUUAAAUA G A
111111111 ~~GCAUUAAUGAUUAAUUUAUA Au I I A
U Au U UGUAAAUC
U U G
A G U
1100' A U U
U UU U
U AGAU% UA
UG G-CA UA UUGUA G CA U A-U
G G-Cu
UUA AG U
GUU UA %U-A
A u
C-G
9
UG-CUAA3 AAU A
AA A UA AA
-C-U
C u
U UG
Fig.25b
Crithidia fasciculata
r233
Nucleic Acids Research
Secondary Structure of mitochondral 23S Ribosomal RNA: 5'half
AUU AAUCUGUUU A
UAhU
A if llio to
u
AAAUUUAACAA AAU AUA UA
u
Uu
A A
A
Auu
a
u
u
u
u
u
u
u
u
u
UA
u
u
u
A -U
u
A
U
A
U
A0
GU° u
u-
u-
U-
a-
A
ouu~~~~
391
-UAAUCUAAGUUAAUUUGAAU
AUUAAAAGUACAAGUAUAAU
UUGUAAUUCUAAAGUAUUUU
AAUGGUAUAUUUUUAOUAGO
UAAAUGAAAAGUAUAAAUGG
AUAUAACUUAAUAUUUAAUA
UUUGUUUAAU0AAAAGUAUU
UUAUUAUUAUAUUGUAUAGU
AUUAUUAUAGUGUAUAGUUU
UUUAAAAAUAUAAAAAUAUU
GUUAAUAAAAUUAUCO
-16016
AUUUUACCAAUUAAGAAGAA
UAUUAUAAUAAUGGGUGUCUUAUAUUUUAAAUAAAUAUUUAAAUU CoGUUAGUAAAUUUAUUAUUUGUAUUAUUUAUAUAAUAGGUGUAUUAUAUUUAA
AUUUUAAAUUUGUUGUUUUA
UAUUUAGAUACAUAUUUAUA
GAUUA AUA UAUUUAAAUAA
Fig.26a
Trypanosome txucei
r234
Nucleic Acids Research
Secondary Structure of mitochondral 23S Ribosomal RNA: 3'half
1000
LAu lap,u A %.
A A
A us
u
u UAAA %
A
3,
Fig.26b
Trypanosome brucei
r235
Nucleic Acids Research
Secondary Structure of mitochondrial 23S Ribosomal RNA: 5'half
u ^Auuuu uU cA^UA^AU UAAAUUAUUU UA AICAA
A U
AA L"A;'G AAU AUAC
u
A  396U
A UAUAUAUAUAUAUUAAAUUG
A AAUAUUAAAAAUACAAAUUU
A AAUUUGUUAUUAAUACUAUU
A CUUUUAAAAAUGCAUAGAGA
U UAUAAUAUCACAUAUAAUUU
U AUUAUUUUAAUAUUUAAUAU
C UUGUUUAUACAAAAGUAACU
A UUAUUGAAUAAAAAGAAUUA
A UUUUUAUUAAUUAUUUUUUA
U AAAAUAUAAAAAUAUUGUUA
U AUAAAAUUAUCAA
C
A 6AUu
u
A
u
u
A
A
u
u
u
^^^ 
~
~~AU^AU^UUUGGUUUUAUAUUC s>U UAAAAAUAUUAUAUAUUUUA
U  ~~~~~~~~~~GUUUU A AAUUU GU UGUU UUA
UG  ~~~~~~UAUUUAGUUUAAUAUUUAUA
U  UAUUAGUAAAUAAUAUAGAU
AUCUUG GU UUA
GAA
AU
A
U U
AUA%%UAAU
G~~~~~
UUU
Fig.27a
Leishmania tarentolae
r236
Nucleic Acids Research
Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half
700
AuUCUACAUA^ I
t.^ UU.AU-U
U GAA
UU
aUUU  I}U
AG UAAA-U A A
A- UA U
AU A
AAA^UGCG UUCUU AUUOUAGC
U AA
UAUG AAGAU
UU
AAGA A AUAAA
U-A C U a
GAU u A
U U
A C A
AACG Uucu UA
UUAu u
U-A UAU
A _u u AU
A-UA
AG AG
0-AGC
PAA-U
G_
U-A
AA
U
-Ag U4-800
A
A-
U A A AU ^ 900 AX
AAA C_
-
A U A A A
,~~~~~A,^^ cu^
AAAAAU= u
AA A U U AAAG
A cA O
A A
AAAAAUAAAUA A u A
A UUU AAUUA U iA
,AUuAUUAAAu
0 UG000
A U U
U U%~~uU
A A GcA A
AAA t AAAA0 A~U
AUA~ ~ ~~~~~GAU A
A LIU .....ciU /U A 0-CAA
A 0UUAA UA
A u u~~~A
u A UU GUAA-Cu UG ~ C-
UtC -A
A UA% G A-U
A A ~ C
AUUA%%% UCU
Fig.27b
Leishmania tarentolae
r237
Nucleic Acids Research
Secondary Structure of archaebactenal 23S Ribosomal RNA: 5'half
Fig.28a
Hlococcue moffhua over
Escherdchia coi
r238
Nucleic Acids Research
Secondary Structure of archaebacteral 23S Ribosomal RNA: 3'half
Fig.28b
Halococcus morrhuae over
Escherichia cofi
r239
1720-
Nucleic Acids Research
Secondary Structure of archaebacterial 23S Ribosomal RNA: 5'half
Fig.29a
Halococcus morrhuae
r240
cA
Nucleic Acids Research
Secondary Structure of archaebacterial 23S Ribosomal RNA: 3'half
2000
GG
AC GAG8 G A
-oaA A
0G:8 ACUCGUAG
,A 11111 A
3 C CUUGAGCAaA
AA-9
AX Ac-
A
6:8c cu
2900s,ccC °o Ac
c u GI
G a
AUU CAu
G-cA.G4
C-G
AC-G
Fig.29b
Halococcus morrhuae
r241
Nucleic Acids Research
Secondary Structure of archaebactenal 23S Ribosomal RNA: 5'half
cuGA A44,1AC GCUACCCU AA 160A0A off. Ill *g,t A
AUGGCAGoAAGCGAACAACOU
%-l U COACuAC G ~,UACUUA. - G A.
Fig.30a
Halobactenum halobium
r242
Nucleic Acids Research
Secondary Structure of archaebactenal 23S Ribosomal RNA: 3'half
3'
Fig.30b
Halobacterium halobium
r243
a
A
Nucleic Acids Research
Secondary Structure of archaebacterial 23S Ribosomal RNA: 5'half
-i200
Fig.31a
Methanococcus vanniellii
r244
Nucleic Acids Research
Secondary Structure of archaebacterial 23S Ribosomal RNA: 3'half
uCc
U-A
GC-C
8ac8CcAC
CUGC-G
GAA A A U-A
G G A U-A1890-UA U-A
C -¢ U G C-GCGU ~C A C-G
0UGAM ~~~~~~~~~~~~~AAA-UGA U UG-C G G
- CA A 2200-UA C-GA ACUA G~:A U G UA A UGUGU A:GU UAAA A A G A
UA AG-C UAA C GGUGG U
C a C A 11111 C
Uc-8G
i:UGUC U CCACC C
AAA a8 2G, 2000 G C A U
U U U A CCGI UG.CU CAGUG
U- ACAAACA ACGCC UUA AGCA
U IH A
cAUUUGU UGCGG U A
U-A
AGUU AGGA-
C
aA C''O, C A
G %ACCU C A
U AUG- A CG
AU a:8 c. CC-' UC
U A
A
18008:aCGCAGUGAUGACAC
CGAGGA%GU UCG ACCAGa- a,0 C C CCCUU G-C
IG* GGGUIIG* III U A-UG
UUAA
GCCUAACGGUUGA GGA GGAU
UCAAUGCCUC U CCA
GG~~~~~~~~~~A.U~~~ ~ ~ ~ ~ ~ ~ ~ ~ A A GUCAAA
AG G_u-:A
C UGAG
GGGU A &-AAGA-C ~~~~~~~~GUG G AC -CAAAC G-C-40
G_C0A GUG A- CC CUU
A A G A
_A G7~~~~~~230GGUA
G-C AU-AG L1 G-CZ S: 20AGCGGUGG
AA:aACA GC A G
CCA UA :GC A A
1750 AGAGA UCG C C CUU
uA 8 G u uG~~A
G A C
%A u `2300GUCCAGU%GAGGGZ8 U:AA 8:8C-G~~~~~CA
G-C U AAUAUU U QCG GCC CU A
A
c A-~~UA- GU CAAA
Ac~~~~~U G UUU U00aG:
A G GGCA GGC
CC%G~U G CUG
~~~GAGAA G C A',U ~AG, A U GACGAU A
AU
U-A~ ~ ~ ~ ~ GCGG A
A illi A C~~~~~ U GC G-
C UUUGGGCAGA UUCAGUGGAC AAUC GGGUCUGCG
A ,~~~~~ .~~~~. ..GAA UU GUC C G GI
%'LCGU IGU1A111C G~~~~~GAuGG C CG U1
A~~~~~~~ A~~~~ 2600 A
G A G 2805C~GG cCUU
G~~~~~~~~~~~~~~~~~
C GG~~~~~~~~~~~~~C,%A
C u 29 1
CA G
Fig.31b
Methanococcus vanniellii
r245
Nucleic Acids Research
Secondary Structure of archaebacterial 23S Ribosomal RNA: 5'half
Fig.32a
Methanobacterium thermoautotophicum
A:260 -314
r246
A
Nucleic Acids Research
Secondary Structure of archaebactenal 23S Ribosomal RNA: 3'half
3 uccc uuuuu
u
3u
.,UU .UC
2875
Fig.32b
Methanobacterium thermoautotrophicum
r247
Nucleic Acids Research
Secondary Structure of archaebacterial 23S Ribosomal RNA: 5'half
5'
Fig.33a
Desulfurococcus mobilis
A: 267-336
r248
Nucleic Acids Research
Secondary Structure of archaebactefial 23S Ribosomal RNA: 3'half
CCA
U-A
-c~~~~~~~~~U°c c
8~ uCoA a C-.
A A A A
a A A A -C
Fig.33b
Desulfurococcus mobilis
r249
Nucleic Acids Research
Secondary Structure of eucaryotic 23S Ribosomal RNA: 5'half
Fig.34a
Saccwhomyces cerevislse over
Escherichia coli
r250
Nucleic Acids Research
Secondary Structure of eucaryotic 23S Ribosomal RNA: 3'half
-70
B . .m
Fig.34b
Saccharomyces cerevlslae over
Escherichia coli
r251
-no6
Nucleic Acids Research
Secondary Structure of eucaryotic 23S Ribosomal RNA: 5'half
5.8S
3'
5'
ACouAouuvooCCUCoCA
A"ovuGcacAAucoACCOA
UCCUO^UOUCUUC
C: 715-767
GAG UOGUUGA AA
4-CC3CCB: 419- 636
Fig.35o
Saccharomyces cerevisiae
r252
"AGOOCAUUU"UCAGACAUGGUGUUUUGUGCCCUCUGCUCCUUGU"
U:AG"GAAU"COCAU UCAC:CQ" CA*CAUCAGUUUU"UGU:CA
UAAUC A:A AAUGUAGCUU CUCOQUAAGUAU AUAGCC UG:QA
A ACUGCC OCUG"ACUGAGGACUGC"CGUAASUCAAG"UGCU"CA
Nucleic Acids Research
Secondary Structure of eucaryotic 23S Ribosomal RNA: 3'half
"GIUCGGGUAGUGAGGGCCUUGGUC A
AOGCGCCGOOCOUOCUUGUGGAC G A
UGCUUGGUGGOGCUUGCUCUGCUAG A - U
GCGGACUACUUGCGUGCCUU UUGU G-
AGACGGCCUUGGUAOGUCUCU U -UA
GACCGUCGOCUUGCUACAAUUA ACA
AUCAAC A C
G: 1945 - 2100 A c
AAA A A
A8 U8:o u a
G UG AU~
0 U AG-C
Al AG 8-A. ACUA U G
UA A GAAU2200-c u GC
U--AA G8'U AO A
as^^U-A A-cUoo^COGc^g c 30 u ^o-cs_AGUGH c
..|||| c ,AU ^a P ,
21Eio-&- o 81:-,f a 1I A
UAAAA
°^U CCA2490cUAA AG
AAAACA
AUUUC CUUGCOAG III
A U U CAAU UAUAG
AA~~~~~~~~UC°UUAG AUCC-OA o-
AAAGCAUUAU GUAA UUCAUUUUCC
A-U AG-CA U ACGUUCUAGC AGA
A U8CUU.COA CCCu U U C A^
A-U 8-8A 00 ~~~~~AC C CAAUUCAAGGUC C
aoocuto^U-A A G G CCAUUCGGGG A
ucuuucov A U
U-A A-1A8- CUGAUCOGG 'A'A
8GAGGCA88A A
UUGA :
0cA~U 2300 UuA CA
:
U CU'-A'UCAAUGC UAG AAAUA C UACUGAA : Uu UA
cAAG42AUA -o-H~~~~~~~~~~ACAAU
CUA~~ ~ ~ ~~~U~J1905 A:260 A
AC U V~~~~~~~~~ A
UA va~~~U GGGu.cG G U
'AU U UUG
a: Aa i
c8lAUGCG~ ~ ~ ~ ~ ~ ~ ~ ~ G~~~~cc~,: u Acc
CA G
UAGA 4 c20
AA AU-AA 87AG0CAA~~~~~~~~O G'AC 2U G, A
=X'COAAAc240 GA UA %AA
"
C :AA Cc80
UUCUUUGCUCCACACAAUAUAGAUG GC~~UA C- GA u UUAGUGCGGAUACGAAUAAGGCGUCCUUGGGGC ~~~~~~~AGUAGUC 0CCCAUU
GUCGCUGAACCAUAGCAGGCUAGCA
~ ~ ~ ~~GAUCGC%GAAUlU CAJUUCUAC
ACGGUGCACUUGGCGGAAAGGCCUU U CA
GGGUGCUUGCUGGCGAAUUGCAAUG A0UCAUUUUGCGUGG A U
K: 3148-3285 UA.8G?!.aGA
Fig.35b
Saccharomyces cerevisiae
r253
Nucleic Acids Research
Secondary Structure of eucaryotic 23S Ribosomal RNA: 5'half
D:2067 -- 2246
AGUCGAGAGUGGACGGGAGC
GGCGGGGGCGGCGGCGCGCG
CGCGCGUGUGGUGUGCGUCG
GAGGGCGGCGGCGGCCGCGGC
CGGCGGGGGUGUGGGGUCCU
UCC C CCGC CCC CCC CCC CA C
GCCUCCUCCCCUCCUCCCGC
CCACGCCCCGCUCCCCGCCC
CCGGAGCCCCGCGGAGCUAC
5.8S
'AX AGGCCGGCGCGCUCGCCGGC G
CC COAGOOUGGOAUCCCOCAGGCC d

UCCCCAGUCCOUCOCCGOGC elsu
ACCCOCCGOCCU
U
C
OG
CC: 1379- 1465
AO
GUAAACGGOUGGGGUCCGCGCAGUCCGCCCOGAGOAUUCAACCCGGCGGC
GGGuCCGGCCOUGUCGGCGGCCCGGCGOAUCUUUCCCOCCCCCCGUUCCU
CCCGACCCCUCCACCCGCCCUCCCUUCCCCCGCCGCCCCUCCUCCUCCUCCCCGGAOOGOGGCGGGCUCCGGCGGGUGCGGGGGUGGGCGGGCGGGGCCGG
GGGUGGGGUCOOCGGGGGACCGuCCCCCOGACCGGCGACCGGCCGCCGCC
OGGOCAC UUUCCAGOCOGUGCGCCGOAGCCGGCUCCOGACGCGCUGGGAA
GGC CCGOCGGGOAA^GGUGGC UCGGGGGGC CCCGUCCGOUC CGU CCGUCC UC
CUCCUCCCCCOUCUCCOCCCCCCGGCCCCGCOUCCUCCCUCGGGAGGGCG
CGC GGGUCGGGGCGGCGGC GGCGGC GGC GGUGGCGGCGGCGGCGGGGGCG
GCGGG:CCGAAACCCCCCCCGAGUGUUACAGCCCCCCCGGCAGCAGCACU
CGCCG AUCC GGCGC CoAGoGAGCGAGACCCGUCGCCGCGCUCUCCCCCCUCCCGGCGC CCCCCCGCCGGGAAUCCCCGCGAGGGGGGuCuCCCCCGG
CGC GGC GCC GC CGUCUCC UCCUCGGGGCGCCOCGCCCACC CC UCCC ACGGC
GCGACCGCUCUCCCACCCCUCCUCCCCGCGCCCCCGCCCCGGCGACGGGGG
GGGGUGCCGCGCGCGGGUCGGGGGGCGGGGCGGACUGUCCCCAGUGCGCCCCGGGC GGGUCGCGC CGU CGGGCC CGGCGGGAGGU UCU C UCGGGGC CA^CGC
GCGCG UCCCCCGAAGAGGGGGACGGCCGAGCGAGCGCACGGGGUCGGCGG
CGACGUCGGCUACCCACCCGACC
r254
5.8S
Homo sapiens B: 423-1295
Fig.36a
Nucleic Acids Research
Secondary Structure of eucaryotic 23S Ribosomal RNA: 3'half
G:2874- 3575
G00CUG0OUCGGUCOGOCUOG0GCG
COAAOCOOOOCUOGG0CCOCOCCOC
GOCU0GACOAOGCOCOCOCCCCCCC
CACOCCCOOGGCACCCCCCUCGC6O
CCCUCCCCCOCCCCACCCOCOCOCO
CCOCUCOCUCCCUCCCCACCCCC0 AA
CCCUCUCUCUCUCUCUCUCCCCCOC G
UCCCCOUCCUCCCCCCUCCCCOOGO A-uccccauccucceccuccccGoooA U37_
OA0COCCOCOUOCOOOCOCOGCGOG CJ 3700
O0GAOAAGOOUCOGOOCOOCAGGOO U A
CCGCOCGOCGOCCOCCOGGOCOGCC G -A
GCOGG0OCAOGUCCCCGCOGOGGG A U
GGCCCC6G6ACCC006606CCGOC A G
GGC606C6GGACUCUGGACOCOAGC CGG A A
CGOOCCCUUCCCOUOGAUCOCCCCA C C A
OCUOCOGCGOOCGUCOCOOCCOCCC Ge
CCOO0AGCCCGOCOOCOGCGCGGC U G
OC0CCCCCCACCCCCACCCCACGUC G _U GAC
UCOOUCOCOCOCOCOUCCCCUOGGG AU
GCOAOGCOOUCOGGCGGCGGCGOU G U c
COOCGGOCOOCGOOGGCOGOGCOGUU A u _
COUCCCCCCOCCCUACCCCCCCGGC A A0 8G ACUA
CCCOUCCOCCCCCCOUUCCCCCCUC GUA A
CUCCUCOOCOCGCGOCGCOCGCGGC I_
U-AA sGUGGCAGGCGOCOGAGOGGCCGCGGGC C_6 AG-C G
CGOUCCCCCCCOCCOOOUCCGCCCC U-A c G
COOOOCCOCOOUUCCGCGCOCGCCU A-U C-G G.'C
CGCCUCOOCCOOCOCCUAGCAOCCG 8 7 IUG-CG
AC A
u
GUAGU AAAUCA AUUUC UUAAG
G ^^ GU C
cIs Au *U
) A0UUU A A C GUAA
A-U
A-A U-A-300rUACC-CA4,AU
U-A 3600 A U%_. CU
C A A A
UAGG-AUUAUCGUCC A
U-dU^UACU^ G_ A
Er.AA UAGOC uGA-
2850
1AGC
A-^:AU390
18OG-C
A^U U
A A
CCAAQUU=j,
CGAAA6C%Cc
°°^UAGAA GG^
ACOOCAOCOCCOCGOAGCCUCO6UU OClii. III
"OCCUCO"AUAGCCOGUCCCCC6CC A0UAGUCACCAUU
UOUCCCCOCCOOCGOOCCOCCCCCC U U
CCUCCACOCOCCCCOCCGCOOOAGO U
OCOCOUOCCCCOCCOCOCOCCOOGA G
CCOGGUCCGUOCGG"GUGCCCUU A
COUCCU666AAACGOOGCOCOOCCO U.GAAAGOCGCCOCCCCCUCOCCCOU AGGs,CACGCACCOCACGUUCSUGGGAAC 4505S G~ ,cCA AU
CUOG
* uG
K:4689-4917 UUG%00Uo6ACG
GA- IC-G
UCAC G
,C-G
CA SU
cG CCC0AGCGGGU
UGGCGCCAAG C0 A
CC G CGU A
U C UGG C
G lit G
u UCACC G
G UC A U
A UACAA 2 AA
G8
A-CU H:4048-4128G G CC GGU GAGGC
88A-
X-U GGGGGGGC GA
C-GC GCCCAGAGGUA-U CUCUCGCUUC AGA
G-~U UGGCGCCAAG C A
G-YU CGCCCGCCCG _-CA U GCCGGOCGCG G-C
A- ACCCOCUCCO A-
Y-. GCG a-c,
j: GC Cf -5-A
A GU^UGYU A^CG^
A C-°A UA U
c
u
OCUUVUGGCGOCCAGCGU
I II C
UA%UUUUCOCUGCGCG UA
C
4400
Fig.36b
Homo sapiens
r255
Nucleic Acids Research
Secondary Structure of eucaryotic 23S Ribosomal RNA: 5'half
D: 1837-2025
CACUCOOAACOOAACOGOACGOAO^
COOCCOCOOOUOCOCOUCUCUCOOO
OUCOOOOOUOCOUOOGOOOOGCCCO
ucccccGCCUCCCCUCCGCaCOCCOOU UCOCC CCCaOCOOCUCOOOC CC
CGCGOAGCCUACCC
AOOCCCCOCCCOOOOOCCC
O^AOUOOOUCCCO"OOCCU
CUCCAOUCCOCCOAOOOCOC
ACCACCOOCCCOUCUCOCCC
OCCOCOC
C: 1211-1297
QUAAA CoGoUGG"UCCGCGCAGUCCoCCCGo GAUUCAACOCGGCGGC
GCGCGUCCGGCCOUGCCO@UGOUCCCGGCGGAUCUUUCCCGCUCCCCGUU
CCUCCCGACCCCUCCACCCGCCGUCGUUCCCCUCUUCCUCOCCOCGCUCC
"COCUCCGOCGOCBGOG"GG"G"U"UGGUGGUGOGCGCGCGCGGCG
.GGCCGGGGGUGGGUCGG,CGGGGGCCOCCCCCGGCCGOC6ACCGGCCG
CCGCCGGCGCACUUCCACCGUGCGUGUCGCCGCGACCOGCUCCGGGAC
oGCCGGGAAGoCCCG0UGGGGAAGGUGGCUC8G"GG4GCG4CC OUCUC
AGGGCGCGCCAACCACCUCACCCCAGU GUCACA GCCCUCCGGCACOC
UUU CCCCCA UCCCGGGGCCGAGGAAGCCA GAUGUACCCUCAC COCC CCUU
ccC AuccGCccouccoccC uccCocCGGCCUGCUUCGO*CCCCGC
CCC CCUCCCOCCUCCACCOUCUCCCCACCCCCCUCC"UCCCUCU CU
CGCCCCCC GUCCCCCC CGCGGACUUCCCCAGUCCGCCCCOGOCCUC CUCCCUCCCCUCOCGCOCCCCCUGGC CCCCCGCU CC UC UCCUCACUCOUCGCOCCGUCOOOUCCCOOOOOOACCOUCOOUCACOCOUCUCCCOACO
AAGCCOACoAC""oUCooCoCOAUGUCoCUACCCACCCOACC
B: 431- 1127
Mouse
Fig.37a
r256
Nucleic Acids Research
Secondary Structure of eucaryotic 23S Ribosomal RNA: 3'half
G: 2648-3260
GG:CUOGGUCGGUCGGGCUGOGGCGCGOAGCOGOOCUOGGCGCGCGCCGC
GGCUGGACOAGOCOCCOCCOCCCUC
UCCCACOUCCOOGGAGACCCCCCOU
CCUUUCCGCCCGGGCCCGCCCUCCC GUCa
CUCUUCCCCOCOGOOCCCCOUCOUC A 0oGCCCCOCOUCOUCOCCACCUCUCUUC G A C-O
CCCCCUCCUUCUUCCCOUCOGCOOO A-U CU
COGGUCOGGGGUCGGCGCGCGGCGc A- C U
GGOCUCCGGGCOOCOGGGUCCAACC U- C
CCoCoGGGGUUCCoGAGCGGAGoA .A
ACCAGCOGUCCCCOUGGGCOGOO AA
GGCCCGGACACUCGGOGGGCCGGCG A 0
GCGGCOOCOACUCUOGACGCGAGCC CG A
GOOCCCUUCCCOUGGAUCOCCUCAO CC tCC
cuocaocooocoucocooccocucc c_ c A
COGGOGAGCCCOOCGGuGCCGCGC§-o U
a
GGGUCCCCUCCCCOCOGGOCCUCOC G OU
UCCACCCCCCCAUCGCCUCUCCGA3G9A
UGUCCCGCGCGUGUG GCGGAAC A U t Cs:GG,CCOCOUCOOUOUUCCCCCOCCGGOU A AG 8 ACUA C
ccGccccCCoooccocGUuuuccG 0GUo A U GAAUAG Gc
cocoococccccoccucooccooco -c U_A u G A uAUG o °c 90
CCUAGCAoCCoAC c-G o-cC. u A oUGoC-39
u :G
~~~~~~UUCACC G
3300 a7 8 8 y GOu A AUAAAeAau ~~~~~~~~ACA
IAAAAAA *UGUU eGU AACA AUUUC UAA GUAUC H:372EU lUllo *l C CCGGUGAGG0C
(.) AAUUUGU AGUAGU CUCC AA U GGGGGCGA) A0- CA A GU-iA C F GCCCCGAGGGA- AU Au GCUCUCGCUU AGA
A-U C- C G CUGGCGCCAA CA
U--A 9ACOCGAU 3600-A-U GCGUCCGUCC A A
8c U:
oc
G.
uocooocouco
-cuCu°occo coocuo *o _ u ° =C-
U-A A-U Gu A cGCGCGUGCG GCCA A AUAGCGCC
c~~~~~A =°^ cAU A= ea u 4000
CGCUGCGGACG UA GC-AC ACCCGCUCCG 0:
A G7UGGCAG3:8 GCU 1GaVsC150lfA GGAUU A
a
.1
...... ~~CaG ACAG.o'-H A~A GUAGGC~~~CGOCUGA CU U-A
2600i-~ A A :2A C A AAC
A~U3500 u7 UG0 .
A-U~~~~~~~~~~~~~~~~~~~~~~~~ ~~~G-UUCa
AUAUC^OCtXOOOAUO CA
A GG*I
CCUCOU
CA G
A-UA-U UUCC
oucococcoctoocoococ,ooooucu 42 a5u c
CA A VUC A
'3:8 "U=AAACGA%GAAA GO cAl
GuCCCCCGCGGooucGGoCGcGGGUCU uu a
ooooccocccucucococoucoco (N u2° o AUG
o7
GUCCGGUGCGSASAGCCOUUCGUCu G A U~~~~~~~~~~~a7ula A A
UG@GAAACGGGUGCGCCGGAAAG ~ GCOAA AUA cU
GGGGccGcCCuCucGGu^cACCU U AGG Gcc ^ c
oGA.CGCACGUUCGU0U0GAACCuG A.'u'ouAU55,
K: 4379- 4604
39UGUU-AAUCGC
_8 AUUCoU a
UUCGUCC Al
A C
C-G
c-o
4700-t 8
A
- uc
UCAs-U ca,
I
AA
GU.A
C_u
u:U-A
. a
a
.
A
c_
o-¢
?"-c; FigM37b
Mouse
r257
Nucleic Acids Research
Secondary Structure of eucaryotic 23S Ribosomal RNA: 5'half
D: 1986-21
AoUCOGAACOGaACovAGC
aoccocoGOCOCOCOACCCC
OOOOOCCOOGCOOCouCOOC
uuceoccooccoccocccou
CACoeccavo"OCUeeOesc
MCOacoucoocOccocGoGA
GCCUA c
2600
5.8S 3'
AooCCeOeUeOCCoovaC
CCeC*A"UvoUCeCC"Q
CCUCUCCAoUCCOCConAGo
COCACCACCOOCCCOuUCUo
cCCoccoCOC
C: 1297- 1386
QUAAACoooU""oUCCOCOCAGUCCOCCCOolAdUUCAACCCOOCOOC
ecococcooccooccoouoouccCooCooUCUUcccocuccccouucc
ueConBeeUCACCCCuenBeo eueueueeOeeeueeeeoeoueeeoee
oueooeeueeOeoeueeMeteueeGoooououceo eweocuceeoo
ooeoo e eoo o Uooou oooooeoeoooeoCaoo UOOOOu
co C"oO"ACC CCCCCG"CO C"CO^ CCC OcCcCcOOCOCACUUC
cCAc-uo "GGCCAC4CoocCbcrCuc-CoCuGooAGooCCCoo
cGo ^"UC"uCOCG"0 u"*COUCCCGUtOOCOCCOGAC^CA
CCC eeCCC uU4UACACCOCeCeooCA^OCAuCoCUoCCAUCCC"o
ZeeC"o^AoeUAeCe uC eeCe"UCUCCCCCCroCCUCUeCC
cuccc CeCCUCCCCOU4§ uucoAAooneoUCOC"ooocc
O "OCCCCCCUCCCAC"C C"^CCOCUCUCCCACCCCCCOUCOCCUCCO
uCouCCCUCuCeoo_uCCeoo"cccoOocOCoocuOCUGCCCc
AOUOCGCCCCOGCOUCOUC CoCCOucOO CCC OOOO CcouCOuCA
CaCOCUCUCCCUCCCCUUCUCooo uvavoAGc"Aocc "oCocAC
oovouc oc ooUGUCOOCUACCCACCCaACC
B: 430- 1213
Rat
Fig.38a
r258
Nucleic Acids Research
Secondary Structure of eucaryotic 23S Ribosomal RNA: 3'half
G: 2736-3330
ooCoGOGQUCoGUCoooCUOOOG
COCOAAOCOOOGCUOOOGCOCQc
CCOCOOCUGOACOAOOCOCCOCC
OCCCCCCUCCCACOUCCOOG"AO
AcccCcuccuuucccOCcooocc
CCCUCCCOUCUCCCCOCOUCGC OAAAccccoccoucccccocoucouco A A
ccousouccccuccucccucccu A- uc-
UCUUCCCCOGUCCOCOOGOOGOAC a- a
Goauc^^cciucocoacvcc N-A
;
ooOCoooUOcccoGocOcOcACOUCOAOCOCOOCCCCOOOGCCOA A
GUCCOUAACCCGCCGOCCCCC 3395
aoUaOOOOOOOOCCCOGACACCC CGO A Aa
GOOOOGOGCa COGOOCOAOA C G%
OCOOOCOUCOCOOCCOCUCCCOO O -0°
ACUCUGGACOCGAOCCOOOCCCU
OOAOCCCOOCOOAUCOCCCOGCO G 0 AU CGOA
~~~~~~~a
a
ooouuuuccuccoaccucouccu ° uU uo Cc gcC(cccccuucccccuccocaooouc A u ,_
CCU
CoUoCUCCCoCouucauu A A c- cu 3700-A
ccuccococoocoouuccccc _ 7oUAA^^o^^uOCuCOGUCCCCCOCAOA GAUA 0AGCCQuCoCCCoCCCOccCCCG U-0_ u- Au uouuuccc Cooccocccoccuco _- .o-c GU,,
u AoUoa c
"CGCOCOCUACOCAOCCOAC UIA ~ ~lfill aAccoccaccuocroccoacGU G o~c°o8'/ U UCACC a
A uG u
3500 GA UAA
UAAAACAA AUUUC 00UA 0Al38oe3A87G ) " III cG C UAOliii¢^ uu¢ A AOOuOAA CCOH:GU0AO38CAA( UOU ACUAUCUUCC A U OG°OOG OCGA
A0 C A COGU COC OCCCCOAGOOO
A-U O-A8. A. AG CUCUCOCUU AGAA-US.3A C||.@C A
AUc^^uO¢¢u^°O¢¢CCAcU ACOCOUCCOC A A
C"
A 2 A70 A-C0U | CCCOCc -C
CU-
A A AU A A= CA-CCAC a A
=ACUAC:°CUCC:Ga:8
GAA7GUGQU0CGGACCAOG u uGUA OGAUUCCO a
A-Uuu 0C C^ ^ U ^oAUU
'MC"COAACI 0 CAU 0U U=A GAGGC
AU 78 GOc&4ooL' 4000
uvococcoou^coocucccc A 0uou,4c¶uu .I II .I1 0
oUGo c
UG1
coooouccoouocvoooccouuc~~ ~ ~ ~ ~~~~~~1-o uLiugu
AUGooooccccccuccAUUUoAuAucAAAA^CAc"^¢^ a,10G,A,AU36000AC u
8
QUU=A aUUIF* AU cu 87
AAA UACA A00AaAA
U0GCCCCOOAUACCOGCUCCCCOU AOUAOUCAJCCAUA II C
COOGUCCOGUGCGAGAGCCAUGC 0~~~~~~~A GA
A-
OUCCCOOGAAACGGGU@CGGCC0O ~ ~ 41AUA^GAA UGUOCGCAACO
UAAOCCCCOCAACCUCUCCCCCOUC U GAU CAU 111 o
ACGCouUCCcAucoUUCOUGOAA A
%.C UAGUUOCOCAU
C"CUG 0'CG¶"oJAC0 000 0
Fig.38b
Rat
r259
Nucleic Acids Research
Secondary Structure of eucaryotic 23S Ribosomal RNA: 5'half
2295
3'
OOOCCOOGCOCaCCCGCeUG
O0OU GGAUCCCOCCOCCCCC
uCCCUCCOCCCCCCCGOOOO
COOOOGaOOOOCOCCOGCGO
OCNCACC ACCOOCCCOUCUC
GCCCOCCCCGU
C: 1038-1148
r260
B: 427-953
Xenopus laevis
Fig.39a
GUAAACGOGUG(IGOCCOUaCGOUCCGCCCaGAaaAUUCAACCCOOCOGOU
CAGCOCCOCCOGOACCO(IOCCACUCGGCGGACCCCCCCOCCOOCCCCCUC
CCCUCOCCOGaAGaaCGOUCGCGCGOGa"GACOCOOCCCOGOCOMCCCO
ecocc"N"N"GNUUUCCUCCGCGGCGGUacaeacaccoacuccoaacco
COUGGOAAGeCCCAGGGGUUCAGGGCIAA"UGGCCOOCCOCCCCCOCOCO
CGGCUACAOCCCCCCCCCANOCAOCAGCACUCOCCOUCOCCCOGOOCCOA
aGGAGACaCC"CCUCCOC"UCCUCCUCCCCGGAGCaCOUCCCOCCOCU
CCCCCCCOGG"GGCGGCGCGC"GGCGGGGAAG"GGAAGGGGCCCCCC
aCUCCC"COCOOCUOUCAACC"GGC"ACUGCCCCCAGUGCGCCCCOU
CCOCOCCOCaCCOCCOAGOCOGGAGGGCCOCCOGGAOCCOCCRAaaGUCC
arn.r. ....... e.- e. .e- .. re.,
Nucleic Acids Research
Secondary Structure of eucaryotic 23S Ribosomal RNA: 3'half
OGGGC UCOOUCOGOCUOOOOCG e A
CGAAOCOCOOCUOOOCCGCOCCOCO G A
GCUOOACOAAOOCOCCCCCOUOOCO A - U
CUCUUUCCCUCCUCCCOCCCCCCUC A-UC
UCUCUCCOOCCCCCCCUCOCOOOOU-
OCCOCOGOOOCOOOOOOOCOCGCOO G* A
GOCCOOAO^CGCCCOOCOOCOOCOA A U
CUCUOOACOCOCOCCOGOCCCUUCC A G
UGUOOAUCOCCCCAOCUOCOOCGCG AGO A A
COCCUCUCCCCCoCOCCOUCCCCCu a C
CCUOCOCCUCCCCCCOUCAOOGAOC C A
GOOOCOCGO OC GCGOOGOCOOCCGG _ U G-2900
GGCOOOCCCOOCCUCOOCCOOCOCC Au O
UAGCAGCUOAC o AU
G: 2432-2767 A U 7C
AAG ^G-C -'AcuAAAA A
UA AA
UA AACAAUUUC U-O
( ) 2ao^-i ouQ
CUCC
OGU^^OO^UUA G u
A- AAACAA AUUCA A -AAGUAA-U ... 3 - %ACoOCA III
Mc^^uocculncuo^AAUUUGU GUAe G UCC
A2 280 G-C A A
~~~% C
CA 8 _ A
2400 ~ ~ 0-
AGU U
GOUA
U0^^8 ^
2400 1'9~~~~~~0AC~~~~~~
3050AUAucAd
ACCOCAOCOCCOCOOAOCCUCOOUC * *11Ol
OOCCUCOOAUUAOCCOOCOCCCCCC AOUAOUC
CCOOOOOGCOCCOOCOOGCAOAOCCU
OCUCOCCUCOOOACC4OOOCOCOOA
COAAO4OOGOCCOCC VCUCUCCCO
CCo^OccccouooG o-3700K: 3856-4009 u
C AA C
o -UUCOUGAAA
cUUAOUCCAoC
A UC~
A -U CA GAA
OlU80 oUuuU3
~~~~G J
c~~~es~~
u-^~ ~ ~ ~ ~
CC-Q
UccA~ ~
fGuC,3150
CGA
8:8A
Fig.39b
Xenopus laevis
r261
Nucleic Acids Research
Secondary Structure of eucaryotic 23S Ribosomal RNA: 5'half
5.8S
5,
CGAGCOGGGAGGCCCUCACGC
CGCACCGCUGGCCGACCCUG
AUCUUCUG
C: 721-768
C0
B: 419-640
Fig.40a
Oriza sativa: RICE
r262
GGAAGCGGAuGGGGGCCGGCGAUGCCCCGGCCGUAUGCGGAACGGCUUCG
GCUGGUCCGUCGAUCGGCUCGGGGCGUGGACUGUUGUCGGCCGCGCCGGC
GGCCAAAGCCCOGG,GGCuCCGCGCCCCCGGCAGCCGUCGUCGGACGCAGC
CGGUCACCGCGCGCCUCUGGCCGGCCCCUCGGGGCGuCGCGCCGCAACGG".. I -I
Nucleic Acids Research
Secondary Structure of eucaryotic 23S Ribosomal RNA: 3'half
OGGCUGGUCUCUGGUGUCCGUCCCC A A
GAACCCGUCUUCUGCCUGCGUACUG U A
CuCGAUCUGCUCuCCCoUCGAAUGC A - U
OGOCCGCCGUCGOCCOGCCCGOGOA A:
COOCCOUGAACGCGCCCCUCGGOGG U-A
CCUUCCCCGUGCGUCOAACAQCCUA AA
C ~~~~~~~~~~~~~~~AC
G: 1940-2091 2CG2 A c
AA AUA
UC C AU
U t-a Cu
U-A G-CA
C UG AUG
C C
GC.U
AG UC
C-GAAACA C UA
G-C U-AAU C
U-A AG-C
U-GA -g GCSP,C-
U:A210 7 U- U^G C
UAAACAAAUUU U U A rC
C^~AAA 8GA-UGAuACGUCACAG UUAGG U A
UCA UCCU UCACU AA UC
A- C A
AA:819 :SA2300o_ ACcGCA<',C
-UA
a-A
a7GGAA u UACCC-AAAQ- U
GC G CGOCU,3A~~oo-UC
A U-C
A=U
UUCUCCOACOCCCOCCCCOACCCAC
GUUAGOOCOCACACCCCCAAOOCC
CUUGCCACCGUCCAAOCCCUUCCUU
CCoACGCGCCGCGGCCooCCoCCUU
CGAACUCCCUUCCCAACGGCUGC
K: 3142-3267
A A C
U AGUG¢ A
G I lilt A
UCACC
GAG A
A
U- CU
H:2505-2580G -U UCCOUGAGUC
U-A
U-AC GGAAGCGGGG
C-UC CCUAGCCCCC
A-U UCCUUUUGGC AGA
GU U UCUAAUOCCC C A
U-A A
A- U UAUCCCUCU
A-U GUCCGAUCCU G-C
A-U UOCOGA A-U
~XJAU U-C
8- Au^U UG
U-AC AU
UU GCA U-AACAA
UIAA -A 2800
A-:
IAAG
00 ~~~Aa A
C A C
° -U UUu
QAAUCAQF%UUAAA CAA
..II lo If OCUUGUBGCAOC UC
u
AUAGUC CCCAUU *11 I II C
AU u UAQJUUUUCGUUUCCU AU
A U
/
Cd4 ':UU
Fig.40b
Oriza sativa: RICE
r263
Nucleic Acids Research
Secondary Structure of eucaryotic 23S Ribosomal RNA: 5'half
1300 uA
GG 6666G AG66U...GAI''
C ..~~~~~~UA
cc
GUGGCAG-eCuC-A
UGGU AA ~ ~ ~~ 666 6 66
6;"C"CG
AA .6G
Azg 1800 u~~~~~~~68
6666~~~~~~~~~~~~~~~~~~~~~C,,Gu
UUAU_A666 666 66`C666
UA
/GC.CA A GC.C
U
GG8
C c~~~~~~~88
OG66 66 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~
GG-C G: uUA~~~~~~97
666 66~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11666 6 1005AA UGA GCU 0C0UG
A, :U jp C
6666666 cu~~~~~~~~~~~~ 66
66'~~~~~~~F~~~~~ AU AA8If u"
6cA70AA0 AA.666 6666CUU U G G
666E666 GGGC6666666GCAAAC6 6U6GU
GU G1602c 165-6AuCA 6GU5.8AA3C
1006.~~~~6 ~ ~ Acu 66 666, C6 A3U86-6 66A5ZCGG6.It5
II 111 G A 6c 666666 =6 66'C
AA, ~ ~64o ~666u6 8 88 d6.6 6
U%6..~6,.J666666666UG66AC6UGCA66U.A
u A I UG
A
G~~~6 6 6 6?U66u CU., ~ ~ ~ ~ 666 6 ~ , .
6 666666666CUC 6.. 6 66 66
AAGG,1G66 6G
/~~~~~~~~~~~~uGUAU66 1400 6C6C666C6G.6666'A 6
88' CC666666666l666C66 6 6 6 6 6 6 6~~~~~~~~~
c: A7G-22A 68 8
I'CCAAC~~~~~-~-9 AA~~CC: 666 66 6
200-%"A 8.U :A A:~~~~~~~66 6 6 II,, 6666
66666666666666666666666666666 6A '66 66G6 l
c A
r00,,AGUAG~~~~~~~~~~~~66 0~68 6
,GAGAACG G~ ~~~~~~~~~~6 6>1 G6" I'llA
16 6 .6 .6
Fig.41a
Caenorhabditis elegans
r264
Nucleic Acids Research
Secondary Structure of eucaryotic 23S Ribosomal RNA: 3'half
UGGUUGGAACGGUUGOCCAGUUGGU
UGAUGCUUUUCCGGCOCAGUUCUOGU
CUGCUUGAUACUUUCGOOUUOAUUG
CGUACUAGUGAUUGUOCCUUGCUUGC
GGACGCUUUCUGOUUUGUUCUUUUA
CCUC GUUCUAUA UCCUGAUCGCU
CAUCUAAACAACCOUA
G: 2039-2204
G UU A AAA
G u ,
G-C
U
U-C
C
GG'A g_AUCG GGUACCGGA
uUCAAUGCCUAGA UCAAA
2000
AAAAUUUCUUGCUUCCCOGUGUCGG
GAGGCAUCUCUAUCUCOUGOCAACA
CGAGAGCUUAUGCCCUAUGUAUGOC
CUUUGCGUCGUAGUUAAUUCUUCUA
CGCUUGCCAACGCCAGAUCACUCUG
GUUCAAUGUCOGOOG
K: 3261-3399
3,
Fig.41b
Caenorhabditis elegans
r265
Nucleic Acids Research
Secondary Structure of eucaryotic 23S Ribosomal RNA: 5'half
E: 1622-1719
-A A GAUGA
,,,. a
CUCGAC
2033
26S
AAAQCACCCAOOOCOAOCCU
A UOCOOACCCCOCAA UOCU
CUCCUAACCOOOCUCUCOG
C-
B: 420-674
Fig 42a
Physarum polycephalum
r266
A*AACQ"AAAUCUAUACQWIACUC:UCGAAA ocuo"coaauucauc
CCCUGCCAUACOOCOCUCAOUAC. OCACAOCUGC"CUGAGGC"COCUO
G"AAGOUOACCUAACG"CAA UCUCOCUUACGG"GAG"CO"CAA"
ACACCG"Accocaa"ccuc UCCOUCUA"GCUUACACUCACOCOU"AU
G"UUCGCCCCAUAACCOU"GAC4UACACCOUGUCAGAOCUUAGUUUAC--- -- -- -- -- - -- - - -
Nucleic Acids Research
Secondary Structure of eucaryotic 23S Ribosomal RNA: 3'half
AGOCU:GGUGUCGCUGGCUGGGUA A
AOGCU OCOGGAUGUGCUUUAGUAA AA
UGOCCoAGOCoCUUUCGoGUGCCOA u
GAGCOUAACOOOCCOCUCGGGCU O-c
GAAAACUABAUCAUUGCGGAOGUUC U-A
OCCCOAGUGOUGAAAACCOOCACAC A A
CoCUAACAoCUAAC A c
G: 2103-2266 AAA c
GCA U A
UG t- 2
U AA U
U A CI
U AAAACAU 0U A
A A UAUGU
UUAGO
2300 A UA AA
S S-(CI ACGC
H: 2683-2914
U0CU0UAACIAACOAACOGA
ACCOCOUCCCUCU CACCGUA
AAAGOUOGGOOAAGOGAUAG
OCAAUCCAAAUUCUAGCOCU
UUCCOCOCUCAUACOACGAG
UU0GCUCCCCUG0GUGAGUA
CCOUGGAACCAC0A0CUGG0
CUUCCOAUCCGGCGAOUGC
U0UUUCCGC000AACCA0AG
ACGOUCUUCUCOOCCUCUOU
GOOCUUCAUGCCGOUACGUA
AUUGCGUGUAGC
3000
AGA
C A
G-C
C-G
GZUG-C
COCAAUCAAAGAUACOCUUGC UUUU
AAGUCUGGCAACOCOGUCUUUUACC
AUCAACA0CCAGUCAACU0A0CA0O
ACOCOAUGCAAA0A0OUC0AAAUUA
OCCCGUAAAAAGOUCAGUUCCUCGU
UAA0CCOCCCCCACOGGOOCAUCAA
COOCOCUCCOCCU0CAUCA0GCUCO
QUAUUC
K: 3496-3676
FigA2b
Physarum polycephalum
r267
u
a
Nucleic Acids Research
Secondary Structure of eucaryotic 23S Ribosomal RNA: 5'half
E: 1637-1744 59 "6e" H: 1783-1994
IU.GUGGAAAUCGAAA^CACUUGCCAOOUGACAAAUCAAUCCUCCCACGOU
OAaCUUUCUUUUCACCAUAAUCCA
AUCUCCOOCUUUOCUOOOCUUOOOC
CUUUUUACUUCUCOC(IUUGUUCGOAOCOOOOGCCCAAGAUUGAAAAAUGC
AOCUCUCCCUACOUACUOUCAUUOU
UOUGAGUUCUOCGCAUUAAACAAA
AACCUOOOOUOU
e, *s,.9
5.8S
O^AUOC4A44UQCAUCUGUOOGU UCACACOUC*AAUCCOU
UUOAUUUGCCCAACACCO^C
cm
C: 759-824
ACAAUUo"AvUAscCUCC:uuucouuuuUoccAGAACCAocccuAcuocau
cCOcoc"GcAo cuucucu uoUCUCCAuGcu"COCA4SAAAAUo
SoOU&CCCCCACC _.
8: 462- 674
Fig.43o
Cnthidia fasciculata
r268
Nucleic Acids Research
Secondary Structure of eucaryotic 23S Ribosomal RNA: 3'half
G:2124- 2342
GGGCAAAGUCAG2AGAAAACCGGAGG A
GCCAGUGUCCCUCCACGUGCAGCCG
AuCuuCAGAUUUGouuuAGCGCuC c u
GCCGCCUA:ACACGCAGUUAGCGACA
uucccoocouou^^c cc o_ c
CUCACUCuGGCACGooCCoGGCuuG c c
OCOGGUUCACOCUCOUCUUGUGCCG A 0
H: 2752-3012
H
K:3426-3541
GAAAAAGCGAGAAAAAGAUUAUCCG
GC AAAAC OGA C UC GGCCGACUAU
GGGOCCU GGCGAGCGGUGGOAGA
AGUAACGCCAUCACCGUGAGAUU
GAGAAGGGAACUCGCA
"6f"1 39 /59'"1"
CCC UCA ACGAAUACGC CACCUAUCAC
ACA GGA GOCAUGC 0CC CUAC UCGGC C
_UCA A GA AUA UUCA AGA UCACA A GG
AACAACGUCCCUCACCAAACGAGAG
OGGGGCACUAACGUCCCGAGGCGCAG
AACCAA GA GGCC UGA AAUUA CA AGC
UCAGOGACA
L: 3698-3906
AG'
UAAG%GCacu
uc 'cG 3650
c G
COCAA
Fig.43b
Crithidia fasciculata
r269
L'/

Weitere ähnliche Inhalte

Ähnlich wie Gutell 015.nar.1988.16.r175

Gutell 023.nar.1992.20.sup.2095
Gutell 023.nar.1992.20.sup.2095Gutell 023.nar.1992.20.sup.2095
Gutell 023.nar.1992.20.sup.2095Robin Gutell
 
Gutell 019.nar.1990.18.sup.2319
Gutell 019.nar.1990.18.sup.2319Gutell 019.nar.1990.18.sup.2319
Gutell 019.nar.1990.18.sup.2319Robin Gutell
 
Gutell 054.jmb.1996.256.0701
Gutell 054.jmb.1996.256.0701Gutell 054.jmb.1996.256.0701
Gutell 054.jmb.1996.256.0701Robin Gutell
 
Rna lecture
Rna lectureRna lecture
Rna lecturenishulpu
 
Gutell 101.physica.a.2007.386.0564.good
Gutell 101.physica.a.2007.386.0564.goodGutell 101.physica.a.2007.386.0564.good
Gutell 101.physica.a.2007.386.0564.goodRobin Gutell
 
Gutell 029.nar.1993.21.03055
Gutell 029.nar.1993.21.03055Gutell 029.nar.1993.21.03055
Gutell 029.nar.1993.21.03055Robin Gutell
 
Gutell 053.book r rna.1996.dahlberg.zimmermann.p111-128.ocr
Gutell 053.book r rna.1996.dahlberg.zimmermann.p111-128.ocrGutell 053.book r rna.1996.dahlberg.zimmermann.p111-128.ocr
Gutell 053.book r rna.1996.dahlberg.zimmermann.p111-128.ocrRobin Gutell
 
Microbial Phylogenomics (EVE161) Class 7: rRNA PCR and Major Groups
Microbial Phylogenomics (EVE161) Class 7: rRNA PCR and Major Groups Microbial Phylogenomics (EVE161) Class 7: rRNA PCR and Major Groups
Microbial Phylogenomics (EVE161) Class 7: rRNA PCR and Major Groups Jonathan Eisen
 
Gutell 034.mr.1994.58.0010
Gutell 034.mr.1994.58.0010Gutell 034.mr.1994.58.0010
Gutell 034.mr.1994.58.0010Robin Gutell
 
Gutell 079.nar.2001.29.04724
Gutell 079.nar.2001.29.04724Gutell 079.nar.2001.29.04724
Gutell 079.nar.2001.29.04724Robin Gutell
 
Gutell 028.cosb.1993.03.0313
Gutell 028.cosb.1993.03.0313Gutell 028.cosb.1993.03.0313
Gutell 028.cosb.1993.03.0313Robin Gutell
 
Gutell 002.nar.1981.09.06167
Gutell 002.nar.1981.09.06167Gutell 002.nar.1981.09.06167
Gutell 002.nar.1981.09.06167Robin Gutell
 
Gutell 025.nar.1992.20.05785
Gutell 025.nar.1992.20.05785Gutell 025.nar.1992.20.05785
Gutell 025.nar.1992.20.05785Robin Gutell
 
Gutell 042.nar.1994.22.03508
Gutell 042.nar.1994.22.03508Gutell 042.nar.1994.22.03508
Gutell 042.nar.1994.22.03508Robin Gutell
 
JCMD_2014_stackovr
JCMD_2014_stackovrJCMD_2014_stackovr
JCMD_2014_stackovrsankar basu
 
Gutell 083.jmb.2002.321.0215
Gutell 083.jmb.2002.321.0215Gutell 083.jmb.2002.321.0215
Gutell 083.jmb.2002.321.0215Robin Gutell
 
Gutell 100.imb.2006.15.533
Gutell 100.imb.2006.15.533Gutell 100.imb.2006.15.533
Gutell 100.imb.2006.15.533Robin Gutell
 
Gutell 113.ploso.2011.06.e18768
Gutell 113.ploso.2011.06.e18768Gutell 113.ploso.2011.06.e18768
Gutell 113.ploso.2011.06.e18768Robin Gutell
 
Gutell 118.plos_one_2012.7_e38203.supplementalfig
Gutell 118.plos_one_2012.7_e38203.supplementalfigGutell 118.plos_one_2012.7_e38203.supplementalfig
Gutell 118.plos_one_2012.7_e38203.supplementalfigRobin Gutell
 

Ähnlich wie Gutell 015.nar.1988.16.r175 (20)

Gutell 023.nar.1992.20.sup.2095
Gutell 023.nar.1992.20.sup.2095Gutell 023.nar.1992.20.sup.2095
Gutell 023.nar.1992.20.sup.2095
 
Gutell 019.nar.1990.18.sup.2319
Gutell 019.nar.1990.18.sup.2319Gutell 019.nar.1990.18.sup.2319
Gutell 019.nar.1990.18.sup.2319
 
Gutell 054.jmb.1996.256.0701
Gutell 054.jmb.1996.256.0701Gutell 054.jmb.1996.256.0701
Gutell 054.jmb.1996.256.0701
 
Rna lecture
Rna lectureRna lecture
Rna lecture
 
Gutell 101.physica.a.2007.386.0564.good
Gutell 101.physica.a.2007.386.0564.goodGutell 101.physica.a.2007.386.0564.good
Gutell 101.physica.a.2007.386.0564.good
 
Gutell 029.nar.1993.21.03055
Gutell 029.nar.1993.21.03055Gutell 029.nar.1993.21.03055
Gutell 029.nar.1993.21.03055
 
Gutell 053.book r rna.1996.dahlberg.zimmermann.p111-128.ocr
Gutell 053.book r rna.1996.dahlberg.zimmermann.p111-128.ocrGutell 053.book r rna.1996.dahlberg.zimmermann.p111-128.ocr
Gutell 053.book r rna.1996.dahlberg.zimmermann.p111-128.ocr
 
Microbial Phylogenomics (EVE161) Class 7: rRNA PCR and Major Groups
Microbial Phylogenomics (EVE161) Class 7: rRNA PCR and Major Groups Microbial Phylogenomics (EVE161) Class 7: rRNA PCR and Major Groups
Microbial Phylogenomics (EVE161) Class 7: rRNA PCR and Major Groups
 
Gutell 034.mr.1994.58.0010
Gutell 034.mr.1994.58.0010Gutell 034.mr.1994.58.0010
Gutell 034.mr.1994.58.0010
 
Gutell 079.nar.2001.29.04724
Gutell 079.nar.2001.29.04724Gutell 079.nar.2001.29.04724
Gutell 079.nar.2001.29.04724
 
Gutell 028.cosb.1993.03.0313
Gutell 028.cosb.1993.03.0313Gutell 028.cosb.1993.03.0313
Gutell 028.cosb.1993.03.0313
 
Gutell 002.nar.1981.09.06167
Gutell 002.nar.1981.09.06167Gutell 002.nar.1981.09.06167
Gutell 002.nar.1981.09.06167
 
Gutell 025.nar.1992.20.05785
Gutell 025.nar.1992.20.05785Gutell 025.nar.1992.20.05785
Gutell 025.nar.1992.20.05785
 
Gutell 042.nar.1994.22.03508
Gutell 042.nar.1994.22.03508Gutell 042.nar.1994.22.03508
Gutell 042.nar.1994.22.03508
 
JCMD_2014_stackovr
JCMD_2014_stackovrJCMD_2014_stackovr
JCMD_2014_stackovr
 
Gutell 083.jmb.2002.321.0215
Gutell 083.jmb.2002.321.0215Gutell 083.jmb.2002.321.0215
Gutell 083.jmb.2002.321.0215
 
Gutell 100.imb.2006.15.533
Gutell 100.imb.2006.15.533Gutell 100.imb.2006.15.533
Gutell 100.imb.2006.15.533
 
Gutell 113.ploso.2011.06.e18768
Gutell 113.ploso.2011.06.e18768Gutell 113.ploso.2011.06.e18768
Gutell 113.ploso.2011.06.e18768
 
Gutell 118.plos_one_2012.7_e38203.supplementalfig
Gutell 118.plos_one_2012.7_e38203.supplementalfigGutell 118.plos_one_2012.7_e38203.supplementalfig
Gutell 118.plos_one_2012.7_e38203.supplementalfig
 
A tutorial in Connectome Analysis (1) - Marcus Kaiser
A tutorial in Connectome Analysis (1) - Marcus KaiserA tutorial in Connectome Analysis (1) - Marcus Kaiser
A tutorial in Connectome Analysis (1) - Marcus Kaiser
 

Mehr von Robin Gutell

Gutell 124.rna 2013-woese-19-vii-xi
Gutell 124.rna 2013-woese-19-vii-xiGutell 124.rna 2013-woese-19-vii-xi
Gutell 124.rna 2013-woese-19-vii-xiRobin Gutell
 
Gutell 123.app environ micro_2013_79_1803
Gutell 123.app environ micro_2013_79_1803Gutell 123.app environ micro_2013_79_1803
Gutell 123.app environ micro_2013_79_1803Robin Gutell
 
Gutell 121.bibm12 alignment 06392676
Gutell 121.bibm12 alignment 06392676Gutell 121.bibm12 alignment 06392676
Gutell 121.bibm12 alignment 06392676Robin Gutell
 
Gutell 114.jmb.2011.413.0473
Gutell 114.jmb.2011.413.0473Gutell 114.jmb.2011.413.0473
Gutell 114.jmb.2011.413.0473Robin Gutell
 
Gutell 117.rcad_e_science_stockholm_pp15-22
Gutell 117.rcad_e_science_stockholm_pp15-22Gutell 117.rcad_e_science_stockholm_pp15-22
Gutell 117.rcad_e_science_stockholm_pp15-22Robin Gutell
 
Gutell 116.rpass.bibm11.pp618-622.2011
Gutell 116.rpass.bibm11.pp618-622.2011Gutell 116.rpass.bibm11.pp618-622.2011
Gutell 116.rpass.bibm11.pp618-622.2011Robin Gutell
 
Gutell 115.rna2dmap.bibm11.pp613-617.2011
Gutell 115.rna2dmap.bibm11.pp613-617.2011Gutell 115.rna2dmap.bibm11.pp613-617.2011
Gutell 115.rna2dmap.bibm11.pp613-617.2011Robin Gutell
 
Gutell 112.j.phys.chem.b.2010.114.13497
Gutell 112.j.phys.chem.b.2010.114.13497Gutell 112.j.phys.chem.b.2010.114.13497
Gutell 112.j.phys.chem.b.2010.114.13497Robin Gutell
 
Gutell 111.bmc.genomics.2010.11.485
Gutell 111.bmc.genomics.2010.11.485Gutell 111.bmc.genomics.2010.11.485
Gutell 111.bmc.genomics.2010.11.485Robin Gutell
 
Gutell 110.ant.v.leeuwenhoek.2010.98.195
Gutell 110.ant.v.leeuwenhoek.2010.98.195Gutell 110.ant.v.leeuwenhoek.2010.98.195
Gutell 110.ant.v.leeuwenhoek.2010.98.195Robin Gutell
 
Gutell 109.ejp.2009.44.277
Gutell 109.ejp.2009.44.277Gutell 109.ejp.2009.44.277
Gutell 109.ejp.2009.44.277Robin Gutell
 
Gutell 108.jmb.2009.391.769
Gutell 108.jmb.2009.391.769Gutell 108.jmb.2009.391.769
Gutell 108.jmb.2009.391.769Robin Gutell
 
Gutell 107.ssdbm.2009.200
Gutell 107.ssdbm.2009.200Gutell 107.ssdbm.2009.200
Gutell 107.ssdbm.2009.200Robin Gutell
 
Gutell 106.j.euk.microbio.2009.56.0142.2
Gutell 106.j.euk.microbio.2009.56.0142.2Gutell 106.j.euk.microbio.2009.56.0142.2
Gutell 106.j.euk.microbio.2009.56.0142.2Robin Gutell
 
Gutell 105.zoologica.scripta.2009.38.0043
Gutell 105.zoologica.scripta.2009.38.0043Gutell 105.zoologica.scripta.2009.38.0043
Gutell 105.zoologica.scripta.2009.38.0043Robin Gutell
 
Gutell 104.biology.direct.2008.03.016
Gutell 104.biology.direct.2008.03.016Gutell 104.biology.direct.2008.03.016
Gutell 104.biology.direct.2008.03.016Robin Gutell
 
Gutell 103.structure.2008.16.0535
Gutell 103.structure.2008.16.0535Gutell 103.structure.2008.16.0535
Gutell 103.structure.2008.16.0535Robin Gutell
 
Gutell 102.bioinformatics.2007.23.3289
Gutell 102.bioinformatics.2007.23.3289Gutell 102.bioinformatics.2007.23.3289
Gutell 102.bioinformatics.2007.23.3289Robin Gutell
 
Gutell 099.nature.2006.443.0931
Gutell 099.nature.2006.443.0931Gutell 099.nature.2006.443.0931
Gutell 099.nature.2006.443.0931Robin Gutell
 
Gutell 098.jmb.2006.360.0978
Gutell 098.jmb.2006.360.0978Gutell 098.jmb.2006.360.0978
Gutell 098.jmb.2006.360.0978Robin Gutell
 

Mehr von Robin Gutell (20)

Gutell 124.rna 2013-woese-19-vii-xi
Gutell 124.rna 2013-woese-19-vii-xiGutell 124.rna 2013-woese-19-vii-xi
Gutell 124.rna 2013-woese-19-vii-xi
 
Gutell 123.app environ micro_2013_79_1803
Gutell 123.app environ micro_2013_79_1803Gutell 123.app environ micro_2013_79_1803
Gutell 123.app environ micro_2013_79_1803
 
Gutell 121.bibm12 alignment 06392676
Gutell 121.bibm12 alignment 06392676Gutell 121.bibm12 alignment 06392676
Gutell 121.bibm12 alignment 06392676
 
Gutell 114.jmb.2011.413.0473
Gutell 114.jmb.2011.413.0473Gutell 114.jmb.2011.413.0473
Gutell 114.jmb.2011.413.0473
 
Gutell 117.rcad_e_science_stockholm_pp15-22
Gutell 117.rcad_e_science_stockholm_pp15-22Gutell 117.rcad_e_science_stockholm_pp15-22
Gutell 117.rcad_e_science_stockholm_pp15-22
 
Gutell 116.rpass.bibm11.pp618-622.2011
Gutell 116.rpass.bibm11.pp618-622.2011Gutell 116.rpass.bibm11.pp618-622.2011
Gutell 116.rpass.bibm11.pp618-622.2011
 
Gutell 115.rna2dmap.bibm11.pp613-617.2011
Gutell 115.rna2dmap.bibm11.pp613-617.2011Gutell 115.rna2dmap.bibm11.pp613-617.2011
Gutell 115.rna2dmap.bibm11.pp613-617.2011
 
Gutell 112.j.phys.chem.b.2010.114.13497
Gutell 112.j.phys.chem.b.2010.114.13497Gutell 112.j.phys.chem.b.2010.114.13497
Gutell 112.j.phys.chem.b.2010.114.13497
 
Gutell 111.bmc.genomics.2010.11.485
Gutell 111.bmc.genomics.2010.11.485Gutell 111.bmc.genomics.2010.11.485
Gutell 111.bmc.genomics.2010.11.485
 
Gutell 110.ant.v.leeuwenhoek.2010.98.195
Gutell 110.ant.v.leeuwenhoek.2010.98.195Gutell 110.ant.v.leeuwenhoek.2010.98.195
Gutell 110.ant.v.leeuwenhoek.2010.98.195
 
Gutell 109.ejp.2009.44.277
Gutell 109.ejp.2009.44.277Gutell 109.ejp.2009.44.277
Gutell 109.ejp.2009.44.277
 
Gutell 108.jmb.2009.391.769
Gutell 108.jmb.2009.391.769Gutell 108.jmb.2009.391.769
Gutell 108.jmb.2009.391.769
 
Gutell 107.ssdbm.2009.200
Gutell 107.ssdbm.2009.200Gutell 107.ssdbm.2009.200
Gutell 107.ssdbm.2009.200
 
Gutell 106.j.euk.microbio.2009.56.0142.2
Gutell 106.j.euk.microbio.2009.56.0142.2Gutell 106.j.euk.microbio.2009.56.0142.2
Gutell 106.j.euk.microbio.2009.56.0142.2
 
Gutell 105.zoologica.scripta.2009.38.0043
Gutell 105.zoologica.scripta.2009.38.0043Gutell 105.zoologica.scripta.2009.38.0043
Gutell 105.zoologica.scripta.2009.38.0043
 
Gutell 104.biology.direct.2008.03.016
Gutell 104.biology.direct.2008.03.016Gutell 104.biology.direct.2008.03.016
Gutell 104.biology.direct.2008.03.016
 
Gutell 103.structure.2008.16.0535
Gutell 103.structure.2008.16.0535Gutell 103.structure.2008.16.0535
Gutell 103.structure.2008.16.0535
 
Gutell 102.bioinformatics.2007.23.3289
Gutell 102.bioinformatics.2007.23.3289Gutell 102.bioinformatics.2007.23.3289
Gutell 102.bioinformatics.2007.23.3289
 
Gutell 099.nature.2006.443.0931
Gutell 099.nature.2006.443.0931Gutell 099.nature.2006.443.0931
Gutell 099.nature.2006.443.0931
 
Gutell 098.jmb.2006.360.0978
Gutell 098.jmb.2006.360.0978Gutell 098.jmb.2006.360.0978
Gutell 098.jmb.2006.360.0978
 

Kürzlich hochgeladen

Microservices, Docker deploy and Microservices source code in C#
Microservices, Docker deploy and Microservices source code in C#Microservices, Docker deploy and Microservices source code in C#
Microservices, Docker deploy and Microservices source code in C#Karmanjay Verma
 
Infrared simulation and processing on Nvidia platforms
Infrared simulation and processing on Nvidia platformsInfrared simulation and processing on Nvidia platforms
Infrared simulation and processing on Nvidia platformsYoss Cohen
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Strongerpanagenda
 
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfSo einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfpanagenda
 
Generative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfGenerative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfIngrid Airi González
 
All These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDFAll These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDFMichael Gough
 
Varsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
Varsha Sewlal- Cyber Attacks on Critical Critical InfrastructureVarsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
Varsha Sewlal- Cyber Attacks on Critical Critical Infrastructureitnewsafrica
 
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Mark Goldstein
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Farhan Tariq
 
Decarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityDecarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityIES VE
 
Data governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationData governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationKnoldus Inc.
 
QCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architecturesQCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architecturesBernd Ruecker
 
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality AssuranceInflectra
 
Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Kaya Weers
 
A Glance At The Java Performance Toolbox
A Glance At The Java Performance ToolboxA Glance At The Java Performance Toolbox
A Glance At The Java Performance ToolboxAna-Maria Mihalceanu
 
Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Hiroshi SHIBATA
 
Email Marketing Automation for Bonterra Impact Management (fka Social Solutio...
Email Marketing Automation for Bonterra Impact Management (fka Social Solutio...Email Marketing Automation for Bonterra Impact Management (fka Social Solutio...
Email Marketing Automation for Bonterra Impact Management (fka Social Solutio...Jeffrey Haguewood
 
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS:  6 Ways to Automate Your Data IntegrationBridging Between CAD & GIS:  6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integrationmarketing932765
 
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...BookNet Canada
 

Kürzlich hochgeladen (20)

Microservices, Docker deploy and Microservices source code in C#
Microservices, Docker deploy and Microservices source code in C#Microservices, Docker deploy and Microservices source code in C#
Microservices, Docker deploy and Microservices source code in C#
 
Infrared simulation and processing on Nvidia platforms
Infrared simulation and processing on Nvidia platformsInfrared simulation and processing on Nvidia platforms
Infrared simulation and processing on Nvidia platforms
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
 
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfSo einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
 
Generative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfGenerative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdf
 
All These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDFAll These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDF
 
Varsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
Varsha Sewlal- Cyber Attacks on Critical Critical InfrastructureVarsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
Varsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
 
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...
 
Decarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityDecarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a reality
 
Data governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationData governance with Unity Catalog Presentation
Data governance with Unity Catalog Presentation
 
QCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architecturesQCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architectures
 
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
 
Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)
 
A Glance At The Java Performance Toolbox
A Glance At The Java Performance ToolboxA Glance At The Java Performance Toolbox
A Glance At The Java Performance Toolbox
 
Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024
 
Email Marketing Automation for Bonterra Impact Management (fka Social Solutio...
Email Marketing Automation for Bonterra Impact Management (fka Social Solutio...Email Marketing Automation for Bonterra Impact Management (fka Social Solutio...
Email Marketing Automation for Bonterra Impact Management (fka Social Solutio...
 
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS:  6 Ways to Automate Your Data IntegrationBridging Between CAD & GIS:  6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integration
 
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...
 

Gutell 015.nar.1988.16.r175

  • 1. Volume 16, Supplement Nucleic Acids Research A compilation of large subunit RNA sequences presented inaastructural format Robin R.Gutell* and George E.Fox' Department of Microbiology, University of Illinois, Urbana, IL 61801 and 'Department of Biochemical and Biophysical Sciences, University of Houston, TX 77004, USA INTRODUCTION The present review provides a summary of all the published large subunit rRNAs as of December 1987. Instead of the usual linear alignment the sequences are tabulated here as a series of secondary structure diagrams in which individual nucleotides are indicated. The reasons for this departure from past practice are several. The foremost is simply that in our experience this format is more useful. For example, considerable effort is now being expended to study the higher order structure of the large rRNAs. Thus it is common to be reading a paper only to find reference to position X in Sequence Y. With diagrams such as those provided here the reader will be able to readily identify such statements in the context of the known major outline of the secondary structure of Sequence Y or for that matter any other published sequence. Secondarily this collection, as is traditional, tabulates all the currently known sequences in one place. Finally we believe the collection as a whole is educational in that it will make the reader aware of the extent of secondary structure variation in the large subunit RNAs and the magnitude of work that still could be done to further refine the secondary structures by collection of appropriate additional data. ORIGIN OF THE STRUCTURE All of the structure diagrams are drawn in a format that coincides with that used for Escherichia coli. The E. coli structure itself is based on a seconda-y structure model first published in 1981 (1). The present version contains important unpublished modifications made by Gutell, Noller and Woese (2) and further unpublished refinements (Gutell, Noller and Woese, unpublished results; Jurka and Fox, unpublished results). All of the structures shown were established by comparative sequence analysis as discussed below. Due to data limitations some regions of some of the sequences are best regarded as of unknown structural content at this time. No attempt has been made here to compare the structures presented to the various sequence specific secondary structures that frequently accompany the publication of each sequence, though excellent agreement exists with one recently published general model (3). Likewise no putative tertiary interactions have been indicated on the figures though a few are known (Gutell, unpublished results and ref (3). In many cases there is evidence for a pseudoknot in the ©) IRL Press Limited, Oxford, England. rl 75
  • 2. Nucleic Acids Research vicinity of E. coli position 2350 (Gutell, unpublished results and ref (3)) and when that evidence is favorable the interaction is indicated on the f igures. COMPARATIVE SEQUENCE ANALYSIS For pragmatic reasons the primary tool used in constructing the individual structures has been comparative (or phylogenetic) analysis. This approach had its origin in the discovery of the cloverleaf structure for tRNA (4). It first began to reach its modern form with the analysis of 5S rRNA (5) and has emerged as a well documented procedure (2,6-8) The underlying assumption is that functionally equivalent regions of the large rRNAs from phylogentically diverse sources will have biologically equivalent structures. The procedure begins by aligning the primary sequences using conserved sequence segments as a guide. Next the various columns of bases are individually intercompared to detect compensating base changes that maintain Watson-Crick complementarity between the potential pairing regions. If an individual helical element is independently tested several times it is considered phylogenetically proven. The comparative method has certain limitations that the reader should appreciate in perusing the figures presented here. First and foremost is the need for sequences that exhibit the structure being studied. For highly conserved features this may be the entire data base. In other cases features may be extremely variable so that particular versions are only found in individual phylogenetic groups, mammamalian mitochondria for example. Secondly the feature must exhibit sequence variation within the subset of sequences that contain the feature. Without such variation a region can not be structured. Thirdly it should be recognized that the approach necessarily produces minimal structures. It is the nature of the method to allow the identification of additional features as the data base grows. Thus, for example, the continuing refinement of the E. coli structure discussed above. Finally it should be appreciated that it is very difficult to assess the significance of base pairs that that can extend a particular helix in some organisms but not all. Such base pairs are strongly supported by thermodynamic arguements but conflict with the comparative concept. The proper resolution in such circumstances may have to wait until such time that more high resolution structure data is available. CURRENT DATA BASE As of late in 1987 there were 40 distinct complete large subunit RNA sequences published and at least five extensive partial sequences in which at least 500 bases of the large subunit RNA have been sequenced (We have not exhaustively searched for these). In addition in some instances sequence information is available from more than one large subunit RNA gene from the same organism. Multiple rRNA genes frequently exhibit heterogeneity in sequence and this phenomenona may be of more than academic interest. The present collection does not address this matter however and in those few instances where information from more than one large subunit rRNA gene is available we have arbitrarily picked one sequence for inclusion r176
  • 3. Nucleic Acids Research here. The 40 known sequences provide a diverse sample covering the three major urkingdoms; eubacteria, archaebacteria and eukaryotes as well as the organelles. Table 1 lists the sequences, the common name of the RNAs involved, the total length of the large subunit RNA inclusive of fragments such as 5.8S and 4.5S rRNAs, at least one relevant GENBANK/EMBL accession numbers if the sequence is in the data bases, a highly abbreviated reference and a key to the complete references that accompany this text. HOW TO READ THE DIAGRAMS The structure diagrams were drawn to a single scale so that they may be readily superimposed or intercompared. This was accomplished by a computer program described elsewhere (6). Each diagram encompasses two pages with a crossover point to the next page indicated. In most bacterial cases a possible helical structure exists between the 5'and 3' termini of the molecule. It is uncertain whether this helix is present in the functional RNA or is simply a remnant of processing. In any event the reader needs to be aware that when it is possibly present it appears on both halves of the figure. Extensive base numbering occurs on the E. coli diagram. On the other sequence diagrams only occasional numbers are included. These occasional numbers refer to the specific sequence on which they appear. In those cases in which more than one molecule is include (eg 5.8S and 28S RNAs) each is numbered separately. When a region contains no known structure it is drawn by the computer program as a circular loop. In order to maintain the scale and layout of the drawings it is not always possible to draw large uncharacterized regions as unstructured loops. When this occurs the region of unknown structure is included as a detached linear array listed from 5' to 3'. The Homo sapiens and other eukaryotic cytoplasmic sequences contain many examples of this, though the same phenomenon will also be seen on mitochondrial and chloroplast diagrams. These linear arrays are labeled with a bold letter and the positions included in the array indicated. A second bold letter specifies where in the sequence the linear array belongs. These bold letters are used in a consistent fashion so that a large unstructured area at the same location in several diagrams always receives the same bold letter. In a few instances the uncharacterized array is small enough to be shown as a loop in some but not all the diagrams. In those instances a bold letter is used to label the loops so that it is obvious that an equivalent unstructured region is present. The reader should not conclude that the regions assigned bold letters are the only unstructured regions. Whenever room exists the computer program draws the unstructured regions as a large loop. A letter has only been assigned if the computer has used the linear array display in at least one case. Many of the unlabeled unstructured regions are rather large. Obvious examples can be seen by examining any of the mammalian mitochondria structures. Thus in many of the sequences presented here local regions which are often substantial in size are shown as unstructured. These regions clearly have a different r177
  • 4. Nucleic Acids Research Table 1. Listing of Large Subunit RWA Sequences that have been campletely or extensively sequenced. ORGANISM A: EUBACrERIA 1. Escherichia coli 2. Pseucasonas ae.ruginosa 3. Bacillus subtilis 4. Bacillus stearothermDphilus 5. Anacystis nidulans Chloroplasts 6. Zea m'ays 7. Nicotiana tabacum 8. Marchantia polymorpha 9. Chlorella ellipsoidea Mitochondria 10. Zea mays 11. Oenothera berteriana 12. Aspergillus nidulans 13. Sacchar-anyces cerevisiae 14. Schizo. pambe 15. Paranecium primaurelia 16. Paramecium tetraurelia 17. Haso sapiens 18. Mouse 19. Rat 20. Bovine 21. Xenopus laevis 22. Drosophila yakuba 23. Aedes albopictus (mosquito) 24. Crithidia fasciculata 25. Trypanosas brucei 26. Leisthania tarentolae B: A}HAEBWrERIA 27. Halococcus morrhuae 28. Halobacterius halobiun 29. Methanoooccus vanniellii 30. Methanobacterium theoautotrophicum 31. Desulfurococcus mobilis 32. Thermoproteus tenax C: EUKARYOTIC CYTOPLASMIC 33. Saccharauyces cerevisiae 34. S. carlsbergensis 35. Hcao sapiens 36. Mouse 37. Rat 38. Xenopus laevis 39. Oriza sativa 40. Caenohbsditis elegans 41. Physarus polycephalum 42. Crithidia fasciculata Major Partial Sequences 43. Mycoplasma PG50 44. Apis mellifera mito. 45. Dictylostellium discoidiun 46. Lytechinus variegatus 47. Chiapanzee RMA TYPE LENGHT SHORT REFERENCE ACCESSICN # FIGURE # REFERENCE # 23S 2904 PNAS 77: 201 1980 23S 2893 NMAR 15:7182 1987 23S 2927 GENE 37: 261 1985 23S 2928 DNA 3: 347 1984 23S 2876 GENE 24: 219 1983 NAR 12: 3373 1984 23S & 4.5S 23S & 4.5S 23S & 4.5S 23S J01695 Y00432 K00637, M10606 X00512 X00343 2981 NAR 9: 2853 1981 X01365 2907 EJB 124: 13 1982 J01446, J01447 2914 Nature 322:572 1986 X04465, X01647 3207 Cur.Gen. 11:347 1987 -- 26S 3549 PLASMID 11: 1984 26S 3265 Cur.Gen. 9: 1985 2768 MR 10: 4795 1982 21S 3273 NAR 11: 339 1983 -- 2705 EJB 169: 527 1987 7S & 20S 2634 NAR 9: 6391 1981 7S & 20S 2631 JBC 259: 5173 1984 16S 1559 Nature 290: 457 1981 16S 1582 Cell 22:157 1980 16S 1559 NMR 9:4139 1981 16S 1571 JMB 156: 683 1982 16S 1640 JBC 260: 9759 1985 -- 1326 MAR 13: 4029 1985 -- 1335 NAR 12: 7771 1984 12S 1141 NAR 13: 4171 1985 12S 1152 NAR 13: 4171 1985 12S 1157 MAR 13: 2337 1985 23S 2927 JMB 195: 43 1987 23S 2905 MOG 202: 152 1986 23S 2958 M3G 200: 305 1985 23S 3019 3MB 195: 43 1987 23S 3077 JMB 195: 43 1987 23S 3031 MAR 15: 4821 1987 K01868 J01527 K00634 K01749 J01415 J01420 J01438 J01394 M10217,X00136 X01078 X02548 X02547 X03047,X00872 Y00346 5.8S & 25S 3549 NAR 9: 6953 1981 J01355 JBC 248: 3860 1973 5.8S & 26S 3550 NAR 9: 6935 1981 V01285 5.8S & 28S 5184 RNAS 82: 7666 1985 K03433,K03434 MAR 4: 2495 1977 5.8S & 28S 4869 NAR 12: 3563 1984 X00525 NAR 10: 5273 1982 5.8S & 28S 4943 NAR 11: 7819 1983 X01069,K01591 MR 12: 3677 1984 X00521 RIBOSCMES 86: 391 5.8S & 28S 4270 MAR 11: 7795 1983 X00136 JBC 260: 9759 1985 5.8S & 25S 3541 GENE 37: 255 1985 M11585 5.8S & 266 3662 NAR 14: 2345 1986 X03680 5.8S & 26S 3943 PNAS 80:3163 1983 V01159 NAR 10: 2379 1982 5.8S & frag. 4085 EMBO J. 6: 1063 1987 23S 869 1267 5.8S & 28S 3471 5.8S & 28S 664 28S 1429 NAR 15: 1327 1987 MAR 15: 2388 1987 MAR 12: 4171 1984 NAR 12: 1737 1984 PNAS 82: 766 1985 X00601 X00350 K03433 * Lengths indicated represent the portion of the molecule for which sequence has been published. r178 1 17 2 18 3 19 4 20 5 21 13 6 22 7 23 8 24 9 14 11 25 12 26 13 27 14 28 - 29 15 30 31 17 32 18 33 19 34 20 35 21 36 22 37 23 38 25 39 26 39 27 40 29 3 30 41 31 42 32 3 33 3 43 35 44 45 - 46 36 47 48 37 49 50 38 51 52 16 39 53 54 40 55 41 56 42 57 58 43 12 -- 59 -- 60 - 61 -- 62 __ 47 5
  • 5. Nucleic Acids Research structure than is seen in E. coli or some of the other molecules but we do not as yet know what it is. This should not be seen as bothersome but rather as defining an opportunity to obtain data from additional organisms in order to allow resolution of the problem area. In many cases the difficulty stems from the fact that too few sequences are available or too little sequence variation has been displayed in the known sequences to deduce a structure. In a few cases time did not permit a though analysis and a recognizeable structulral feature may have been overlooked. Also the reader should realize that the comparative approach is a convergent one. The current model should at best be perceived as a minimal one awaiting the discovery of additional interactions. Thus small two and three base helices may ultimately be found even in regions in which considerable structure has already been identified as more data accumulates. 5.8S RNA, 4.5S RNA AND OTHER LARGE SUBUNIT FRAGMENTS It is one of the pecularities of the large subunit RNA that it is sometimes genetically fragmented. The most well known example is the 5.8S rRNA and its equivalents that are found in most eukaryotic o.ganisms. This RNA has been shown (9,10) to be homologous to approximately the first 150 positions of the E. coli 23S rRNA. Although genetically distinct it interacts with the large subunit RNA through base pairing. In effect then the two together form a single RNA with a backbone nick in one of its loops. The same phenomenon is also seen at the 3' end of several chloroplast large subunit RNAs where the last 100 or so bases are separately encoded as a 4.5S RNA (11). In this case the homology to the E. coli 3' terminus is obvious but the the mechanism by which the 4.5S rRNA and the main large subunit RNA component are held together is not. The most extreme case of this fragmentation phenomenon that is known is in Crithidia fasciculata where the large subunit RNA is actually assembled from six f-ragments plus a 5.8S rRNA (12). These various fragmentation phenomenon are indicated on the diagram by labels that indicate where the respective 5' and 3' ends are located. The Crithidia fragments are labeled with the same lower case letters that were used in the original publication (12) and numbered as if they were a single large RNA. OVERLAY DIAGRAMS AND COLLECTION ARRANGEMENT It is very useful in comparing structures to produce overlay diagrams that display one structure relative to another. Several such diagrams are included here. In each case the underlying structure is that of E. coli. Where the E. coli is unique it can be seen as a light gray. The bold structure is that of the other organism indicated in the legend. Base numbers on these diagrams always refer to E. coli. These overlay figures show immediately where the sites of structural variation between the two RNAs are located. The overlay figures are used to introduce the various sections of the collection. In each case a particularly representative overlay is chosen so that the major variations in the group relative to E. coli can be seen. The collection begins with the five eubacterial sequences. r179
  • 6. Nucleic Acids Research These are virtually identical structurally and therefore no overlay figure is included. They are followed by the four chloroplast figures which again follow the virtually identical structural pattern. The Anacystis sequence used was arbitrarily that of Douglas and Doolittle (13). The plant chloroplasts all have a detached 4.5S at the 3' terminus but the alga, Chlorella ellipsoidea does not. The C. ellipsoidea sequence also is unusal in that it is claimed to contain an intron (14). We believe that this assertion is not convincingly established and thus the putative intron is shown on Figure 9a as an insertion region of class D. Several large subunit sequences have an insertion at this location. If the C. ellipsoidea insertion is in fact an intron this would be very atypical as none of the known large subunit introns correspond with common insertion regions. It is possibile that experimental difficulties may have arisen due to the propensity of large subunit RNAs such as E. coli 23S rRNA (15) to readily fragment. The location of this fragmentation site has been localized in E. coli (1) to the region of the RNA that corresponds to that which contains the putative intron in C. ellipsoidea. The largest portion of the collection contains the mitochondrial sequences. These are assembled into three groups each prefaced by a separate overlay figure. The first and most internally variable gLoup are those with large mitochondrial RNAs as typified by the overlay of Zea mays, Fig. 10. These mitochondrial RNAs resemble the eubacterial ones in size and structure more than any of the other mitochondria do. Nevertheless they are marked by considerable varibility even within the group. One unifying feature is the presence of an unstructured region H in the vicinity of E. coli position 1400 in all cases. Structures are provided for all of these RNAs except Paramecium tetraaurelia which is virtually identical to P. primaurelia, Fig. 15. and Schizosaccharomyces pombe which was published after the structures were completed. The second major mitochondrial group are the rather small 16S RNAs that are found in most higher organisms. Although much smaller, as the human overlay shows, Fig. 16, considerable structural similarity with the eubacterial RNAs continues to exist. Finally the three kinetoplast mitochondrial 12S rRNAs follow. Here as is indicated by the overlay, Fig. 24, virtually none of the structure in the 5' half of the molecule is preserved, though considerable structural conservation does exist in the 3' half of the molecule. The remaining figures are devoted to the archaebacteria and eucaryotic cytoplasm. As indicated by the Halococcus morrhuae structural overlay, Fig. 28, the archaebacteria exhibit significant variation that exceeds anything that is seen among the eubacteria alone. Close examination of the archaebacterial figures also reveals that unlike the eubacteria, the archaebacteria, do exhibit some variation within the group as a whole. A figure is not included for Thermoproteus tenax because this sequence was inadvertantly overlooked. The main theme from the eucaryotic cytoplasmic sequences sems to be growth in size. Although not all the RNAs exhibit the effect to the same extent it is clear that several regions seem to be favored for macroscopic insertions of new material. As indicated by the Saccharomyces cerevisiae overlay, Fig. 34, the main theme of rl 80
  • 7. Nucleic Acids Research secondary structure is again repeated in the eukaryotic cytoplasmic RNAs. Excluding the large insertions, the eukaryotic RNA structure is remarkably like that of the eubacteria and archaebacteria. The sequence of S. carlsbergenesis 26S rRNA is very similar to that of S. cerevislae and thus is not shown as a separate figure. In the case of rat, the corrected sequence (16) has been chosen for the figure presented here. AVAILABILITY AND ACCURACY OF THE DATA The sequences presented here are maintained in aligned data bases according to phylogenetic type. Due to the numerous macroscopic insertions and deletions no attempt is made to maintain a single aligned data base of all the sequences. We therefore cannot provide such an alignment on electronic medium. We can however provide individual sequences. Alternatively the interested reader may get sequences directly from the electronic databases. When base ambiguity existed the IUPAC nomenclature recommendations were followed. Post-transcriptional modifications have not been indicated since these have not been determined in most cases. The reader should be aware however that the large rRNAs do have a number of such modified nucleotides. In the case of the 5.8S rRNAs which mostly have been sequenced at the RNA level the post-transcriptional modifications are frequently known, though not indicated here. The sequences presented here and the position number labels have been extensively checked but nevertheless may contain an occasional error. The structures themselves are the best we currently have available. Although occasionally a helix indicated may be in error it is far more likely that one will have been overlooked. Readers are invited to inform us about errors and ommissions of published sequences. ACKNOWLEDGEMENTS Dr. Robin Gutell's efforts in this undertaking were supported by NIH grant #GM-17129 to Dr. Harry F. Noller of the University of Santa Cruz and NASA grant NSG-7044 to Dr. Carl R.. Woese at the University of Illinois. Dr. George E. Fox's efforts were supported by NASA grant NSG-7440 and NIH grant GM-37655. *Present address: GENPROBE Inc., 9880 Campus Point Drive, San Diego, CA 92121, USA RE FERENCES 1. Noller,H.F., Kop,J.A., Wheaton,V., Brosius,J., Gutell,R.R., Kopylov,A.M., Dohme,F., and Herr,W. (1981) Nucl. Acids Res. 9,6167-6189. 2. Noller,H.F. (1984) Ann. Rev. Biochem. 53, 119-162. 3. Leffers,H., Kjems,J., Ostergaard,L., Larsen,N., and Garrett,R.A. (1987) J. Mol. Biol. 195,43-61. 4. Holley,R.W., Apgar,J., Everett,G.A., Madison,J.T., Marquise,M., Merrill,S.H., Penswick ,J.R., and Zamir,A., (1965) Science 147, 1462-1465. 5. Fox,G.E. and Woese,C.R. (1975) J.Mol.Evol. 6, 61-76. 6. Gutell,R., Weiser,B., Woese,C.R., and Noller,H.F. (1985) Prog. Nucl. Acids Res. & Mol. Biol. 32,155-216. 7. Fox,G.E., (1985) in 'The Bacteria" (C.R. Woese and R.S. Wolfe, eds.) 9,257-310. r1 81
  • 8. Nucleic Acids Research 8. Olsen,G.J. (1983) Ph.D. thesis, Univ. Colorado 9. Nazar,R.N. (1980) FEBS Lett. 119,212-214. 10. Walker,W.F. (1981) FEBS Lett. 126,150-151. 11. MacKay,R.M. (1981) FEBS Lett. 123,17-18. 12. Spencer,D.F., Collings,J.C., Schnare,M.N., and Gray, M.W., (1987) EMBO J. 6,1063-1071. 13. Douglas,S.E. and Doolittle,W.F. (1984) Nucleic Acids Res. 12,3373-3386. 14. Yamada,T.,and Shimaji,M. (1987) Curr.Genet. 11, 347-352. 15. Allet,B., and Rochaix,J.D., (1979) Cell 18,55-60 16. Wool,I.G. (1986) in Hardesty,B. and Kramer,G. (eds.), Structure, Function and Genetics of Ribosomes, Springer-Verlag, pp.391-412. 17. Brosius,J., Dull,T.J., and Noller,H.F. (1980) Proc. Natl. Acad. Sci. USA 77,201-204. 18. Toschka,H.Y., Hopfl,P., Ludwig,W., Schleifer,K.H., Ulbrich, N. and Erdmann,V.A. (1987) Nucleic Acids Res. 15,7182. 19. Green, C.J., Stewart, G.C., Hollis, M.A., Vold, B.S. and Bott, K.F. (1985) Gene 37,261-266. 20. Kop, J., Wheaton, V., Gupta, R., Woese, C.R. and Noller, H.F. (1984) DNA 3:347-357. 21. Kumano,M., Tomioka,N. and Sugiura,M. (1983) Gene 24,219-225. 22. Edwards,K. and Kossel,H. (1981) Nucleic Acids Res. 9,2853-2860. 23. Takaiwa,F. and Sugiura,M. (1982) Eur.J.Biochem. 124,13-19. 24. Ohyama,K., Fukuzawa,H., Kohchi,T., Shirai,H., Sano,T., Sano,S., Umesono,K., Shiki,Y., Takeuchi,M., Chang,Z., Aota,S., Inokuchi,H., Ozeki,H. (1986) Nature 322, 572-574. 25. Dale,R.M.K., Mendu,N., Ginsburg,H. and Kridl,J.C. (1984) Plasmid 11,141-150. 26. Manna,E. and Brennicke,A. (1985) Curr. Genet. 9,505-515. 27. Kochel,H.G. and Kuntzel,H. (1982) Nucleic Acids Res. 10, 4795-4801. 28. Sor,F. and Fukuhara,H. (1983) Nucleic Acids Res. 11,339-348 29. Lang,B.F., Cedergren,R., and Gray,M.W. (1987) Eur. J. Biochem. 169, 527-537. 30. Seilhamer,J.J. and Cummings,D.J. (1981) Nucleic Acids Res. 9,6391-6406. 31. Seilhamer,J.J., Gutell,R.R., and Cummings,D.J., (1984) J. Biol. Chem. 259, 5173-5181. 32. Anderson,S., Bankier,A.T., Barrell,B.G., de Bruijn,M.H.L., Coulson,A.R., Drouin,J., Eperon,I.C., Nierlich,D.P., Roe, B.A., Sanger,F., Schreier,P.H., Smith,A.J., Staden,R. and Young,I.G. (1981) Nature 290, 457-465. 33. van Etten,R.A., Walberg,M.W., and Clayton,D.A. (1980) Cell 22, 157-170. 34. Saccone,C., Cantatore,P., Gadaleta,G., Gallerani,R., Lanave, C., Pepe,G. and Kroon,A.M. (1981) Nucleic Acids Res. 9,4139-4148. 35. Anderson,A., de Bruijn,M.H.L., Coulson,A.R., Eperon,I.C., Sanger,F. and Young,I.G. (1982) J. Mol. Biol. 156, 683-717. 36. Roe, B.A., Ma, D-P., Wilson, R.K., and Wong, J.F-H. (1985) J. Biol. Chem. 260,9759-9774. 37. Clary,D.O. and Wolstenholme,D.R. (1985) Nucleic Acids Res. 13,4029-4045. 38. HsuChen,C-C., Kotin,R.M. and Dubin,D.T. (1984) Nucleic Acids Res. 12,7771-7785. rl 82
  • 9. Nucleic Acids Research 39. Sloof,P., Van den Burg,J., Voogd,A., Benne,R., Agostinelli, M., Borst,P., Gutell,R., and Noller,H. (1985) Nucleic Acids Res. 13,4171-4190. 40. de la Cruz, V.F., Simpson, A.M., Lake, J.A. and Simpson, L. (1985) Nucleic Acids Res. 13,2337-2354. 41. Mankin, A.S. and Kagramanova, V.K. (1986) Mol. Gen. Genet. 202,152-161. 42. Jarsch,M. and Bock,A. (1985) Mol. Gen. Genet. 200, 305-312. 43. Kjems,J., Leffers,H., Garrett,R.A., Wich,G., Leinfelder,W., and Bock,A. (1987) Nucleic Acids Res. 15,4821-4835. 44. Georgiev,O.I., Nikolaev,N., Hadjiolov,A.A., Skryabin,K.G., Zakharyev,V.M. and Bayev,A.A. (1981) Nucleic Acids Res. 9, 6953-6958. 45. Rubin,G.M. (1973) J. Biol. Chem. 248,3860-3875. 46. Veldman,G.M., Klootwijk,J., de Regt,V., Planta,R.J., Branlant,C., Krol,A. and Ebel,J-P. (1981) Nucleic Acids Res. 9,6935-6952. 47. Gonzalez,I.L., Gorski,J.L., Campen,T.J., Dorney,D.J., Erickson,J.M., Sylvester,J.E. and Schmickel,R.D. (1985) Proc. Natl. Acad. Sci. USA 82,7666-7670. 48. Khan,M.S.N. and Maden,B.E.H. (1977) Nucleic Acids Res. 4,2495-2505. 49. Hassouna,N., Michot,B. and Bachellerie,J-P. (1984) Nucleic Acids Res. 12,3563-3583. 50. Michot,B., Bachellerie,J.P., and Raynal,F. (1982) Nucleic Acids Res. 10,5273-5283. 51. Chan,Y.L., Olvera,J.,and Wool,I.G. (1983) Nucleic Acids Res. 11, 7819-7831. 52. Hadjiolov,A.A., Georgiev,O.I., Nosikov,V.V., and Yavachev,L.P., (1984) Nucleic Acids Res. 12, 3677-3693. 53. Ware,V.C., Tague,B.W., Clark,C.G., Gourse,R.L., Brand,R.C. and Gerbi,S.A. (1983) Nucleic Acids Res. 11,7795-7817. 54. Roe,B.A., Ma,D.-P., Wilson,R.K., and Wong,J.F.H. (1985) J. Biol. Chem. 260, 9759-9774. 55. Takaiwa,F., Oono,K., Iida,Y. and Sugiura,M. (1985) Gene 37, 255-259. 56. Ellis,R.E., Sulston,J.E. and Coulson,A.R. (1986) Nucleic Acids Res. 14,2345-2364. 57. Otsuka,T., Nomiyama,H., Yoshida,H., Kukita,T., Kuhara,S., and Sakaki,Y. (1983) Proc. Natl. Acad. Sci. USA 80, 3163-3167. 58. Otsuka,T. Nomiyama,H., Sakaki,Y., and Takagi,Y. (1982) Nucleic Acids Res. 10, 2379-2385. 59. Rasmussen,O.F. and Christiansen (1987) Nucleic Acids Res. 15, 1327. 60. Vlasak,I., Burgshwaiger,S. and Kreil,G. (1987) Nucleic Acids Res. 15,2388. 61. Ozaki,T., Hoshikawa,Y., Iida,Y. and Iwabuchi,M. (1984) Nucleic Acids Res. 12,4171-4184. 62. Hindenach,B.R. and Stafford,D.W. (1984) Nucleic Acids Res. 12, 1737-1747. rl 83
  • 10. Nucleic Acids Research Secondary Structure of eubacterial 23S Ribosomal RNA: Escherichia coli AAA tA ACCAuCCAUCAu GAA^C ACC A A %CGCC Gu GAUCGGUAGUA%XCIof IAtCCG AAAUI IC G GA c G5cA ... I. CACAC C A01 AA,0A IUG *oxo^C-C~~~~~~~~~~~~~~~g-CC A A' CG CUACCC Gu C GCC Cu u CCu G C C C ^ '<o G C OW Gw .w A CA8 A A UCG~~~~~~~~~~~~~~~~~~~~~~~ GoeU^uc .GxcGGc&s, ACC AG`A A GAAAA : A ~~~~~~~~~aAA~~~~~~~~~~~~~~~~~~~~~~ A A AjA A'A ACA.A AAAAC AAC AA AAAAAC GA c A A ~~~~~~~~~~~~~~~~~~~~~~~~~AC A:CC AACAAAAAAAAUC2: EGAA cAWAAGAAA AAA AG AA'AGA 3 A A0 UA "OGA- AAAA A C U AfA AGCCUCC AGUGGUC .G v A AAI¼AA 'A AAAG*GCJGAAAcc AACUCA uGA %A A A9CCrGA AAjGF 31 AACCAAAAA ACAA- A-A ~~~~~~~~~~~~~~G A Fig. Ica Esclwr,ch/o coil rir84
  • 11. Nucleic Acids Research 1870 GC AA uGAU G G *UUGCG Ac GC-G*fu A- C 2 e-G210 G 2 8i0 A-,g AG UG AG-C G GG AC UU - ACUu GGAkU 2 20 Ai GA6TU-AA GU.A UA A' G GAGC AGG GGUGG C UE : U CCACC U J^GC 2110t- GAUG CGAA AGUU C 9130 U UU- UAA UUCC A C -G A UUA u GGA AC2100 G C C %ACGUGCCA2% Y-GU-A U A C~~~~A 8 22 CCGGCU AGA G 220 C^^ UGAA:.AI GC CCGA GGGUGCCGUCU_~CGCCCCUI <1.l 4--66161 A UA GCUUGGGGCU A G 8GAG 'ACUUi 8 A AGAGUU-AG G A A AUC U- A-4.au G :8U C UG G G C 20,0A-AA C-- GA 0 GU G ^A-u u ~~~~GGG __ U~~~~~A~ A AUUAGA2G7UA -GAA GCA A20MGAAA%UA GU %G UA %U AAc~~~~G GCUGA UA CC GCC/ I AUL CG%UUGUGGCGG C C 262 2610 A l CAG, G C ACAC-USA CAUG A " AGGCC G.v>G §UG GC .G G- AC CUGGGCUG UCj,A U AA G?UU8fAUGG(GAA(?CCUGGA0 276 C A 2120 tA' C8I? GAG GAACC' 2260220 A Gm kCG AA 0-G A G 27010 8 A uAX%%% A ~ ~ A A N~~~~~~A Fig.Ib £scherichic co/i rl85
  • 12. Nucleic Acids Research Secondary Structure of eubacterial 23S Ribosomal RNA: 5'half Fig.2a Pseudomonas aeruginosa r186
  • 13. Nucleic Acids Research Secondary Structure of eubacterial 23S Ribosomal RNA: 3'half ac a 2300 C 0 Fig.2b Pseudomonas aeruginosa ,187
  • 14. Nucleic Acids Research Secondary Structure of eubacteral 23S Ribosomal RNA: 5'half 1000 Fig.3o Bacillus subtilis rl88
  • 15. Nucleic Acids Research Secondary Structure of eubacterial 23S Ribosomal RNA: 3'half c c 2730 Fig.3b Bacillus subtilis rl89
  • 16. Nucleic Acids Research Secondary Structure of eubacterial 23S Ribosomal RNA: 5'half Fig.4o Bacillus stearothermophilus ri90
  • 17. Nucleic Acids Research Secondary Structure of eubactenal 23S Ribosomal RNA: 3'half Fig.4b Bacillus stearothermophilus ri 91
  • 18. Nucleic Acids Research Secondary Structure of eubacterial 23S Ribosomal RNA: 5'half -100 Fig. Sa Anacystis nidulans rl92
  • 19. Nucleic Acids Research Secondary Structure of eubacterial 23S Ribosomal RNA: 3'half % AXAG C - GA 'le a -CACGGGUAo U A 11111 A C U AUUGCCCACA 3 c-^ 2800 G-UA U UG C C U GA^ AAA G U: UAGA UA- u G^ cGA Fig.5b Anacystis nidulans rl 93
  • 20. Nucleic Acids Research Secondary Structure of chloroplast 23S Ribosomal RNA: 5'half Fig.6o Zea mays r094
  • 21. Nucleic Acids Research Secondary Structure of chloroplast 23S Ribosomal RNA: 3'half AC-G% o CC*g UA0 U GA A GA 1895-C-C AcU8 CAG A AG 6SPG AGGC GACGG A A UAUACU a#X0 G AGGUGG C :1C2 OCAC IIIIIIII I OACAAUCUCC G U AGC -a tl A 2O&C UAGAGUO ^°4 ^s AAG C CUU UGCGG A A C A 0A*u U UAG au AGC A A U A GUG eCAA-C A 1L 10(;Ac A%~~~~~~~~~~~~~~~~~~~~~=A~~-A ACGCCCA , a8 GU u 00-G~~~~Zamay UA U-AA 230020tU4 A~~.~CGCAGUGACCAG4:2 G CUdGUCAGAC S8 ikoAGoeau ~~A oi *llc111cc UCAAUGCCCCGAUACGCUCAI c U- GAA4ACGGGCGC C- c 1800 1c AGU 8S UG A A u .GGA C-u.GGa U-A U-A VSAG AC-G C ~~~~~~~AG-: UA AAAUG G GAu u ACUGCAAGAU U=A A c ~ ~~~~~~~~~~~ACGAGCUGCC GAAAUAG GC AGC20C CGGCGC A= U-AAJGA CAGACAUAUA A UI U C CCUIGCACc!'GGACAG A AAG GGGUGUGGCCUACI.*ltl It C U9 CG%bUUGGAAGGG CU ACC AGA U ~~~~~GC ACG%%eAGAC A ",A AG'Gca CuUGuGau 2600 4.5S CUCU"% aUG& A CG,6GA 5CU3AAt G UC% %GCA AUO 23S $ , UC.4CC.GA C- CAG AGAACCC9%ACCUU%%AGG Aj. U 9 G 1 11A A 345S 'Gt C AU CACCUGGAGCUGU S A A cUAAA~CA G A A C C~~~~~~~, A C lllIU. AGCA_ U C O 'C C UUGUM1CUGU U = G C A A GAUcA C U G~~ ~~~~AACA U G G C COA AG AAAU,e.C U-A-50 2QU Zea mays r195
  • 22. Nucleic Acids Research Secondary Structure of chloroplast 23S Ribosomal RNA: 5'half 'A~A0A c 1100 A ACACA C CC A 'tCA AA~~UcCAUAUAAA%?CACAAA C~~~~~~GGAACGACCA C,AGGCGtACCCA A CAAAU AACG GUACUCo,A A oIl-fill fiA AGC 'A,CGUUUGGAu cuc~~~~~~~~~~~~~~~AA A0 eCLCCA AAA CAG A~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~50A tI CAIA C. ACA a1400 -G AG '~~~~~~~~~A' AC Aic-dk~~ ~ ~ ~ ~ G A C C. A CG A A AAGCAGAC GA GCCCAAAA C A -U A G ACA A A"'~~~~~~~~~~~~~~~~~~~~~~~~~CA A ~~~~~~~~~ AGAA U-A G-U ACC~~~~~~~~ACC A U C 160 A G u2:CGGACAGGAA cRcP GAC AAA0~ ~ ~ ~ ~ ~ Ad3~~~~~~GA AGAG A- UA G A- ACAeAA-CGGACG IA A ACCG GAAAC A A-A~~~~~~~~~~C A eC OUAHAaCAAAAC A 16007 Fig.7a tobacco rl96 c4
  • 23. Nucleic Acids Research Secondary Structure of chloroplast 23S Ribosomal RNA: 3'half AUGAG-C C-AAC-G 00p8-t Ae U SC uC Cc A "A U G a C U A G C G A A a c7o C- 0 A AA A CA A AAG C A u AG-CC A6- A C-G A AU a. Ug AG . AUU A U GCUU AMAUU:'.A A A A Au . toCGCGUCAC CG-CUG CAGC P.. G oilI A 18OO- 6. C UCACC c G G * AA CA Ga U Cu UAG UAGAGU A AAACA ACGCC uAAGGU AC U - A C .... 11CG U-A CACUUUGUUGCCA U G C ACC 2A C LA A G GG GAGCA C U 7u GC U GGC ACGCA^ %760 G^UGUA A A U~~~~~~~~~..G50 ^ cu UuG-0 220078 UA~~~~UCU GCGCAGUGA UGGU~A A j . G BCCAGSCCUU,?GUCAG)5C A G C UU1111-10 G A 1700GCUA 27GA Ad A u-2000 C§C AC G -U U A5 G A- GAGU C8170A-U U-AL A U7 AG AC ~~~~~~~-ALA u GFGcig. 7 A AGACGAuLG%Uoa 8-A A A -:UUAAACCA GA CAG-G G C 2500 4.5SCUCU~~~~~~~~A~UUGGUG c C GU C1AC/'UsCUUCG§ A~~~~ U~~~ %.uG U~~~~~ a U0-CA u5~G~100~:S 23S~C'AAUAuG AU~ UA GAMGGA G-ACGGGA GA:ACGCA.7 111 CCA U(A3A 4.5SA L~~ ~ ~~~~~~ACCA A *iG-i uc %~C G U:U AU a GCAU A U : uAA%.G C cA C -GAU %U AGCL U IF~~CA C G A 0 A A G ~ ~~ ~~~A UU U 0 C A 2760LUGGAA C U GAL C0~~~'o'LI'GUGUCUCC G A 0 AA~~~~~~~J'. CCA CG*AL G c u C 2 600 u~AC. 271 u AGUUG/G ig. l A~~C%% tobacc rl97
  • 24. Nucleic Acids Research Secondary Structure of chloroplast 23S Ribosomal RNA: 5'half -,00 Fig.&o Marchantiapolymorpha: liverwort rl 98
  • 25. Nucleic Acids Research Secondary Structure of chloroplast 23S Ribosomal RNA: 3'half 5' 4.5S 4.5S 3' Fig.8b Marchantia polymorpha: liverwort rl 99
  • 26. Nucleic Acids Research Secondary Structure of chloroplast 23S Ribosomal RNA: 5'half intron!? D: 1197 .1445 UUUuuACA UAOAA@ACUuAACUU aUGCUCAA C:,AA,GUUAACOCA CUGAAUUAUACCOUAAAUUUAUUUUU OUUCU C :gAUU^CUUCUGC oacouoouucuucoAC uu CA G Fig.9a Chlorella elllpsoidea r200
  • 27. Nucleic Acids Research Secondary Structure of chloroplast 23S Ribosomal RNA: 3'half C A A C-2 CAA A u u A 2100C' ° .u u *7 uGAA AAAACAC AC C 11111 II CAUUUGU UG cA AA -C C- ,A Au 3200 U a A ~ ~ ~ A A A AUGS GA AAc G - ACAGUAA A 11111 A C fGUCAAuC AG-CA U A A U Gb C C U G a ab ACo , Au U 0-C AGAU- Fig.9b Chlorella ellipsoidea r201
  • 28. Nucleic Acids Research Secondary Structure of mitochondinal 23S Ribosomal RNA: 5'half Fig.1Oa Zee mays over Escherichia coi r202
  • 29. Nucleic Acids Research Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half Fig.lOb Zea mays over Escherichia coli r203 0 *no I
  • 30. Nucleic Acids Research Secondary Structure of mitochondrial 23S Ribosomal RNA: 5'half COAUGOGUACACOAAAGuACOAAGUUGCUUUCUACUAACCAUGCCU GOAUCOUCG"GCGAAUUGGAUOAUCGGGCCOAGOOCUGCCCCCUCUUCC CCUCoCUCUCCUUUCCUUAAUAUUCACCoUCoAGuC AUCAA GCCGuCAA CUAAUUCOGAGGOOCUCOOCUGOCCCGUCOCCCUACOCUACUGOCGCUU CCAAAGCOAACOUCUCOUCUUUGGCGACCAOCAAAOCAAACCOAGOGAO GoCUAAAACCUUUCGUUUUGAAoCAAGGoAUGAGCocoAAACGuuocG CUUCCoUACACOCoCAUACUCUUUGCCG UCOCOCGUoUAUUAMGU UA UACUUAGUACUUAACUUAGUACAAUAACOCGCAOCCGUUUUMGGCUACA CGOUUCUCUAAAGOCOAAGACUCU"AGUUOOCOAACACUCOCC AGUG GOCOAACAUMCCGGCUCCCGGCUCCOCOCACCUGCUUACACCUUUCGMAG CACUUUCACOUGUMAACCOAAGUCOUCUUGUCCUUCCUUUCUCAUUUCAG UCCUCOCCUUUUUCAUCUUCCOUAMGGMCCUUUAGUCUUUUGAUUAOAOU AGAGUUCoC""oAaCAGAGcGUACCcCCCU CAUAMUCocooGGAUCUUAAUAGUCOGUCGCOACUGUUGUCAUAGUCAACOACGGUUUAAACUUCC AOGAAAAAACUuCGUUUUGMGAGGGCAUCCUCCCoGUGAACuGA F: 1559-2303 2351 Fig.IIo Zea mays r204
  • 31. Nucleic Acids Research Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half OU GAA AG G u 2495.UAA A OGA G 02 AA: aC A2A CA CA A"AA8:8 ~~~%AA AA...1 ACC Uo--C^CCU 8~~~~~~~~-Ca^CAU 0GA I:G U~AAA A A: 8-e U-A ~A-20 UA 0 A eVcA-2600 AAOGUGO cu:A -c^ ^c ^ccc ^o - eo 8,6 Al-i C U UCACC U U GAAA° A C eAeCUUUUUA C A U A AAAACA ACACC AA U:8 UAUUUGUC UGUOG Sl C A U uACC A A UU AAy A UUA GU a- AC-UC A%0CGCACC GAU ema ayU 2400=CGG~~~~~~~~AAGGGGU UGA C~~~~~~~~~ACC u OAA ~~A A0*GUS CCA UGA ALAAC~~~~~t~. GAu 31 24W-A&AGQGGU1GI G~~~~~~~~Au G 2f95 A ~~~~~~~~~~~aGCAC U AAUeCCC'GUAAAAAUU ~~~~~~A- U=AiA AGO AAGI JA AU A A A A U GAC 2700A A C2 A 8-c A~~~~~~~~~~~~~~~~~~~~~~~~~~~~G- GUG AUUCCAJ'G U'e :'A CAA 7 COU GAC 43A I-U~~~~~~G A GACACdI A a 3100*GC_AAAAC CCAACGJUAGACAAGG =A A G ~~~~~~AC Ca : A G ~~~~~~~~~CA A 3AA 200- U AA GU A Gua CGk GCA GA CA%JAGAUAG ~~JACAG% A ~~~~~~;S~*aGta A A% AAGA C~~~~~uA l A G-32A A ~ ~ JAU~i~GSCAACGSRAA~CG 2AACAACCAGC A CC~~~~~~~fiCA ill ,1"U U 2 G GGUCAC AUGI AA~~~~~~~~~~~~~ A uU a c~~Za ay r205
  • 32. Nucleic Acids Research Secondary Structure of mitochondral 23S Ribosomal RNA: 5'half F: 1619-2022 LA GoG GA GC F A II, ., GCccA AGGACAGcc 1600 AU - G& GA CA U A AUCU ACOCAOG c A .... IsI- A AUGA UGCGUCUGU A O GA A C AAU^ALA AMA AGUA GA -ACGAA 20 c6° 2070 ,100 Fig.12a Oenothera berteriana r 206 COAUG"UACACGAAAGUGACOAAGUUGCUUUGACUACAOAACCAUGCCU oucuouuo"ocaAAUUG"UGGUCG"CC"CUCUCGUCGCCUCUUCCC CUCACUCUCCUUUCCCUAAUAUGAACCUUGAGUCAUCAAAGCCUUUCUGA CUCOOCCUG"CCGGUCGCCCUAC"GACUGOCOCUUCAAAAGOCOAAAC UCUCOUCOUAGUUUG"CUUUUGAAUCOACUGUUCUAGGGGG"CUAACG UCUUUU"AACOAGUAGG"UCGCGA"GAGCAGGCGUACC"CCUGCCA UAGUC"GAGUCUGUUUAUAGUCOCOACUGUUGUCAUAGUCAACAA4%GUU "AACUUCUAGOAAAAAACUUCOAAUUGGGAGC4CC.AUCCUCCCGGUGAA
  • 33. Nucleic Acids Research Secondary Structure of mitochondfial 23S Ribosomal RNA: 3'half 311 Fig.12b Oenothera berteriana r207 a 3 ,'ACAAA %~ A 39 A
  • 34. Nucleic Acids Research Secondary Structure of mitochondrial 23S Ribosomal RNA: 5'half A-U Ua-GaUAU AC GA UUUUGAUGUUAUUU UJ' 9 U I I ll ll I- r GUAAAACUAAUUAUAAA UGU 1250 A u - u oUAUAUAAUACUCUUAAAUAAUAAAUAAUAAAAAAUUU AAAAACC UUAAAAA uaU ; UAUAAAAGGUUCUGGUAAAAUUUUUA A A CAAUAAUVAUAUAUAUAUUAUUAUUU A AAGCCAUUAGGAAUCAAUUAUAUAA A U UCUUAuUAAAAGUUUUCAAGAUu UAUUAAUUAUUUAUUAA UAUUUAUAAAAUAAUAAUAUUAUAUAUAAU U 'Al A AC F': 1299-1512 :a AAUUAUA aUA U ACAUAA A A U " _Caa-FSu99tS ^_.CG 1561 Fig. 13a Aspergillus nidulans r208
  • 35. Nucleic Acids Research Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half A UU AA CGUAGUAG CG11IfA AOCAUCACA 3, ,2605 Aspergillus nidulans Fig. 13b r209
  • 36. Nucleic Acids Research Secondary Structure of mitochondrial 23S Ribosomal RNA: 5'half F: 1409 -1543 59 Fig.14a Saccharomyces cerevisiae r210
  • 37. Nucleic Acids Research Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half I: 2438-2558 AAAUUGUAAGGAAAA CAAUAAUAACUUUCU CCUCUCUCGGUGGGO GUUCACACCUAUUUU UA AU A OGU GUGAA CC CCUCUUCCGCCGUUCC GOAACUUAAAUAAAA AUCGAAAGAAUUAAA U AU A A Fig.14b Saccharomces cerev,siae r21 1 u 39
  • 38. Nucleic Acids Research Secondary Structure of mitochondrial 23S Ribosomal RNA: 5'half F: 1027- 1116 Fig. 15a Paramecium primaurelia r21 2 u5'u20 afi20S 8 g Au
  • 39. Nucleic Acids Research Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half cGAAUUA A u u A- U c U-A AA U A-U UUUAG G U A A UA UUAAAUCAUC u U A-UA -U A A .G U U-A U U-A A u -G 3 UUC UUu c GCx c GO C-G G- G U U A G-C AU0UU 2300 Fig.15b Paramecium primaurelia r213 u A
  • 40. Nucleic Acids Research Secondary Structure of mitochondral 23S Ribosomal RNA: 5'half Fig.16a Homo saplens over Escherichia cofi r214
  • 41. Nucleic Acids Research Secondary Structure of mitochondral 23S Ribosomal RNA: 3'half 0 .......... : Fig.16b HMO sa s over Escherichia coli r215
  • 42. Nucleic Acids Research Secondary Structure of mitochondral 23S Ribosomal RNA: 5'half oC4cocU GA AGAACoUAGCAGcCACCAA AUUA AGU A AACCGAUAU AACU CGAA SOOC c CAc A A CA C C cc~~~~~~~~~~fcA AAUAAU CAUAUCUACAA^UCA U A A AcA A AC A A AC A 70f A u~~~~~~~~~~~U Ac~~~~~~~~~~~~~~ *U A- CA U U ~ cs c AAG CAGC A A ~A-UU A AAAAAAA A60AAA AUGUA|C UC A AAUAAACUU AG AGGAA U~~~G U ucUcC 8-AUUACU^^ u^scCc^^ GA AAAA A c c ~~GcccX A G c0 0G Uc A 2 C~~~~~~~~~~~~~~~~~~~~~- AU A U A CACU-A cc GUAAACCCCCAA UcUcIlk c A C CU 400 A LA cLce AU-A- A43 GCUA A C U CCAC GAuGAc U A~~~U uAAC WAU G AACA A CA CA ACUGA78A GAUA AeA AGAA AG~~~~~~~~~~~~~~~AUAu u UU~~~~~~~~~~~~CUGAu C'', U~~~~~~~~~~~AC uc A A~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A a~~~~~~~~~~~~~~~AA A~~~ ~ ~ ~ ~ ~ ~ ~~CA A_-UCOAA100 % CCAGA Fig.17a HWomo sapiens r216
  • 43. Nucleic Acids Research Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half cACCA C AC A C CAU A A -UU C-G C2-UA G *UX AC%C C- C AG C AAAAACA CACCGCCU 91 CAAGC C C AAG6C CAUU GU*U C CO COO CCAC U-UUACA G-CCACuc C-G U'A A iC cG - ^ c8^:o 3 AA al AAAAACA C 900 AAAGG A/GC c~~ ~ ~ ~ ~ ~ ^CIcI1I*a A 0 C CAUUUGU~ ~~~~~CcCG UCUCGUuC ACACAGU 800-CA A CUAAACCC ZCaA AGU G AA C A-C A- CUUAAU0o A-U U A 00 0 COCAC~~'uA GA - A U A-U U-AAA 6- A AUUc C C CCA-U U-ACUACGAA A UCAA0-1U00 UACCA cUAACC 80 A 0 0 U-A A G0C A U A-C CGA CU A AU A AG 0 U C A-U UA-A GGGcAA AA c U AAG A UA C c COA6-A A u u AU CA Au U A G~~~~~~~~~~:S UZ~GCA UCC AG U CUAG U AAA~ ~ ~ C~-CUU6AUA U 0 C 1G3000 A_ CA~~U c1000 ~ C A~'G U-AUOC G-C AU:CCAA0 ACGU AAG C-G A cAAUU AAA CA 3,A GA U-A AGUAA~A-UA CAC U UAG UGA 0A AA:A A ACJ -8A At U~~~~~~~~~' GCGtA A A ~~~A CCA~~~~~~~~~~~~~~ A AG AC AUUC IIII1UG6AUUACGCAACCUU0 G C U ll uc GC UGGGiUU6 AU CC 1500~~~~~~~~u U AA A CAACUCUACUAUAGUA ~ ~ L- % Au 40 UU Fig.17b Homo sapiens r217
  • 44. Nucleic Acids Research Secondary Structure of mitochondrial 23S Ribosomal RNA: 5'half AGA.OCACCAA AAA AAUCCGAIUGUA ACU CGAAP c A C CA A A u Au A 500-A u A U OCAAUAAUCACAC C UCs 44A UAUU A C A A A c u AAU' c u u A u A^^ A -600 795 Fig.18a Mouse r218 u n Cc A AUC A C C cU C uu
  • 45. Nucleic Acids Research Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half ACA 900 cOU^a -ux ^^^^^C^ucu VA cAC^Ul u C-. Co uA .Ut Ug XCcAt.o10-c^"u A AUc=UoU C U gA g -A aA.JA9 UCA Ot UUCAC C00 A A A AACBC AAAAAACA^AA A AUA AACAAUUUG'IA UUCACUAA UAAU%AoA UfUO1 _U O- %C CO C"¢sU ACOAU.1 tiOOUCU A Cza A AAAA {~~~~10 C°40u^uou^uua^ A A A A 1200 A UUA tAAAA~~~ ~ ~ ~ ~ ~~~~~~~~~d C U UCA 0 CUA - UA~~% U-A UA AA U=A AAA 8000AAUA C -u 9-8 u A~ ~~~~~~~~~~u A A5U0 A AA A AA A- UAGCAUAGU A-U UU 1^C OCA % CUA A=U u~C A c A ~~AAAA au U-A AA A-u :iAC A A AA-U AU U111 I CCAUCUAU AA a AA A-U ICluU~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~SIItII I u U-A CAGUU-IJ~UCC UUGOUA C A U U ~~~~~~~UACAU UCA A U A A ioUGA~ ~ ~ A ACUUG UA c ACAA AA AC AA d,AC, U / ~~~~~~~~~~k AA =AU~ CCUUCAOUGaOA 1UGUUACA u%'Be ~ ~ ig18 UUAAoA A As0 A UUG ~ ~ C aA / A 1550'AA%AAAUCUAA~~~~~~~A~zAl/ a c~Fg.8 u K% Gcu ous r219
  • 46. Nucleic Acids Research Secondary Structure of mitochondral 23S Ribosomal RNA: 5'half pCAAGCCAUCAA A A AkIt C aA ^^ *ucu AAtCAUA A AA UI"GAUSU A Aoc^ A u 50u A u c u u A A A c c Ac c AUS C 0A AAA A cu A S U U CV _ C° u u Avooc^ A AACCA A AA A .uuc AA AAA AA A AA G0a^@u V20X C A up.c t c6 u~~ ~u A Ag ACIA A A A A .A ACAA A AAACOUAA A C A ~ ~~~A UUAC A AG CGGAA A AA AA:c A&-AA ~ ~~~~~~AA .ACA A- AAc AAA-A A AA A iA ACA AAA AV A u ~ ~ ~ ~ ~ ~ ~ ~~~~~~~ A-600A GA ~~~~~~~A AG AA A A 780~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ AOCUCI AACCCO u~~~~~~~~~~~~~~~~~U uAAocuao, uCAAUU'Al ~ ~ ~ ~ ~ ~ ~ ~ A cCOARA,:Uu c~~~~~~~~~~COAB FAg. 1c9aRAUat r220
  • 47. Nucleic Acids Research Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half ACA UA A u u A-A u a ^^^CG. uA oc R- ooUo^? l lo CCA A U S A G.UAa u AAAACA CC CAUUUGU~ ~ A eA02 1100lcCocuauo^U uCG U UU C C~~~ ~~~A I^UUAC UCUAA4^y uC0 A A A A§AAAACAAGAUCA. COA AAA-9c25 cIIfI11 AA 00~~~~~~~~~~~A Ac A lUCA UU U O(IC A ACA c AAQACCA CC Ae CA^u A u A~~~AU At-U U-AUAC C Au A- U AU A CA too~~~~~~CGG2C A A %CUA ~~~~~~AC UAU ~ L AA.0 XLIUC~~ U~AAUOA't~UlAAA AAU A A UU-A UA A AU U- AG_CC U A-C U.A UU 0 AC A AGUQ CThJUA A:UAUUU CU 1000 A ~ QG CA AAUGa AU u~~~~~~~A0 UA A A to C%CUU-A u~~~~ ac U-A CAG-IIICOCO CU AUUA U UA CU UUAA AA CAG UGAA i-UAUU U CAB A ACAA CUA UU 3' C ACA~~UCA A C%CoAos AGG A a A C-0 UGAUUUGA A A-U AU ~~~~~~AUAU GCAaUA G AUAAUUA 1500 olIICGOACCAU G Fig.19b Rat r221
  • 48. Nucleic Acids Research Secondary Structure of mitochondral 23S Ribosomal RNA: 5'half AGCACCCAUCAAA GA A u A ..h It A AAUCGAGAGAU ACU CG.,A AC C C AC a A A A500-c u AAA AUA A A AAU CC A U A OP CAt U U UGAA A U A OO-t A u ~~~~A' A C C U AA A~~~~~~G U A-CC c600 A A C AUCAAAA A<"A , . A°C u 793 Ftg.20a o00 Bovine r222
  • 49. Nucleic Acids Research Secondary Structure of mitochondral 23S Ribosomal RNA: 3'half 900 U A A CUU 0 AU cA u C-G G* C UA A-UU 0 U 0UU AU%U _cU-8 1000U-AA C-C-GAGC A- U- 2 G- u C C-G CA CAAAAAACAU U C GA1C UUGCC~~ ~ AOUAOC I GA^CU^U GAU C ilIIIIIAICAUUUGU GCCGG UGGU C COCAUAA co-c~~ ~ACUA CUA CCUUAA ACC AU A A A A c~~I A-U U-C AUA A A CAACAC uA A U A c c £_G CUC A 1 00AGA /Ci00G AAACC 2-s-1000 C-G AAAA-U C A A AA C A-U A F 1200A-U AICA-U C U G A 0-CC AAGACUAG-u -~~~~~~~~C UG A:A- A U UA LeCA: U:A~~~~~~~~~AC8 UU C U A aCU- ACG8 0AAA C UU IIc AA ~~~~~A0CU80A- A CU A1U- ACA00-C U 0 A A-CC U C CA AGUo S. A U U-AUU UAU A AAAA A UA 03 ACAAA UCUCACuu CA~U A A C U 0 A 1300 l1111 CGCAAUCCUAUUCAGA0UCUAUCU CU III*1II1 I CAUU OCUOOUACUUAU U A AU CAAO C O CA C U C AG0Gk'% oCA %% 0C CUAUGUAU A0 UACC0 U A U-A UUC,~A 8JG:C/~~~~~~~~~~~~~~~~~~~AU A AAUu%%At? 1400 A: Ai AG AUC CUGAUGGUGC A-U~~~~~ C U ACUCUACAAUAOUAACCAACA ~ ~ U GG CU UCCA /~~~~~~~~~~~~~~~~~~~~~~~~A A A 2:U Fg.20 Bovine r223
  • 50. Nucleic Acids Research Secondary Structure of mitochondrial 23S Ribosomal RNA: 5'half A GCCACCUG AGACACCGU A ,,,II.,, i,,, AA CGGGUGACU ACU CGAA G cu Au~~~~~~~~~~~~~~~~C G A uA~~~~~~~~~ UU G C 500A AA CU ^ UC~~~~~~~AC UAAU GA GA A AU^- A C A-A A Cu AAC U A AA AUU UA C CA u U AAC A u U-0 A c AAA C A C A A-AAU A- A A A uAC AG A A C U 8 2CAGACA A AC'u^* C-C UA Ca I'CUAACUU GACU^CA A A ^ G c U A2C tG CtAAU AA CC AC CAA C AC A.CCAA A C G A G~ A A CUAAUAUAAA C C--A400A AA A A A A- A AA A A C U G GACC G AA U G A A~ A AGIA A G AG-C C A -AC AUCAAUAUUC- A CCACG AGA -A AAGAcG AGA Ac AA G 2A CUAGC A ;AUUGAA A GCUAU G A CU~~GA GA GCUGAGAG U FiC.AAA G . C A U A'A?ZCCCU AC G~AAtCCA A CGAA40 00 CAAAAAUAA A,~~UAAAU Lf I AGAAAAU u c "uc 87UA u~~~~~~~~~A ucAU A 00-A~~~~~~~~~A A A.~~~~~~~UAA~ ~ ~ AA4 AUU G UU GC u~~~~~~~~~~~AUUi GACC~~~~~~~~~~~~~~~CAGA AAA U 5~~~~~~~~~~~~~~~~UAG U AUcUA u~~~~~~~~~~~CAACAAACC AG GAUCAAU UAAGC CUUACCU G UA~~~~~~0 AiU.UAAXeou IaevA r224
  • 51. Nucleic Acids Research Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half G 3 u Fig.21b Xenopus laevis r225
  • 52. Nucleic Acids Research Secondary Structure of mitochondinal 23S Ribosomal RNA: 3'half 500 UUAGCAAUUAUU AAAAAU GACUUCGUAUUA A AU UA U A AA u U u A A A A u U A u UA A U A u A A U A- A A AU U A U UAUUAAU A UU U U A- U U- AA A AGAAA'62 A A UUAAU /-0 AUUU A A AI~~JU U ~ ~ ~ ~~~~~~~U U-U A Au-UG UAGGUAu U8- U Uu U_AuU X ^ A AGA 40 A AUAAGtU"A(AAAAUAA AAs>UUAA A?-% A uA AA U UAAAUU A60 £AAA~~~~~~~ A UUAU=A30AU A U A G A U-A uUUAU AUUUC U AcA UA U-A A A c ze AJU A A _A A UiAU A% e UA CAUU A £ -AAUU AuC A A U A u~~~~~~~~~A A G U A A u~~~~~~~~~~~A U_YWAAAa u~~~AAA A UU:A UUAUAUUAAUUUU~~GUA2-U Auuu AAu u~~~~~~~~~~~~~~~~A U:A~ ~ ~ uAU A~~~~~~~~~~~AUp Drosophila yakuba r226
  • 53. Nucleic Acids Research Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half 700 AAU AUUUI A-U G u AAUUUU A CUAA G_ uu_ Au' uu UU AU U-A AU A C-G A A UCU C U c C^ A0AAACAUAACC ACAAGGUAGC AAUUUGU GUUGG UU U C G u A CGA ACU 65'cu^ U ~ A ,GUAAGGUC 800A8 UU AGAUUA u~~~~U AAAA U - A ^^ UU UUA A AU-A U A:U X- GU u AAU A U- U A %CUU~-^UC %U-A UCAUJ 650O U U-A G.U A-U A-u A:~~~~U- AAAAio0 AAc ~~~ ~~~~~U-AUUA AA A U-^ C~~~~~~~-U AAU..AUUUU A U A A U- U- GUA-U C UAUUUAA_t A-u~ ~ Gcuu^^^^uoGuy A-U~ ~ ^ CU-A A-U U-A U-A G-CA C U-A C-GA U-AAA AAU U U A ':UA:UUA AAU- AGA A-UA A U A.. uG U A A UC AAA %AA AQUAU UA JUAQuU U:AUCUCCCA UA U UA A UG AA GAAUA A A -U A A A Cu AA CGAGG GGAG UIUUAIICGAAUUUUU GA u3 0 AU0 A0 Au AA AU GCUGAAAACAU A AG A A AGd'A UAUUAAGCGA AAACAG A11 L UACGUUUUU GGU 3 U ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~UGAGUICUG A U A AU-A A aUak9b- C-G A~~~~~~~~~~~A AG A AG u ~~UUGAUUUAACUC AU~~~~~~~~~~~~~GG u A~C A UU% AeA1300 7UuG u % A CC C~~~Fig22A U A %%UA -AU DrsopAl yaub r227
  • 54. Nucleic Acids Research Secondary Structure of mitochondrial 23S Ribosomal RNA: 5'half AU AAGUUAUCAU A AA UUU A 1.1 A@ AA CGAAUGUAA A U UAAUU 500 A U U U U A U U~~~ ~ ~ ~ ~~~~~~A UU U U U U U U G A A U A A A u U u AA UU AU U U-UU U UU U A A-UAU A U UU7AUXU UA U 5 Fig.23a Aedes albopictus: mosquito r228
  • 55. Nucleic Acids Research Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half ~UUUA -A 700Q G U G -UA AUUU uU U-AA U U--A oAC- C-G - GU U Gc GUACA AAACAU UAACC GA AU GC C II A U A UUUGU GUUGG AUGA U C .A A AUGACAA A CU CA-U A U A A A GAAUAAUUG AUGUUC%...,U AAUA AA^UUA-U ~ ~ AA~U uA UU CUU-O A-G A A;%A ' ~UUA A A AAUX WG UAA U U C A A AAAUUAU u u~~~~UU AU 65G A-UAUU U A-U U A U_ U-A U uCA-U U-A GA G u u /1000~~~~~UA- A5-U U- GAA-UU UA U- A U U UA U A AU UAA G U U:AUUU U G U AU UG A-U A U U A%UUA-A-U U-AU UGAUAUA GU Y1UA.CC-AUAGA UU A AC.U A^G^^ AC AAA UUU U U Us sUUAAUU-A U UAGAA~ ~ AAUA U- AAA A -CC AAA u A A C^ GA AC1100~A AUAAUUAAAGACGA G UUA GU 1 1 1 11111 II CGUAAUUuUUUUU AGA U UAAUUUCU CU II* Ii I I C A AUU GCGUUGAAAAAAUCU-U u A % A U A A CG A A G C% G G C ACU G UA C UU AA~~~~~~~A A U A~~~~~~~AA CU10 A u u G GUACGa G-U A AUA G1UA0GG lifilill1AUUAU GUAGGUGUU UU G UAA p^A^U-AUUAUUCCUU GU A AUU GCGUUAAUUUGAAAUUUGA UUAU UA A GU U U~~~~~ A0oG0 UUAUG Fig.23b Aee aloitsUACGuito r229
  • 56. Nucleic Acids Research Secondary Structure of mitochondrial 23S Ribosomal RNA: 5'half Fig.24a Crithidla fascIculb Eschenchia coli ,,007,, - _ ~ ~ ~ ~ ~~~~N -. _~~~~~~~~~~~~~~~~~~~~~~~~~~o ... .~~~~~~~~~~~~~~~~~~1 ,0~~~ ~ ~~~~~ 1.. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~._ .0 ....~~~~~~~~~~~~~~~~~~~~~~~'7 gm300,.-... ...-.. ~ ~ 3 .-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~2 etk.netoplast ove a,~~~~~~~~~~~~~~~~~~~~~~~~~~~30 ,,0, r230 ---------- '340 14" 1340 1.10 .jo ........ -,ON '30 $70 ... ...... 'mo 1310 1030 lvo
  • 57. Nucleic Acids Research Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half Fig.24b Crithidla fasciculata kinetoplast over Escherichia coli r231
  • 58. Nucleic Acids Research Secondary Structure of mitochondrial 23S Ribosomal RNA: 5'half uu uUAAUC U AuA UUAAAUUUUU US UAU AIII U ~ ~~~~I390A AAUUUUUGAA UA CUUAUUUAUUUAAAUUGAA U UAAUUUAACUACA AUGCUAA A GUUGUGAUUUUUGUUUUUAG U UAUAUUUUUAGAUAUUUAAU U AAAAACAACGUUAAAUUUUAA AUAUUUAAUAUUUGUUAAAA U AAAAAGUGACGAAUUCUAGUA AAAAAAAAUUAUUUUUAUAAA AUUUAUUUUUAAAAAUACAU A AUAUAUUGUUAAUAAAAUUA A UUA u 592 u AAA u u G U U U A U G A U u u u u UK Xc UUU^UGSUUUGUUUUUAUUU^ CaS.^ ' AAUUUUAUUUAUACAUAUUA AG USGUUUASSAUUUSAUAUSU uU U SAUUAUA^ACSAUUGUC _ UCUUGU GU 1 77 U U-200 U U A AU AU AUGUUG ~AU U U U U UUs AGUUUU Fig.25a Crithidia fasciculata r232
  • 59. Nucleic Acids Research Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half uuCuAUUUAAUUA A A A u C uu u uA C UUU A A 700 U- U UU -A GU A G UAA-UUA AU U A U-A AUA U u A A AUGCUU A UUCUu AUAAGUAGC U AUUUGC AAGAC UUUAAGU AA UA A G U 600 A -UU ~C UUUAA A CA UUGU AA ACU UA A A GU U u A UUA U A A- U UA C- UAC_G UU AA-U 900ooA U A U GGG C AG G_c U-A G U-A A _AA-U -A U-A A A UU:~A .AA- U ACU.GA c GUU G A, A A - U u u A A U -A A A U-A A UAAAUu~C-GU U A/-800 U U UAAGUU AA C GC U U -A A AA C G A UU A _CAAUUU AA U-A AA% AA C G UU A G A A A c AAAAUUAAAUA G A 111111111 ~~GCAUUAAUGAUUAAUUUAUA Au I I A U Au U UGUAAAUC U U G A G U 1100' A U U U UU U U AGAU% UA UG G-CA UA UUGUA G CA U A-U G G-Cu UUA AG U GUU UA %U-A A u C-G 9 UG-CUAA3 AAU A AA A UA AA -C-U C u U UG Fig.25b Crithidia fasciculata r233
  • 60. Nucleic Acids Research Secondary Structure of mitochondral 23S Ribosomal RNA: 5'half AUU AAUCUGUUU A UAhU A if llio to u AAAUUUAACAA AAU AUA UA u Uu A A A Auu a u u u u u u u u u UA u u u A -U u A U A U A0 GU° u u- u- U- a- A ouu~~~~ 391 -UAAUCUAAGUUAAUUUGAAU AUUAAAAGUACAAGUAUAAU UUGUAAUUCUAAAGUAUUUU AAUGGUAUAUUUUUAOUAGO UAAAUGAAAAGUAUAAAUGG AUAUAACUUAAUAUUUAAUA UUUGUUUAAU0AAAAGUAUU UUAUUAUUAUAUUGUAUAGU AUUAUUAUAGUGUAUAGUUU UUUAAAAAUAUAAAAAUAUU GUUAAUAAAAUUAUCO -16016 AUUUUACCAAUUAAGAAGAA UAUUAUAAUAAUGGGUGUCUUAUAUUUUAAAUAAAUAUUUAAAUU CoGUUAGUAAAUUUAUUAUUUGUAUUAUUUAUAUAAUAGGUGUAUUAUAUUUAA AUUUUAAAUUUGUUGUUUUA UAUUUAGAUACAUAUUUAUA GAUUA AUA UAUUUAAAUAA Fig.26a Trypanosome txucei r234
  • 61. Nucleic Acids Research Secondary Structure of mitochondral 23S Ribosomal RNA: 3'half 1000 LAu lap,u A %. A A A us u u UAAA % A 3, Fig.26b Trypanosome brucei r235
  • 62. Nucleic Acids Research Secondary Structure of mitochondrial 23S Ribosomal RNA: 5'half u ^Auuuu uU cA^UA^AU UAAAUUAUUU UA AICAA A U AA L"A;'G AAU AUAC u A 396U A UAUAUAUAUAUAUUAAAUUG A AAUAUUAAAAAUACAAAUUU A AAUUUGUUAUUAAUACUAUU A CUUUUAAAAAUGCAUAGAGA U UAUAAUAUCACAUAUAAUUU U AUUAUUUUAAUAUUUAAUAU C UUGUUUAUACAAAAGUAACU A UUAUUGAAUAAAAAGAAUUA A UUUUUAUUAAUUAUUUUUUA U AAAAUAUAAAAAUAUUGUUA U AUAAAAUUAUCAA C A 6AUu u A u u A A u u u ^^^ ~ ~~AU^AU^UUUGGUUUUAUAUUC s>U UAAAAAUAUUAUAUAUUUUA U ~~~~~~~~~~GUUUU A AAUUU GU UGUU UUA UG ~~~~~~UAUUUAGUUUAAUAUUUAUA U UAUUAGUAAAUAAUAUAGAU AUCUUG GU UUA GAA AU A U U AUA%%UAAU G~~~~~ UUU Fig.27a Leishmania tarentolae r236
  • 63. Nucleic Acids Research Secondary Structure of mitochondrial 23S Ribosomal RNA: 3'half 700 AuUCUACAUA^ I t.^ UU.AU-U U GAA UU aUUU I}U AG UAAA-U A A A- UA U AU A AAA^UGCG UUCUU AUUOUAGC U AA UAUG AAGAU UU AAGA A AUAAA U-A C U a GAU u A U U A C A AACG Uucu UA UUAu u U-A UAU A _u u AU A-UA AG AG 0-AGC PAA-U G_ U-A AA U -Ag U4-800 A A- U A A AU ^ 900 AX AAA C_ - A U A A A ,~~~~~A,^^ cu^ AAAAAU= u AA A U U AAAG A cA O A A AAAAAUAAAUA A u A A UUU AAUUA U iA ,AUuAUUAAAu 0 UG000 A U U U U%~~uU A A GcA A AAA t AAAA0 A~U AUA~ ~ ~~~~~GAU A A LIU .....ciU /U A 0-CAA A 0UUAA UA A u u~~~A u A UU GUAA-Cu UG ~ C- UtC -A A UA% G A-U A A ~ C AUUA%%% UCU Fig.27b Leishmania tarentolae r237
  • 64. Nucleic Acids Research Secondary Structure of archaebactenal 23S Ribosomal RNA: 5'half Fig.28a Hlococcue moffhua over Escherdchia coi r238
  • 65. Nucleic Acids Research Secondary Structure of archaebacteral 23S Ribosomal RNA: 3'half Fig.28b Halococcus morrhuae over Escherichia cofi r239 1720-
  • 66. Nucleic Acids Research Secondary Structure of archaebacterial 23S Ribosomal RNA: 5'half Fig.29a Halococcus morrhuae r240 cA
  • 67. Nucleic Acids Research Secondary Structure of archaebacterial 23S Ribosomal RNA: 3'half 2000 GG AC GAG8 G A -oaA A 0G:8 ACUCGUAG ,A 11111 A 3 C CUUGAGCAaA AA-9 AX Ac- A 6:8c cu 2900s,ccC °o Ac c u GI G a AUU CAu G-cA.G4 C-G AC-G Fig.29b Halococcus morrhuae r241
  • 68. Nucleic Acids Research Secondary Structure of archaebactenal 23S Ribosomal RNA: 5'half cuGA A44,1AC GCUACCCU AA 160A0A off. Ill *g,t A AUGGCAGoAAGCGAACAACOU %-l U COACuAC G ~,UACUUA. - G A. Fig.30a Halobactenum halobium r242
  • 69. Nucleic Acids Research Secondary Structure of archaebactenal 23S Ribosomal RNA: 3'half 3' Fig.30b Halobacterium halobium r243 a A
  • 70. Nucleic Acids Research Secondary Structure of archaebacterial 23S Ribosomal RNA: 5'half -i200 Fig.31a Methanococcus vanniellii r244
  • 71. Nucleic Acids Research Secondary Structure of archaebacterial 23S Ribosomal RNA: 3'half uCc U-A GC-C 8ac8CcAC CUGC-G GAA A A U-A G G A U-A1890-UA U-A C -¢ U G C-GCGU ~C A C-G 0UGAM ~~~~~~~~~~~~~AAA-UGA U UG-C G G - CA A 2200-UA C-GA ACUA G~:A U G UA A UGUGU A:GU UAAA A A G A UA AG-C UAA C GGUGG U C a C A 11111 C Uc-8G i:UGUC U CCACC C AAA a8 2G, 2000 G C A U U U U A CCGI UG.CU CAGUG U- ACAAACA ACGCC UUA AGCA U IH A cAUUUGU UGCGG U A U-A AGUU AGGA- C aA C''O, C A G %ACCU C A U AUG- A CG AU a:8 c. CC-' UC U A A 18008:aCGCAGUGAUGACAC CGAGGA%GU UCG ACCAGa- a,0 C C CCCUU G-C IG* GGGUIIG* III U A-UG UUAA GCCUAACGGUUGA GGA GGAU UCAAUGCCUC U CCA GG~~~~~~~~~~A.U~~~ ~ ~ ~ ~ ~ ~ ~ ~ A A GUCAAA AG G_u-:A C UGAG GGGU A &-AAGA-C ~~~~~~~~GUG G AC -CAAAC G-C-40 G_C0A GUG A- CC CUU A A G A _A G7~~~~~~230GGUA G-C AU-AG L1 G-CZ S: 20AGCGGUGG AA:aACA GC A G CCA UA :GC A A 1750 AGAGA UCG C C CUU uA 8 G u uG~~A G A C %A u `2300GUCCAGU%GAGGGZ8 U:AA 8:8C-G~~~~~CA G-C U AAUAUU U QCG GCC CU A A c A-~~UA- GU CAAA Ac~~~~~U G UUU U00aG: A G GGCA GGC CC%G~U G CUG ~~~GAGAA G C A',U ~AG, A U GACGAU A AU U-A~ ~ ~ ~ ~ GCGG A A illi A C~~~~~ U GC G- C UUUGGGCAGA UUCAGUGGAC AAUC GGGUCUGCG A ,~~~~~ .~~~~. ..GAA UU GUC C G GI %'LCGU IGU1A111C G~~~~~GAuGG C CG U1 A~~~~~~~ A~~~~ 2600 A G A G 2805C~GG cCUU G~~~~~~~~~~~~~~~~~ C GG~~~~~~~~~~~~~C,%A C u 29 1 CA G Fig.31b Methanococcus vanniellii r245
  • 72. Nucleic Acids Research Secondary Structure of archaebacterial 23S Ribosomal RNA: 5'half Fig.32a Methanobacterium thermoautotophicum A:260 -314 r246 A
  • 73. Nucleic Acids Research Secondary Structure of archaebactenal 23S Ribosomal RNA: 3'half 3 uccc uuuuu u 3u .,UU .UC 2875 Fig.32b Methanobacterium thermoautotrophicum r247
  • 74. Nucleic Acids Research Secondary Structure of archaebacterial 23S Ribosomal RNA: 5'half 5' Fig.33a Desulfurococcus mobilis A: 267-336 r248
  • 75. Nucleic Acids Research Secondary Structure of archaebactefial 23S Ribosomal RNA: 3'half CCA U-A -c~~~~~~~~~U°c c 8~ uCoA a C-. A A A A a A A A -C Fig.33b Desulfurococcus mobilis r249
  • 76. Nucleic Acids Research Secondary Structure of eucaryotic 23S Ribosomal RNA: 5'half Fig.34a Saccwhomyces cerevislse over Escherichia coli r250
  • 77. Nucleic Acids Research Secondary Structure of eucaryotic 23S Ribosomal RNA: 3'half -70 B . .m Fig.34b Saccharomyces cerevlslae over Escherichia coli r251 -no6
  • 78. Nucleic Acids Research Secondary Structure of eucaryotic 23S Ribosomal RNA: 5'half 5.8S 3' 5' ACouAouuvooCCUCoCA A"ovuGcacAAucoACCOA UCCUO^UOUCUUC C: 715-767 GAG UOGUUGA AA 4-CC3CCB: 419- 636 Fig.35o Saccharomyces cerevisiae r252 "AGOOCAUUU"UCAGACAUGGUGUUUUGUGCCCUCUGCUCCUUGU" U:AG"GAAU"COCAU UCAC:CQ" CA*CAUCAGUUUU"UGU:CA UAAUC A:A AAUGUAGCUU CUCOQUAAGUAU AUAGCC UG:QA A ACUGCC OCUG"ACUGAGGACUGC"CGUAASUCAAG"UGCU"CA
  • 79. Nucleic Acids Research Secondary Structure of eucaryotic 23S Ribosomal RNA: 3'half "GIUCGGGUAGUGAGGGCCUUGGUC A AOGCGCCGOOCOUOCUUGUGGAC G A UGCUUGGUGGOGCUUGCUCUGCUAG A - U GCGGACUACUUGCGUGCCUU UUGU G- AGACGGCCUUGGUAOGUCUCU U -UA GACCGUCGOCUUGCUACAAUUA ACA AUCAAC A C G: 1945 - 2100 A c AAA A A A8 U8:o u a G UG AU~ 0 U AG-C Al AG 8-A. ACUA U G UA A GAAU2200-c u GC U--AA G8'U AO A as^^U-A A-cUoo^COGc^g c 30 u ^o-cs_AGUGH c ..|||| c ,AU ^a P , 21Eio-&- o 81:-,f a 1I A UAAAA °^U CCA2490cUAA AG AAAACA AUUUC CUUGCOAG III A U U CAAU UAUAG AA~~~~~~~~UC°UUAG AUCC-OA o- AAAGCAUUAU GUAA UUCAUUUUCC A-U AG-CA U ACGUUCUAGC AGA A U8CUU.COA CCCu U U C A^ A-U 8-8A 00 ~~~~~AC C CAAUUCAAGGUC C aoocuto^U-A A G G CCAUUCGGGG A ucuuucov A U U-A A-1A8- CUGAUCOGG 'A'A 8GAGGCA88A A UUGA : 0cA~U 2300 UuA CA : U CU'-A'UCAAUGC UAG AAAUA C UACUGAA : Uu UA cAAG42AUA -o-H~~~~~~~~~~ACAAU CUA~~ ~ ~ ~~~U~J1905 A:260 A AC U V~~~~~~~~~ A UA va~~~U GGGu.cG G U 'AU U UUG a: Aa i c8lAUGCG~ ~ ~ ~ ~ ~ ~ ~ ~ G~~~~cc~,: u Acc CA G UAGA 4 c20 AA AU-AA 87AG0CAA~~~~~~~~O G'AC 2U G, A =X'COAAAc240 GA UA %AA " C :AA Cc80 UUCUUUGCUCCACACAAUAUAGAUG GC~~UA C- GA u UUAGUGCGGAUACGAAUAAGGCGUCCUUGGGGC ~~~~~~~AGUAGUC 0CCCAUU GUCGCUGAACCAUAGCAGGCUAGCA ~ ~ ~ ~~GAUCGC%GAAUlU CAJUUCUAC ACGGUGCACUUGGCGGAAAGGCCUU U CA GGGUGCUUGCUGGCGAAUUGCAAUG A0UCAUUUUGCGUGG A U K: 3148-3285 UA.8G?!.aGA Fig.35b Saccharomyces cerevisiae r253
  • 80. Nucleic Acids Research Secondary Structure of eucaryotic 23S Ribosomal RNA: 5'half D:2067 -- 2246 AGUCGAGAGUGGACGGGAGC GGCGGGGGCGGCGGCGCGCG CGCGCGUGUGGUGUGCGUCG GAGGGCGGCGGCGGCCGCGGC CGGCGGGGGUGUGGGGUCCU UCC C CCGC CCC CCC CCC CA C GCCUCCUCCCCUCCUCCCGC CCACGCCCCGCUCCCCGCCC CCGGAGCCCCGCGGAGCUAC 5.8S 'AX AGGCCGGCGCGCUCGCCGGC G CC COAGOOUGGOAUCCCOCAGGCC d UCCCCAGUCCOUCOCCGOGC elsu ACCCOCCGOCCU U C OG CC: 1379- 1465 AO GUAAACGGOUGGGGUCCGCGCAGUCCGCCCOGAGOAUUCAACCCGGCGGC GGGuCCGGCCOUGUCGGCGGCCCGGCGOAUCUUUCCCOCCCCCCGUUCCU CCCGACCCCUCCACCCGCCCUCCCUUCCCCCGCCGCCCCUCCUCCUCCUCCCCGGAOOGOGGCGGGCUCCGGCGGGUGCGGGGGUGGGCGGGCGGGGCCGG GGGUGGGGUCOOCGGGGGACCGuCCCCCOGACCGGCGACCGGCCGCCGCC OGGOCAC UUUCCAGOCOGUGCGCCGOAGCCGGCUCCOGACGCGCUGGGAA GGC CCGOCGGGOAA^GGUGGC UCGGGGGGC CCCGUCCGOUC CGU CCGUCC UC CUCCUCCCCCOUCUCCOCCCCCCGGCCCCGCOUCCUCCCUCGGGAGGGCG CGC GGGUCGGGGCGGCGGC GGCGGC GGC GGUGGCGGCGGCGGCGGGGGCG GCGGG:CCGAAACCCCCCCCGAGUGUUACAGCCCCCCCGGCAGCAGCACU CGCCG AUCC GGCGC CoAGoGAGCGAGACCCGUCGCCGCGCUCUCCCCCCUCCCGGCGC CCCCCCGCCGGGAAUCCCCGCGAGGGGGGuCuCCCCCGG CGC GGC GCC GC CGUCUCC UCCUCGGGGCGCCOCGCCCACC CC UCCC ACGGC GCGACCGCUCUCCCACCCCUCCUCCCCGCGCCCCCGCCCCGGCGACGGGGG GGGGUGCCGCGCGCGGGUCGGGGGGCGGGGCGGACUGUCCCCAGUGCGCCCCGGGC GGGUCGCGC CGU CGGGCC CGGCGGGAGGU UCU C UCGGGGC CA^CGC GCGCG UCCCCCGAAGAGGGGGACGGCCGAGCGAGCGCACGGGGUCGGCGG CGACGUCGGCUACCCACCCGACC r254 5.8S Homo sapiens B: 423-1295 Fig.36a
  • 81. Nucleic Acids Research Secondary Structure of eucaryotic 23S Ribosomal RNA: 3'half G:2874- 3575 G00CUG0OUCGGUCOGOCUOG0GCG COAAOCOOOOCUOGG0CCOCOCCOC GOCU0GACOAOGCOCOCOCCCCCCC CACOCCCOOGGCACCCCCCUCGC6O CCCUCCCCCOCCCCACCCOCOCOCO CCOCUCOCUCCCUCCCCACCCCC0 AA CCCUCUCUCUCUCUCUCUCCCCCOC G UCCCCOUCCUCCCCCCUCCCCOOGO A-uccccauccucceccuccccGoooA U37_ OA0COCCOCOUOCOOOCOCOGCGOG CJ 3700 O0GAOAAGOOUCOGOOCOOCAGGOO U A CCGCOCGOCGOCCOCCOGGOCOGCC G -A GCOGG0OCAOGUCCCCGCOGOGGG A U GGCCCC6G6ACCC006606CCGOC A G GGC606C6GGACUCUGGACOCOAGC CGG A A CGOOCCCUUCCCOUOGAUCOCCCCA C C A OCUOCOGCGOOCGUCOCOOCCOCCC Ge CCOO0AGCCCGOCOOCOGCGCGGC U G OC0CCCCCCACCCCCACCCCACGUC G _U GAC UCOOUCOCOCOCOCOUCCCCUOGGG AU GCOAOGCOOUCOGGCGGCGGCGOU G U c COOCGGOCOOCGOOGGCOGOGCOGUU A u _ COUCCCCCCOCCCUACCCCCCCGGC A A0 8G ACUA CCCOUCCOCCCCCCOUUCCCCCCUC GUA A CUCCUCOOCOCGCGOCGCOCGCGGC I_ U-AA sGUGGCAGGCGOCOGAGOGGCCGCGGGC C_6 AG-C G CGOUCCCCCCCOCCOOOUCCGCCCC U-A c G COOOOCCOCOOUUCCGCGCOCGCCU A-U C-G G.'C CGCCUCOOCCOOCOCCUAGCAOCCG 8 7 IUG-CG AC A u GUAGU AAAUCA AUUUC UUAAG G ^^ GU C cIs Au *U ) A0UUU A A C GUAA A-U A-A U-A-300rUACC-CA4,AU U-A 3600 A U%_. CU C A A A UAGG-AUUAUCGUCC A U-dU^UACU^ G_ A Er.AA UAGOC uGA- 2850 1AGC A-^:AU390 18OG-C A^U U A A CCAAQUU=j, CGAAA6C%Cc °°^UAGAA GG^ ACOOCAOCOCCOCGOAGCCUCO6UU OClii. III "OCCUCO"AUAGCCOGUCCCCC6CC A0UAGUCACCAUU UOUCCCCOCCOOCGOOCCOCCCCCC U U CCUCCACOCOCCCCOCCGCOOOAGO U OCOCOUOCCCCOCCOCOCOCCOOGA G CCOGGUCCGUOCGG"GUGCCCUU A COUCCU666AAACGOOGCOCOOCCO U.GAAAGOCGCCOCCCCCUCOCCCOU AGGs,CACGCACCOCACGUUCSUGGGAAC 4505S G~ ,cCA AU CUOG * uG K:4689-4917 UUG%00Uo6ACG GA- IC-G UCAC G ,C-G CA SU cG CCC0AGCGGGU UGGCGCCAAG C0 A CC G CGU A U C UGG C G lit G u UCACC G G UC A U A UACAA 2 AA G8 A-CU H:4048-4128G G CC GGU GAGGC 88A- X-U GGGGGGGC GA C-GC GCCCAGAGGUA-U CUCUCGCUUC AGA G-~U UGGCGCCAAG C A G-YU CGCCCGCCCG _-CA U GCCGGOCGCG G-C A- ACCCOCUCCO A- Y-. GCG a-c, j: GC Cf -5-A A GU^UGYU A^CG^ A C-°A UA U c u OCUUVUGGCGOCCAGCGU I II C UA%UUUUCOCUGCGCG UA C 4400 Fig.36b Homo sapiens r255
  • 82. Nucleic Acids Research Secondary Structure of eucaryotic 23S Ribosomal RNA: 5'half D: 1837-2025 CACUCOOAACOOAACOGOACGOAO^ COOCCOCOOOUOCOCOUCUCUCOOO OUCOOOOOUOCOUOOGOOOOGCCCO ucccccGCCUCCCCUCCGCaCOCCOOU UCOCC CCCaOCOOCUCOOOC CC CGCGOAGCCUACCC AOOCCCCOCCCOOOOOCCC O^AOUOOOUCCCO"OOCCU CUCCAOUCCOCCOAOOOCOC ACCACCOOCCCOUCUCOCCC OCCOCOC C: 1211-1297 QUAAA CoGoUGG"UCCGCGCAGUCCoCCCGo GAUUCAACOCGGCGGC GCGCGUCCGGCCOUGCCO@UGOUCCCGGCGGAUCUUUCCCGCUCCCCGUU CCUCCCGACCCCUCCACCCGCCGUCGUUCCCCUCUUCCUCOCCOCGCUCC "COCUCCGOCGOCBGOG"GG"G"U"UGGUGGUGOGCGCGCGCGGCG .GGCCGGGGGUGGGUCGG,CGGGGGCCOCCCCCGGCCGOC6ACCGGCCG CCGCCGGCGCACUUCCACCGUGCGUGUCGCCGCGACCOGCUCCGGGAC oGCCGGGAAGoCCCG0UGGGGAAGGUGGCUC8G"GG4GCG4CC OUCUC AGGGCGCGCCAACCACCUCACCCCAGU GUCACA GCCCUCCGGCACOC UUU CCCCCA UCCCGGGGCCGAGGAAGCCA GAUGUACCCUCAC COCC CCUU ccC AuccGCccouccoccC uccCocCGGCCUGCUUCGO*CCCCGC CCC CCUCCCOCCUCCACCOUCUCCCCACCCCCCUCC"UCCCUCU CU CGCCCCCC GUCCCCCC CGCGGACUUCCCCAGUCCGCCCCOGOCCUC CUCCCUCCCCUCOCGCOCCCCCUGGC CCCCCGCU CC UC UCCUCACUCOUCGCOCCGUCOOOUCCCOOOOOOACCOUCOOUCACOCOUCUCCCOACO AAGCCOACoAC""oUCooCoCOAUGUCoCUACCCACCCOACC B: 431- 1127 Mouse Fig.37a r256
  • 83. Nucleic Acids Research Secondary Structure of eucaryotic 23S Ribosomal RNA: 3'half G: 2648-3260 GG:CUOGGUCGGUCGGGCUGOGGCGCGOAGCOGOOCUOGGCGCGCGCCGC GGCUGGACOAGOCOCCOCCOCCCUC UCCCACOUCCOOGGAGACCCCCCOU CCUUUCCGCCCGGGCCCGCCCUCCC GUCa CUCUUCCCCOCOGOOCCCCOUCOUC A 0oGCCCCOCOUCOUCOCCACCUCUCUUC G A C-O CCCCCUCCUUCUUCCCOUCOGCOOO A-U CU COGGUCOGGGGUCGGCGCGCGGCGc A- C U GGOCUCCGGGCOOCOGGGUCCAACC U- C CCoCoGGGGUUCCoGAGCGGAGoA .A ACCAGCOGUCCCCOUGGGCOGOO AA GGCCCGGACACUCGGOGGGCCGGCG A 0 GCGGCOOCOACUCUOGACGCGAGCC CG A GOOCCCUUCCCOUGGAUCOCCUCAO CC tCC cuocaocooocoucocooccocucc c_ c A COGGOGAGCCCOOCGGuGCCGCGC§-o U a GGGUCCCCUCCCCOCOGGOCCUCOC G OU UCCACCCCCCCAUCGCCUCUCCGA3G9A UGUCCCGCGCGUGUG GCGGAAC A U t Cs:GG,CCOCOUCOOUOUUCCCCCOCCGGOU A AG 8 ACUA C ccGccccCCoooccocGUuuuccG 0GUo A U GAAUAG Gc cocoococccccoccucooccooco -c U_A u G A uAUG o °c 90 CCUAGCAoCCoAC c-G o-cC. u A oUGoC-39 u :G ~~~~~~UUCACC G 3300 a7 8 8 y GOu A AUAAAeAau ~~~~~~~~ACA IAAAAAA *UGUU eGU AACA AUUUC UAA GUAUC H:372EU lUllo *l C CCGGUGAGG0C (.) AAUUUGU AGUAGU CUCC AA U GGGGGCGA) A0- CA A GU-iA C F GCCCCGAGGGA- AU Au GCUCUCGCUU AGA A-U C- C G CUGGCGCCAA CA U--A 9ACOCGAU 3600-A-U GCGUCCGUCC A A 8c U: oc G. uocooocouco -cuCu°occo coocuo *o _ u ° =C- U-A A-U Gu A cGCGCGUGCG GCCA A AUAGCGCC c~~~~~A =°^ cAU A= ea u 4000 CGCUGCGGACG UA GC-AC ACCCGCUCCG 0: A G7UGGCAG3:8 GCU 1GaVsC150lfA GGAUU A a .1 ...... ~~CaG ACAG.o'-H A~A GUAGGC~~~CGOCUGA CU U-A 2600i-~ A A :2A C A AAC A~U3500 u7 UG0 . A-U~~~~~~~~~~~~~~~~~~~~~~~~ ~~~G-UUCa AUAUC^OCtXOOOAUO CA A GG*I CCUCOU CA G A-UA-U UUCC oucococcoctoocoococ,ooooucu 42 a5u c CA A VUC A '3:8 "U=AAACGA%GAAA GO cAl GuCCCCCGCGGooucGGoCGcGGGUCU uu a ooooccocccucucococoucoco (N u2° o AUG o7 GUCCGGUGCGSASAGCCOUUCGUCu G A U~~~~~~~~~~~a7ula A A UG@GAAACGGGUGCGCCGGAAAG ~ GCOAA AUA cU GGGGccGcCCuCucGGu^cACCU U AGG Gcc ^ c oGA.CGCACGUUCGU0U0GAACCuG A.'u'ouAU55, K: 4379- 4604 39UGUU-AAUCGC _8 AUUCoU a UUCGUCC Al A C C-G c-o 4700-t 8 A - uc UCAs-U ca, I AA GU.A C_u u:U-A . a a . A c_ o-¢ ?"-c; FigM37b Mouse r257
  • 84. Nucleic Acids Research Secondary Structure of eucaryotic 23S Ribosomal RNA: 5'half D: 1986-21 AoUCOGAACOGaACovAGC aoccocoGOCOCOCOACCCC OOOOOCCOOGCOOCouCOOC uuceoccooccoccocccou CACoeccavo"OCUeeOesc MCOacoucoocOccocGoGA GCCUA c 2600 5.8S 3' AooCCeOeUeOCCoovaC CCeC*A"UvoUCeCC"Q CCUCUCCAoUCCOCConAGo COCACCACCOOCCCOuUCUo cCCoccoCOC C: 1297- 1386 QUAAACoooU""oUCCOCOCAGUCCOCCCOolAdUUCAACCCOOCOOC ecococcooccooccoouoouccCooCooUCUUcccocuccccouucc ueConBeeUCACCCCuenBeo eueueueeOeeeueeeeoeoueeeoee oueooeeueeOeoeueeMeteueeGoooououceo eweocuceeoo ooeoo e eoo o Uooou oooooeoeoooeoCaoo UOOOOu co C"oO"ACC CCCCCG"CO C"CO^ CCC OcCcCcOOCOCACUUC cCAc-uo "GGCCAC4CoocCbcrCuc-CoCuGooAGooCCCoo cGo ^"UC"uCOCG"0 u"*COUCCCGUtOOCOCCOGAC^CA CCC eeCCC uU4UACACCOCeCeooCA^OCAuCoCUoCCAUCCC"o ZeeC"o^AoeUAeCe uC eeCe"UCUCCCCCCroCCUCUeCC cuccc CeCCUCCCCOU4§ uucoAAooneoUCOC"ooocc O "OCCCCCCUCCCAC"C C"^CCOCUCUCCCACCCCCCOUCOCCUCCO uCouCCCUCuCeoo_uCCeoo"cccoOocOCoocuOCUGCCCc AOUOCGCCCCOGCOUCOUC CoCCOucOO CCC OOOO CcouCOuCA CaCOCUCUCCCUCCCCUUCUCooo uvavoAGc"Aocc "oCocAC oovouc oc ooUGUCOOCUACCCACCCaACC B: 430- 1213 Rat Fig.38a r258
  • 85. Nucleic Acids Research Secondary Structure of eucaryotic 23S Ribosomal RNA: 3'half G: 2736-3330 ooCoGOGQUCoGUCoooCUOOOG COCOAAOCOOOGCUOOOGCOCQc CCOCOOCUGOACOAOOCOCCOCC OCCCCCCUCCCACOUCCOOG"AO AcccCcuccuuucccOCcooocc CCCUCCCOUCUCCCCOCOUCGC OAAAccccoccoucccccocoucouco A A ccousouccccuccucccucccu A- uc- UCUUCCCCOGUCCOCOOGOOGOAC a- a Goauc^^cciucocoacvcc N-A ; ooOCoooUOcccoGocOcOcACOUCOAOCOCOOCCCCOOOGCCOA A GUCCOUAACCCGCCGOCCCCC 3395 aoUaOOOOOOOOCCCOGACACCC CGO A Aa GOOOOGOGCa COGOOCOAOA C G% OCOOOCOUCOCOOCCOCUCCCOO O -0° ACUCUGGACOCGAOCCOOOCCCU OOAOCCCOOCOOAUCOCCCOGCO G 0 AU CGOA ~~~~~~~a a ooouuuuccuccoaccucouccu ° uU uo Cc gcC(cccccuucccccuccocaooouc A u ,_ CCU CoUoCUCCCoCouucauu A A c- cu 3700-A ccuccococoocoouuccccc _ 7oUAA^^o^^uOCuCOGUCCCCCOCAOA GAUA 0AGCCQuCoCCCoCCCOccCCCG U-0_ u- Au uouuuccc Cooccocccoccuco _- .o-c GU,, u AoUoa c "CGCOCOCUACOCAOCCOAC UIA ~ ~lfill aAccoccaccuocroccoacGU G o~c°o8'/ U UCACC a A uG u 3500 GA UAA UAAAACAA AUUUC 00UA 0Al38oe3A87G ) " III cG C UAOliii¢^ uu¢ A AOOuOAA CCOH:GU0AO38CAA( UOU ACUAUCUUCC A U OG°OOG OCGA A0 C A COGU COC OCCCCOAGOOO A-U O-A8. A. AG CUCUCOCUU AGAA-US.3A C||.@C A AUc^^uO¢¢u^°O¢¢CCAcU ACOCOUCCOC A A C" A 2 A70 A-C0U | CCCOCc -C CU- A A AU A A= CA-CCAC a A =ACUAC:°CUCC:Ga:8 GAA7GUGQU0CGGACCAOG u uGUA OGAUUCCO a A-Uuu 0C C^ ^ U ^oAUU 'MC"COAACI 0 CAU 0U U=A GAGGC AU 78 GOc&4ooL' 4000 uvococcoou^coocucccc A 0uou,4c¶uu .I II .I1 0 oUGo c UG1 coooouccoouocvoooccouuc~~ ~ ~ ~ ~~~~~~1-o uLiugu AUGooooccccccuccAUUUoAuAucAAAA^CAc"^¢^ a,10G,A,AU36000AC u 8 QUU=A aUUIF* AU cu 87 AAA UACA A00AaAA U0GCCCCOOAUACCOGCUCCCCOU AOUAOUCAJCCAUA II C COOGUCCOGUGCGAGAGCCAUGC 0~~~~~~~A GA A- OUCCCOOGAAACGGGU@CGGCC0O ~ ~ 41AUA^GAA UGUOCGCAACO UAAOCCCCOCAACCUCUCCCCCOUC U GAU CAU 111 o ACGCouUCCcAucoUUCOUGOAA A %.C UAGUUOCOCAU C"CUG 0'CG¶"oJAC0 000 0 Fig.38b Rat r259
  • 86. Nucleic Acids Research Secondary Structure of eucaryotic 23S Ribosomal RNA: 5'half 2295 3' OOOCCOOGCOCaCCCGCeUG O0OU GGAUCCCOCCOCCCCC uCCCUCCOCCCCCCCGOOOO COOOOGaOOOOCOCCOGCGO OCNCACC ACCOOCCCOUCUC GCCCOCCCCGU C: 1038-1148 r260 B: 427-953 Xenopus laevis Fig.39a GUAAACGOGUG(IGOCCOUaCGOUCCGCCCaGAaaAUUCAACCCOOCOGOU CAGCOCCOCCOGOACCO(IOCCACUCGGCGGACCCCCCCOCCOOCCCCCUC CCCUCOCCOGaAGaaCGOUCGCGCGOGa"GACOCOOCCCOGOCOMCCCO ecocc"N"N"GNUUUCCUCCGCGGCGGUacaeacaccoacuccoaacco COUGGOAAGeCCCAGGGGUUCAGGGCIAA"UGGCCOOCCOCCCCCOCOCO CGGCUACAOCCCCCCCCCANOCAOCAGCACUCOCCOUCOCCCOGOOCCOA aGGAGACaCC"CCUCCOC"UCCUCCUCCCCGGAGCaCOUCCCOCCOCU CCCCCCCOGG"GGCGGCGCGC"GGCGGGGAAG"GGAAGGGGCCCCCC aCUCCC"COCOOCUOUCAACC"GGC"ACUGCCCCCAGUGCGCCCCOU CCOCOCCOCaCCOCCOAGOCOGGAGGGCCOCCOGGAOCCOCCRAaaGUCC arn.r. ....... e.- e. .e- .. re.,
  • 87. Nucleic Acids Research Secondary Structure of eucaryotic 23S Ribosomal RNA: 3'half OGGGC UCOOUCOGOCUOOOOCG e A CGAAOCOCOOCUOOOCCGCOCCOCO G A GCUOOACOAAOOCOCCCCCOUOOCO A - U CUCUUUCCCUCCUCCCOCCCCCCUC A-UC UCUCUCCOOCCCCCCCUCOCOOOOU- OCCOCOGOOOCOOOOOOOCOCGCOO G* A GOCCOOAO^CGCCCOOCOOCOOCOA A U CUCUOOACOCOCOCCOGOCCCUUCC A G UGUOOAUCOCCCCAOCUOCOOCGCG AGO A A COCCUCUCCCCCoCOCCOUCCCCCu a C CCUOCOCCUCCCCCCOUCAOOGAOC C A GOOOCOCGO OC GCGOOGOCOOCCGG _ U G-2900 GGCOOOCCCOOCCUCOOCCOOCOCC Au O UAGCAGCUOAC o AU G: 2432-2767 A U 7C AAG ^G-C -'AcuAAAA A UA AA UA AACAAUUUC U-O ( ) 2ao^-i ouQ CUCC OGU^^OO^UUA G u A- AAACAA AUUCA A -AAGUAA-U ... 3 - %ACoOCA III Mc^^uocculncuo^AAUUUGU GUAe G UCC A2 280 G-C A A ~~~% C CA 8 _ A 2400 ~ ~ 0- AGU U GOUA U0^^8 ^ 2400 1'9~~~~~~0AC~~~~~~ 3050AUAucAd ACCOCAOCOCCOCOOAOCCUCOOUC * *11Ol OOCCUCOOAUUAOCCOOCOCCCCCC AOUAOUC CCOOOOOGCOCCOOCOOGCAOAOCCU OCUCOCCUCOOOACC4OOOCOCOOA COAAO4OOGOCCOCC VCUCUCCCO CCo^OccccouooG o-3700K: 3856-4009 u C AA C o -UUCOUGAAA cUUAOUCCAoC A UC~ A -U CA GAA OlU80 oUuuU3 ~~~~G J c~~~es~~ u-^~ ~ ~ ~ ~ CC-Q UccA~ ~ fGuC,3150 CGA 8:8A Fig.39b Xenopus laevis r261
  • 88. Nucleic Acids Research Secondary Structure of eucaryotic 23S Ribosomal RNA: 5'half 5.8S 5, CGAGCOGGGAGGCCCUCACGC CGCACCGCUGGCCGACCCUG AUCUUCUG C: 721-768 C0 B: 419-640 Fig.40a Oriza sativa: RICE r262 GGAAGCGGAuGGGGGCCGGCGAUGCCCCGGCCGUAUGCGGAACGGCUUCG GCUGGUCCGUCGAUCGGCUCGGGGCGUGGACUGUUGUCGGCCGCGCCGGC GGCCAAAGCCCOGG,GGCuCCGCGCCCCCGGCAGCCGUCGUCGGACGCAGC CGGUCACCGCGCGCCUCUGGCCGGCCCCUCGGGGCGuCGCGCCGCAACGG".. I -I
  • 89. Nucleic Acids Research Secondary Structure of eucaryotic 23S Ribosomal RNA: 3'half OGGCUGGUCUCUGGUGUCCGUCCCC A A GAACCCGUCUUCUGCCUGCGUACUG U A CuCGAUCUGCUCuCCCoUCGAAUGC A - U OGOCCGCCGUCGOCCOGCCCGOGOA A: COOCCOUGAACGCGCCCCUCGGOGG U-A CCUUCCCCGUGCGUCOAACAQCCUA AA C ~~~~~~~~~~~~~~~AC G: 1940-2091 2CG2 A c AA AUA UC C AU U t-a Cu U-A G-CA C UG AUG C C GC.U AG UC C-GAAACA C UA G-C U-AAU C U-A AG-C U-GA -g GCSP,C- U:A210 7 U- U^G C UAAACAAAUUU U U A rC C^~AAA 8GA-UGAuACGUCACAG UUAGG U A UCA UCCU UCACU AA UC A- C A AA:819 :SA2300o_ ACcGCA<',C -UA a-A a7GGAA u UACCC-AAAQ- U GC G CGOCU,3A~~oo-UC A U-C A=U UUCUCCOACOCCCOCCCCOACCCAC GUUAGOOCOCACACCCCCAAOOCC CUUGCCACCGUCCAAOCCCUUCCUU CCoACGCGCCGCGGCCooCCoCCUU CGAACUCCCUUCCCAACGGCUGC K: 3142-3267 A A C U AGUG¢ A G I lilt A UCACC GAG A A U- CU H:2505-2580G -U UCCOUGAGUC U-A U-AC GGAAGCGGGG C-UC CCUAGCCCCC A-U UCCUUUUGGC AGA GU U UCUAAUOCCC C A U-A A A- U UAUCCCUCU A-U GUCCGAUCCU G-C A-U UOCOGA A-U ~XJAU U-C 8- Au^U UG U-AC AU UU GCA U-AACAA UIAA -A 2800 A-: IAAG 00 ~~~Aa A C A C ° -U UUu QAAUCAQF%UUAAA CAA ..II lo If OCUUGUBGCAOC UC u AUAGUC CCCAUU *11 I II C AU u UAQJUUUUCGUUUCCU AU A U / Cd4 ':UU Fig.40b Oriza sativa: RICE r263
  • 90. Nucleic Acids Research Secondary Structure of eucaryotic 23S Ribosomal RNA: 5'half 1300 uA GG 6666G AG66U...GAI'' C ..~~~~~~UA cc GUGGCAG-eCuC-A UGGU AA ~ ~ ~~ 666 6 66 6;"C"CG AA .6G Azg 1800 u~~~~~~~68 6666~~~~~~~~~~~~~~~~~~~~~C,,Gu UUAU_A666 666 66`C666 UA /GC.CA A GC.C U GG8 C c~~~~~~~88 OG66 66 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~ GG-C G: uUA~~~~~~97 666 66~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 11666 6 1005AA UGA GCU 0C0UG A, :U jp C 6666666 cu~~~~~~~~~~~~ 66 66'~~~~~~~F~~~~~ AU AA8If u" 6cA70AA0 AA.666 6666CUU U G G 666E666 GGGC6666666GCAAAC6 6U6GU GU G1602c 165-6AuCA 6GU5.8AA3C 1006.~~~~6 ~ ~ Acu 66 666, C6 A3U86-6 66A5ZCGG6.It5 II 111 G A 6c 666666 =6 66'C AA, ~ ~64o ~666u6 8 88 d6.6 6 U%6..~6,.J666666666UG66AC6UGCA66U.A u A I UG A G~~~6 6 6 6?U66u CU., ~ ~ ~ ~ 666 6 ~ , . 6 666666666CUC 6.. 6 66 66 AAGG,1G66 6G /~~~~~~~~~~~~uGUAU66 1400 6C6C666C6G.6666'A 6 88' CC666666666l666C66 6 6 6 6 6 6 6~~~~~~~~~ c: A7G-22A 68 8 I'CCAAC~~~~~-~-9 AA~~CC: 666 66 6 200-%"A 8.U :A A:~~~~~~~66 6 6 II,, 6666 66666666666666666666666666666 6A '66 66G6 l c A r00,,AGUAG~~~~~~~~~~~~66 0~68 6 ,GAGAACG G~ ~~~~~~~~~~6 6>1 G6" I'llA 16 6 .6 .6 Fig.41a Caenorhabditis elegans r264
  • 91. Nucleic Acids Research Secondary Structure of eucaryotic 23S Ribosomal RNA: 3'half UGGUUGGAACGGUUGOCCAGUUGGU UGAUGCUUUUCCGGCOCAGUUCUOGU CUGCUUGAUACUUUCGOOUUOAUUG CGUACUAGUGAUUGUOCCUUGCUUGC GGACGCUUUCUGOUUUGUUCUUUUA CCUC GUUCUAUA UCCUGAUCGCU CAUCUAAACAACCOUA G: 2039-2204 G UU A AAA G u , G-C U U-C C GG'A g_AUCG GGUACCGGA uUCAAUGCCUAGA UCAAA 2000 AAAAUUUCUUGCUUCCCOGUGUCGG GAGGCAUCUCUAUCUCOUGOCAACA CGAGAGCUUAUGCCCUAUGUAUGOC CUUUGCGUCGUAGUUAAUUCUUCUA CGCUUGCCAACGCCAGAUCACUCUG GUUCAAUGUCOGOOG K: 3261-3399 3, Fig.41b Caenorhabditis elegans r265
  • 92. Nucleic Acids Research Secondary Structure of eucaryotic 23S Ribosomal RNA: 5'half E: 1622-1719 -A A GAUGA ,,,. a CUCGAC 2033 26S AAAQCACCCAOOOCOAOCCU A UOCOOACCCCOCAA UOCU CUCCUAACCOOOCUCUCOG C- B: 420-674 Fig 42a Physarum polycephalum r266 A*AACQ"AAAUCUAUACQWIACUC:UCGAAA ocuo"coaauucauc CCCUGCCAUACOOCOCUCAOUAC. OCACAOCUGC"CUGAGGC"COCUO G"AAGOUOACCUAACG"CAA UCUCOCUUACGG"GAG"CO"CAA" ACACCG"Accocaa"ccuc UCCOUCUA"GCUUACACUCACOCOU"AU G"UUCGCCCCAUAACCOU"GAC4UACACCOUGUCAGAOCUUAGUUUAC--- -- -- -- -- - -- - - -
  • 93. Nucleic Acids Research Secondary Structure of eucaryotic 23S Ribosomal RNA: 3'half AGOCU:GGUGUCGCUGGCUGGGUA A AOGCU OCOGGAUGUGCUUUAGUAA AA UGOCCoAGOCoCUUUCGoGUGCCOA u GAGCOUAACOOOCCOCUCGGGCU O-c GAAAACUABAUCAUUGCGGAOGUUC U-A OCCCOAGUGOUGAAAACCOOCACAC A A CoCUAACAoCUAAC A c G: 2103-2266 AAA c GCA U A UG t- 2 U AA U U A CI U AAAACAU 0U A A A UAUGU UUAGO 2300 A UA AA S S-(CI ACGC H: 2683-2914 U0CU0UAACIAACOAACOGA ACCOCOUCCCUCU CACCGUA AAAGOUOGGOOAAGOGAUAG OCAAUCCAAAUUCUAGCOCU UUCCOCOCUCAUACOACGAG UU0GCUCCCCUG0GUGAGUA CCOUGGAACCAC0A0CUGG0 CUUCCOAUCCGGCGAOUGC U0UUUCCGC000AACCA0AG ACGOUCUUCUCOOCCUCUOU GOOCUUCAUGCCGOUACGUA AUUGCGUGUAGC 3000 AGA C A G-C C-G GZUG-C COCAAUCAAAGAUACOCUUGC UUUU AAGUCUGGCAACOCOGUCUUUUACC AUCAACA0CCAGUCAACU0A0CA0O ACOCOAUGCAAA0A0OUC0AAAUUA OCCCGUAAAAAGOUCAGUUCCUCGU UAA0CCOCCCCCACOGGOOCAUCAA COOCOCUCCOCCU0CAUCA0GCUCO QUAUUC K: 3496-3676 FigA2b Physarum polycephalum r267 u a
  • 94. Nucleic Acids Research Secondary Structure of eucaryotic 23S Ribosomal RNA: 5'half E: 1637-1744 59 "6e" H: 1783-1994 IU.GUGGAAAUCGAAA^CACUUGCCAOOUGACAAAUCAAUCCUCCCACGOU OAaCUUUCUUUUCACCAUAAUCCA AUCUCCOOCUUUOCUOOOCUUOOOC CUUUUUACUUCUCOC(IUUGUUCGOAOCOOOOGCCCAAGAUUGAAAAAUGC AOCUCUCCCUACOUACUOUCAUUOU UOUGAGUUCUOCGCAUUAAACAAA AACCUOOOOUOU e, *s,.9 5.8S O^AUOC4A44UQCAUCUGUOOGU UCACACOUC*AAUCCOU UUOAUUUGCCCAACACCO^C cm C: 759-824 ACAAUUo"AvUAscCUCC:uuucouuuuUoccAGAACCAocccuAcuocau cCOcoc"GcAo cuucucu uoUCUCCAuGcu"COCA4SAAAAUo SoOU&CCCCCACC _. 8: 462- 674 Fig.43o Cnthidia fasciculata r268
  • 95. Nucleic Acids Research Secondary Structure of eucaryotic 23S Ribosomal RNA: 3'half G:2124- 2342 GGGCAAAGUCAG2AGAAAACCGGAGG A GCCAGUGUCCCUCCACGUGCAGCCG AuCuuCAGAUUUGouuuAGCGCuC c u GCCGCCUA:ACACGCAGUUAGCGACA uucccoocouou^^c cc o_ c CUCACUCuGGCACGooCCoGGCuuG c c OCOGGUUCACOCUCOUCUUGUGCCG A 0 H: 2752-3012 H K:3426-3541 GAAAAAGCGAGAAAAAGAUUAUCCG GC AAAAC OGA C UC GGCCGACUAU GGGOCCU GGCGAGCGGUGGOAGA AGUAACGCCAUCACCGUGAGAUU GAGAAGGGAACUCGCA "6f"1 39 /59'"1" CCC UCA ACGAAUACGC CACCUAUCAC ACA GGA GOCAUGC 0CC CUAC UCGGC C _UCA A GA AUA UUCA AGA UCACA A GG AACAACGUCCCUCACCAAACGAGAG OGGGGCACUAACGUCCCGAGGCGCAG AACCAA GA GGCC UGA AAUUA CA AGC UCAGOGACA L: 3698-3906 AG' UAAG%GCacu uc 'cG 3650 c G COCAA Fig.43b Crithidia fasciculata r269 L'/