Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Rt 2009

Presentation of Dr. Raymond Tan, DLSU, on "Sustainable Consumption and Sustainable Production" during the UP Manila Conference on Global Climate Change, October 22-23, 2009, Pearl Garden Hotel, Manila.

  • Loggen Sie sich ein, um Kommentare anzuzeigen.

  • Gehören Sie zu den Ersten, denen das gefällt!

Rt 2009

  1. 1. Sustainable Production and Sustainable Consumption Raymond R. Tan, Ph.D. Full Professor Chemical Engineering Department Center for Engineering & Sustainable Development Research De La Salle University, Manila, Philippines
  2. 2. What environmental impacts are caused by these emissions?
  3. 3. Major Issues of the 21 st Century <ul><li>Climate change </li></ul><ul><li>Resource depletion </li></ul><ul><ul><li>Fossil fuels </li></ul></ul><ul><ul><li>Water and food (e.g., fisheries) </li></ul></ul><ul><ul><li>Soil </li></ul></ul><ul><li>Biodiversity loss </li></ul><ul><li>Pollution </li></ul><ul><li>Wealth Inequity </li></ul>
  4. 4. E 3 Framework of Sustainability ETHICS ECONOMICS ENVIRONMENT
  5. 5. Achieving Sustainability <ul><li>There are two fundamental types of problems: </li></ul><ul><ul><li>Designing industrial systems to be more inherently efficient and green </li></ul></ul><ul><ul><li>Selecting the best technology or management action for a given application </li></ul></ul>
  6. 6. Measuring Environmental Performance <ul><li>Concentration based metrics </li></ul><ul><ul><li>mg/l BOD </li></ul></ul><ul><ul><li>ppm </li></ul></ul><ul><li>Efficiency based metrics </li></ul><ul><ul><li>kg CO 2 per kWh </li></ul></ul><ul><ul><li>kg CO 2 per km </li></ul></ul><ul><li>Macro level intensity metrics </li></ul><ul><ul><li>kg CO 2 per US$ GDP </li></ul></ul><ul><ul><li>kg CO 2 per per capita </li></ul></ul>
  7. 7. Waste Management Hierarchy <ul><li>Source </li></ul><ul><li>Reduction </li></ul><ul><li>Recycle/Reuse </li></ul><ul><li>Treatment </li></ul><ul><li>Disposal </li></ul>Cleaner production Pollution control Often essential to ensure compliance to environmental regulations May yield joint environmental and economic benefits
  8. 8. What is LCA? <ul><li>Life-cycle assessment is an objective process to evaluate the environmental burdens associated with a product, process or activity by identifying and quantifying energy and materials used and wastes released to the environment and to evaluate and implement opportunities to effect environmental improvements. </li></ul><ul><li>-- SETAC (1993) </li></ul>
  9. 9. Key LCA Concepts <ul><li>Extended system boundaries – “cradle to grave” </li></ul><ul><li>Fair comparison – define the functional unit </li></ul><ul><li>Multiple pathways by which environment is damaged constitute decision criteria </li></ul><ul><li>Inherently quantitative approach involves: </li></ul><ul><ul><li>Models (mathematical representation) </li></ul></ul><ul><ul><li>Streamlining (simplification) </li></ul></ul><ul><ul><li>Cut-off (identification of system boundary) </li></ul></ul>
  10. 10. Some problems for which life cycle framework is appropriate <ul><li>Can a country reduce oil imports or greenhouse gas emissions by using biofuels? </li></ul><ul><li>Does the use of fluorescent lamps increase mercury releases to the environment? </li></ul><ul><li>Should a retail company encourage reuse of plastic bags or reduce plastic film thickness? </li></ul><ul><li>Should governments mandate producers of electronic goods to handle their disposal? </li></ul><ul><li>To what extent does water supply limit the potential of large-scale bioenergy systems? </li></ul>
  11. 11. The Generic Life Cycle
  12. 12. A Typical Life Cycle System (Culaba and Purvis, 1999)
  13. 13. Components of LCA <ul><li>Goal & scope definition </li></ul><ul><li>Inventory analysis (LCI) </li></ul><ul><li>Impact assessment (LCIA) </li></ul><ul><ul><li>Classification </li></ul></ul><ul><ul><li>Characterization </li></ul></ul><ul><ul><li>Valuation </li></ul></ul><ul><li>Interpretation </li></ul>
  14. 14. LCA Components and Framework Goal and scope definition Interpretation Impact assessment Inventory analysis <ul><li>Applications: </li></ul><ul><ul><li>Product development & improvement </li></ul></ul><ul><ul><li>Strategic planning </li></ul></ul><ul><ul><li>Public policy making </li></ul></ul><ul><ul><li>Marketing </li></ul></ul><ul><ul><li>Others </li></ul></ul>LCA Framework Source: ISO 14040 (1997)
  15. 15. Impact Assessment
  16. 16. Information Flow In LCA Models
  17. 17. “ Forward” LCA Model (Heijungs and Suh, 2002) <ul><li>The LCA model allows environmental effects to be estimated for a given state of technology: </li></ul><ul><li>g = BA -1 f (Life cycle inventory) </li></ul><ul><li>h = Qg (Life cycle impacts) </li></ul><ul><li>Environmental Index = f ( g , h ) </li></ul>
  18. 18. The ISO Standards for LCA (as of 2005)
  19. 19. Current ISO Standards Data documentation format 14048 Examples of application of ISO 14042 14047 Requirements and guidelines 14044 Principles and framework 14040 Title and Content Standard
  20. 20. LCA Uses: Products & Processes <ul><li>Fuels </li></ul><ul><li>Electricity </li></ul><ul><li>Cars </li></ul><ul><li>Packaging Materials </li></ul><ul><li>Appliances </li></ul><ul><li>Paper </li></ul><ul><li>Diapers </li></ul><ul><li>Drinking Cups </li></ul><ul><li>PCs and Accessories </li></ul><ul><li>Chemicals </li></ul><ul><li>Food Products </li></ul><ul><li>Beverages </li></ul><ul><li>Batteries </li></ul><ul><li>Construction Materials </li></ul><ul><li>Garments </li></ul><ul><li>Semiconductors </li></ul><ul><li>Iron and Steel </li></ul><ul><li>Buildings and houses </li></ul>
  21. 21. LCA Users: Private Firms <ul><li>Procter & Gamble </li></ul><ul><li>General Motors Corp. </li></ul><ul><li>Volvo </li></ul><ul><li>Credit Suisse </li></ul><ul><li>The Body Shop </li></ul><ul><li>BP Amoco </li></ul><ul><li>IBM </li></ul><ul><li>Motorola </li></ul><ul><li>AT&T </li></ul><ul><li>Dow Chemical </li></ul><ul><li>Nestle </li></ul><ul><li>Coca-Cola Co. </li></ul><ul><li>TetraPak </li></ul><ul><li>Scott Paper Co. </li></ul><ul><li>ExxonMobil </li></ul><ul><li>Shell </li></ul><ul><li>Hoechst </li></ul><ul><li>Monsanto </li></ul>
  22. 22. Illustrative Case Study on Carbon Footprints
  23. 23. Carbon Emissions <ul><li>Emissions of greenhouse gases such as CO 2 are widely believed to be driving global climate change </li></ul><ul><li>These emissions are highly correlated with energy use and industrial activity </li></ul><ul><li>Global emissions are in the order of 30  10 9 tons per annum </li></ul><ul><li>The Philippines contributes about 0.3% of global emissions </li></ul>
  24. 24. What is a Carbon Footprint? <ul><li>The carbon footprint of a product or a service is the cumulative level of CO 2 (or greenhouse gas) emissions generated directly or indirectly to deliver the commodity to the end-user. </li></ul>
  25. 25. What is the carbon footprint of this meal?
  26. 26. Carbon Emissions Breakdown of Fossil Power Sources SOURCE: Varun et al., “LCA of renewable energy for electricity generation systems—A review.” Renewable and Sustainable Energy Reviews (in press)
  27. 27. Carbon Intensities of Different Power Sources SOURCE: Varun et al., “LCA of renewable energy for electricity generation systems—A review.” Renewable and Sustainable Energy Reviews (in press)
  28. 28. Input-Output Models of Carbon Emissions <ul><li>Emissions from highly interconnected economic systems need to be modelled using life cycle concepts. </li></ul><ul><li>It is necessary to account not just for direct emissions, but also indirect emissions arising from sectoral interdependencies. </li></ul><ul><li>Input-output based modeling is appropriate for this application (Heijungs & Suh, 2002; Hendrickson et al., 2006) </li></ul>
  29. 29. Input-Output Models of Carbon Emissions x = ( I – A ) –1 y g = R x where: I = identity matrix A = technical coefficient matrix y = net output vector x = gross output vector R = direct emissions intensity matrix g = emissions vector
  30. 30. Application of I/O Model to Analysis of Philippine Carbon Emissions <ul><li>Obtained 2000 IO Tables from Philippine Government at three levels of disaggregation: </li></ul><ul><ul><li>11 Sectors </li></ul></ul><ul><ul><li>60 Sectors </li></ul></ul><ul><ul><li>250 Sectors </li></ul></ul><ul><li>Obtained published sectoral direct carbon emissions (http://earthtrends.wri.org/pdf_library/country_profiles/cli_cou_608.pdf) </li></ul><ul><li>Currently reconstructing detailed/disaggregated emissions profile from energy use statistics </li></ul>
  31. 31. Philippine Sectoral Carbon Intensity
  32. 32. Partial Results Using 60-sector I/O Tables <ul><li>Carbon emission levels per P1,000 of major agricultural crops: </li></ul><ul><ul><li>Rice, 5.8 kg </li></ul></ul><ul><ul><li>Corn, 5.1 kg </li></ul></ul><ul><ul><li>Coconut, 4.7 kg </li></ul></ul><ul><ul><li>Sugarcane, 8.5 kg </li></ul></ul><ul><li>Carbon emission levels for services provided by: </li></ul><ul><ul><li>Private educational institutions, 2,200 kg per P150,000 </li></ul></ul><ul><ul><li>Hotels and restaurants, 11.7 kg per P1,000 </li></ul></ul>
  33. 33. LCA Research in the Philippines
  34. 34. What Our Research Group at DLSU Has Done <ul><li>Advised Philippine Government (DOE, DOST) on life cycle issues leading to policy actions </li></ul><ul><li>Basic R&D published in LCA journals and books </li></ul><ul><li>Integrated LCA into postgraduate and undergraduate curriculum </li></ul><ul><li>Delivered workshops and seminars for NGO’s. </li></ul><ul><li>Collaborated with overseas partners </li></ul><ul><li>Developing e-learning materials on LCA </li></ul><ul><li>Established LCA information clearinghouse </li></ul>
  35. 35. LCA R&D <ul><li>Applications </li></ul><ul><li>Transportation systems </li></ul><ul><ul><li>Fuels </li></ul></ul><ul><ul><li>Modes </li></ul></ul><ul><li>Energy systems </li></ul><ul><ul><li>Power plants </li></ul></ul><ul><ul><li>Biofuels </li></ul></ul><ul><ul><li>Efficient lamps </li></ul></ul><ul><li>Manufacturing systems </li></ul><ul><ul><li>Pulp and paper </li></ul></ul><ul><ul><li>Electronics </li></ul></ul><ul><ul><li>Biopharmaceuticals </li></ul></ul><ul><li>Methods </li></ul><ul><li>Fuzzy modelling </li></ul><ul><li>Artificial intelligence </li></ul><ul><li>Monte Carlo </li></ul><ul><li>Linear and non-linear programming </li></ul><ul><li>Data quality </li></ul><ul><li>Decision analysis </li></ul><ul><li>Hybridization and streamlining </li></ul>
  36. 36. Conclusion <ul><li>Life cycle thinking blurs the boundary between production and consumption </li></ul><ul><li>Quantitative methods such as LCA allow for rational evaluation of different goods from an integrated systems standpoint </li></ul><ul><li>Carbon footprinting applies some aspects of life cycle thinking to climate change issues. </li></ul>
  37. 37. Thanks for your attention Comments and questions are welcome Or contact me at [email_address] Phone/Fax: +632-524-0560 http://sustech.dlsu.edu.ph