SlideShare a Scribd company logo
1 of 14
PREPARED BY…
UPADHYAY RAKSHITA R.
ROLL NO : 18
CONTENTS…
 Introduction
 Wind energy conversion system
 Types of wind energy systems
 Paper 1
 Paper 2
 References
 Conclusion
INTRODUCTION
 To improve the utilization of wind energy effectively by using
power electronic converters.
 Keypoints for wind energy systems are
1. Available wind energy
2. Type of wind turbine employed
3. Type of electric generator and power
4. Electronic circuitry employed
5. Interfacing with the grid
WIND ENERGY CONVERSION SYSTEM
Electrical
Generator
Wind
turbine
Power
electronic
interface
Gird
variable speed voltage , frequency,
operation for optimal active and reactive power
power excitation control
TYPES OF WIND ENERGY SYSTEM
WEC
BASED ON GENERATOR
GRID
INTEGRATION KEY POINTS
Fixed speed
system
Induction
generator
Direct Constant speed,
Low control
ability
Partially variable
speed system
DFIG AC-DC –AC
voltage source
converter
Highly controllable,
Vector control of
Active & reactive power
Fully variable
System
Induction
generator
or
sychronious
generator
AC-DC –AC
voltage source
converter
or
Z source
converter
Highly controllable,
wide range of speed,
For Z source
Short circuit protection
improved
Z - source inverter
PAPER 1 : F. Blaabjerg, Z. Chen, R. Teodorescu, F. Iov ” Power
electronics in wind turbine system”, IPEMC 2006
Fig : control of wind turbine with DFIG system
Fig : Basic control of active & reactive power in wind turbine for DFIG system
PAPER 2 : yogesh n. murthy, “a review on power electronics
applications on wind turbines”, IJRET , vol 2 , nov 2013
 Maximum power point tracking algorithm
 Maximum wind power control
• Generated power (P) = ½*ρ*π*(R^2)*(V^3)*Cp*λ
 Methods :
• TCR control
• PSF control
Fig : Output power of a wind turbine as a function of the wind speed
Fig : TCR control Fig : PSF control
CONCLUSION..
 By using both DFIG and ZSI in wind energy systems we
can get more efficiency and control over the active and
reactive powers. The proposed system has high
performance, increased efficiency and reduced cost.
REFERENCES
 F. Blaabjerg, Z. Chen, R. Teodorescu, F. Iov ” Power
electronics in wind turbine system”, IPEMC 2006
 yogesh n. murthy, “a review on power electronics
applications on wind turbines”, IJRET , vol 2 , nov 2013
 Veda Prakash Galigekere and Marian K. Kazimierczuk “role
of power electronics for renewable energy system”, Wright
State University
 Frede Blaabjerg, Florin lov, Remus Teodorescu, Zhe Chen
“Power Electronics in Renewable Energy Systems”, EPE-
PEMC 2006
Reneable energy
Reneable energy

More Related Content

What's hot

Future on power electronics for wind turbine systems
Future on power electronics for wind turbine systemsFuture on power electronics for wind turbine systems
Future on power electronics for wind turbine systemsKashish Srivastava
 
10 wind turbine_generators
10 wind turbine_generators10 wind turbine_generators
10 wind turbine_generatorslakshmi durga
 
Open-End-Winding Permanent Magnet Synchonous Generator for Wind Energy Conver...
Open-End-Winding Permanent Magnet Synchonous Generator for Wind Energy Conver...Open-End-Winding Permanent Magnet Synchonous Generator for Wind Energy Conver...
Open-End-Winding Permanent Magnet Synchonous Generator for Wind Energy Conver...Naila Syed
 
DFIG BASED WIND TURBINE
DFIG BASED WIND TURBINEDFIG BASED WIND TURBINE
DFIG BASED WIND TURBINELogu Mani
 
Enhancement of reactive power capability of doubly fed induction generator 2-3
Enhancement of reactive power capability of doubly fed induction generator 2-3Enhancement of reactive power capability of doubly fed induction generator 2-3
Enhancement of reactive power capability of doubly fed induction generator 2-3IAEME Publication
 
Doubly fed-induction-generator
Doubly fed-induction-generatorDoubly fed-induction-generator
Doubly fed-induction-generatorHarshad Karmarkar
 
Improved reactive power capability with grid connected doubly fed induction g...
Improved reactive power capability with grid connected doubly fed induction g...Improved reactive power capability with grid connected doubly fed induction g...
Improved reactive power capability with grid connected doubly fed induction g...Uday Wankar
 
Px7301 power electronics for renewable energy systems
Px7301 power electronics for renewable energy systemsPx7301 power electronics for renewable energy systems
Px7301 power electronics for renewable energy systemsthangalakshmiprakash
 
Wind Turbine Generators
Wind Turbine GeneratorsWind Turbine Generators
Wind Turbine GeneratorsJasjot Singh
 
Control Scheme for a Stand-Alone Wind Energy Conversion System
Control Scheme for a Stand-Alone Wind Energy Conversion SystemControl Scheme for a Stand-Alone Wind Energy Conversion System
Control Scheme for a Stand-Alone Wind Energy Conversion SystemRoja Rani
 
Role of power electronics in renewable and non renewable sources
Role of power electronics in renewable and non renewable sourcesRole of power electronics in renewable and non renewable sources
Role of power electronics in renewable and non renewable sourcesRayudu Mahesh
 
Power electronics technology in wind turbine system
Power electronics technology in wind turbine systemPower electronics technology in wind turbine system
Power electronics technology in wind turbine systempranavi kasina
 
DFIG control of WECS using indirect matrix converter
DFIG control of WECS using indirect matrix converter DFIG control of WECS using indirect matrix converter
DFIG control of WECS using indirect matrix converter Kuldeep Behera
 
Analysis of PMSG in Wind Integration using T Source Inverter with Simple Boos...
Analysis of PMSG in Wind Integration using T Source Inverter with Simple Boos...Analysis of PMSG in Wind Integration using T Source Inverter with Simple Boos...
Analysis of PMSG in Wind Integration using T Source Inverter with Simple Boos...IJTET Journal
 

What's hot (20)

Ppt phase-2
Ppt phase-2Ppt phase-2
Ppt phase-2
 
Future on power electronics for wind turbine systems
Future on power electronics for wind turbine systemsFuture on power electronics for wind turbine systems
Future on power electronics for wind turbine systems
 
A STAND A
A STAND AA STAND A
A STAND A
 
10 wind turbine_generators
10 wind turbine_generators10 wind turbine_generators
10 wind turbine_generators
 
Open-End-Winding Permanent Magnet Synchonous Generator for Wind Energy Conver...
Open-End-Winding Permanent Magnet Synchonous Generator for Wind Energy Conver...Open-End-Winding Permanent Magnet Synchonous Generator for Wind Energy Conver...
Open-End-Winding Permanent Magnet Synchonous Generator for Wind Energy Conver...
 
DFIG BASED WIND TURBINE
DFIG BASED WIND TURBINEDFIG BASED WIND TURBINE
DFIG BASED WIND TURBINE
 
DFIG_report
DFIG_reportDFIG_report
DFIG_report
 
Unit 4
Unit 4Unit 4
Unit 4
 
Enhancement of reactive power capability of doubly fed induction generator 2-3
Enhancement of reactive power capability of doubly fed induction generator 2-3Enhancement of reactive power capability of doubly fed induction generator 2-3
Enhancement of reactive power capability of doubly fed induction generator 2-3
 
Wind generators
Wind generatorsWind generators
Wind generators
 
Doubly fed-induction-generator
Doubly fed-induction-generatorDoubly fed-induction-generator
Doubly fed-induction-generator
 
Improved reactive power capability with grid connected doubly fed induction g...
Improved reactive power capability with grid connected doubly fed induction g...Improved reactive power capability with grid connected doubly fed induction g...
Improved reactive power capability with grid connected doubly fed induction g...
 
Px7301 power electronics for renewable energy systems
Px7301 power electronics for renewable energy systemsPx7301 power electronics for renewable energy systems
Px7301 power electronics for renewable energy systems
 
Wind Turbine Generators
Wind Turbine GeneratorsWind Turbine Generators
Wind Turbine Generators
 
Control Scheme for a Stand-Alone Wind Energy Conversion System
Control Scheme for a Stand-Alone Wind Energy Conversion SystemControl Scheme for a Stand-Alone Wind Energy Conversion System
Control Scheme for a Stand-Alone Wind Energy Conversion System
 
Role of power electronics in renewable and non renewable sources
Role of power electronics in renewable and non renewable sourcesRole of power electronics in renewable and non renewable sources
Role of power electronics in renewable and non renewable sources
 
Power electronics technology in wind turbine system
Power electronics technology in wind turbine systemPower electronics technology in wind turbine system
Power electronics technology in wind turbine system
 
DFIG control of WECS using indirect matrix converter
DFIG control of WECS using indirect matrix converter DFIG control of WECS using indirect matrix converter
DFIG control of WECS using indirect matrix converter
 
254 ishwri
254 ishwri254 ishwri
254 ishwri
 
Analysis of PMSG in Wind Integration using T Source Inverter with Simple Boos...
Analysis of PMSG in Wind Integration using T Source Inverter with Simple Boos...Analysis of PMSG in Wind Integration using T Source Inverter with Simple Boos...
Analysis of PMSG in Wind Integration using T Source Inverter with Simple Boos...
 

Viewers also liked

Viewers also liked (20)

N.E.G Micon
N.E.G MiconN.E.G Micon
N.E.G Micon
 
Wind power energy in Romania
Wind power energy in RomaniaWind power energy in Romania
Wind power energy in Romania
 
Learn wind energy
Learn wind energyLearn wind energy
Learn wind energy
 
Power control of a wind energy conversion system
Power control of a wind energy conversion systemPower control of a wind energy conversion system
Power control of a wind energy conversion system
 
Renewable Energy - Intro ppt
Renewable Energy - Intro pptRenewable Energy - Intro ppt
Renewable Energy - Intro ppt
 
Wind Power Point Presentation
Wind Power Point PresentationWind Power Point Presentation
Wind Power Point Presentation
 
Wind Energy
Wind EnergyWind Energy
Wind Energy
 
Ingeteam participates in round table on Power Transfer and Conversion
 Ingeteam participates in round table on Power Transfer and Conversion Ingeteam participates in round table on Power Transfer and Conversion
Ingeteam participates in round table on Power Transfer and Conversion
 
Wind as renewable source of energy
Wind as renewable source of energyWind as renewable source of energy
Wind as renewable source of energy
 
Dan A. Rieser, World Energy Council - Scenari WEC al 2050 e il ruolo della CCS
Dan A. Rieser, World Energy Council - Scenari WEC al 2050 e il ruolo della CCSDan A. Rieser, World Energy Council - Scenari WEC al 2050 e il ruolo della CCS
Dan A. Rieser, World Energy Council - Scenari WEC al 2050 e il ruolo della CCS
 
ZSC
ZSCZSC
ZSC
 
Power Electronics
Power ElectronicsPower Electronics
Power Electronics
 
Si presentation
Si presentationSi presentation
Si presentation
 
Wind energy
Wind energyWind energy
Wind energy
 
Wind energy and constructional features
Wind energy and constructional featuresWind energy and constructional features
Wind energy and constructional features
 
Simple ac generator
Simple ac generatorSimple ac generator
Simple ac generator
 
ECE356 -- 20150910 -- Bradt
ECE356 -- 20150910 -- BradtECE356 -- 20150910 -- Bradt
ECE356 -- 20150910 -- Bradt
 
142 k datta
142 k datta142 k datta
142 k datta
 
Wind energy
Wind energyWind energy
Wind energy
 
Control Of Offshore Windmills
Control Of Offshore WindmillsControl Of Offshore Windmills
Control Of Offshore Windmills
 

Similar to Reneable energy

Measurement and Analysis of Power in Hybrid System
Measurement and Analysis of Power in Hybrid SystemMeasurement and Analysis of Power in Hybrid System
Measurement and Analysis of Power in Hybrid Systemijeei-iaes
 
A New Simulation Approach of 3-Φ Transformer-less Grid Connected PV Inverter ...
A New Simulation Approach of 3-Φ Transformer-less Grid Connected PV Inverter ...A New Simulation Approach of 3-Φ Transformer-less Grid Connected PV Inverter ...
A New Simulation Approach of 3-Φ Transformer-less Grid Connected PV Inverter ...IRJET Journal
 
A New Optimum Power Control Scheme for Low Power Energy Harvesting System
A New Optimum Power Control Scheme for Low Power Energy Harvesting SystemA New Optimum Power Control Scheme for Low Power Energy Harvesting System
A New Optimum Power Control Scheme for Low Power Energy Harvesting SystemIRJET Journal
 
4.power quality improvement in dg system using shunt active filter
4.power quality improvement in dg system using shunt active filter4.power quality improvement in dg system using shunt active filter
4.power quality improvement in dg system using shunt active filterEditorJST
 
ANALYSIS OF VARIOUS COMPENSATION DEVICES FOR POWER QUALITY IMPROVEMENT IN WIN...
ANALYSIS OF VARIOUS COMPENSATION DEVICES FOR POWER QUALITY IMPROVEMENT IN WIN...ANALYSIS OF VARIOUS COMPENSATION DEVICES FOR POWER QUALITY IMPROVEMENT IN WIN...
ANALYSIS OF VARIOUS COMPENSATION DEVICES FOR POWER QUALITY IMPROVEMENT IN WIN...IAEME Publication
 
A Fuzzy Based STATCOM Controller for Mitigating Current Harmonics in Grid Int...
A Fuzzy Based STATCOM Controller for Mitigating Current Harmonics in Grid Int...A Fuzzy Based STATCOM Controller for Mitigating Current Harmonics in Grid Int...
A Fuzzy Based STATCOM Controller for Mitigating Current Harmonics in Grid Int...IJMTST Journal
 
A Discrete PLL Based Load Frequency Control of FLC-Based PV-Wind Hybrid Power...
A Discrete PLL Based Load Frequency Control of FLC-Based PV-Wind Hybrid Power...A Discrete PLL Based Load Frequency Control of FLC-Based PV-Wind Hybrid Power...
A Discrete PLL Based Load Frequency Control of FLC-Based PV-Wind Hybrid Power...IAES-IJPEDS
 
Modeling and Simulation of Wind Energy Conversion System Interconnected with ...
Modeling and Simulation of Wind Energy Conversion System Interconnected with ...Modeling and Simulation of Wind Energy Conversion System Interconnected with ...
Modeling and Simulation of Wind Energy Conversion System Interconnected with ...idescitation
 
Tracking of Maximum Power from Wind Using Fuzzy Logic Controller Based On PMSG
Tracking of Maximum Power from Wind Using Fuzzy Logic  Controller Based On PMSGTracking of Maximum Power from Wind Using Fuzzy Logic  Controller Based On PMSG
Tracking of Maximum Power from Wind Using Fuzzy Logic Controller Based On PMSGIJMER
 
11.modeling and performance analysis of a small scale direct driven pmsg base...
11.modeling and performance analysis of a small scale direct driven pmsg base...11.modeling and performance analysis of a small scale direct driven pmsg base...
11.modeling and performance analysis of a small scale direct driven pmsg base...Alexander Decker
 
Modeling and performance analysis of a small scale direct driven pmsg based w...
Modeling and performance analysis of a small scale direct driven pmsg based w...Modeling and performance analysis of a small scale direct driven pmsg based w...
Modeling and performance analysis of a small scale direct driven pmsg based w...Alexander Decker
 
A Wind driven PV- FC Hybrid System and its Power Management Strategies in a Grid
A Wind driven PV- FC Hybrid System and its Power Management Strategies in a GridA Wind driven PV- FC Hybrid System and its Power Management Strategies in a Grid
A Wind driven PV- FC Hybrid System and its Power Management Strategies in a GridIJERA Editor
 
Tracking of Maximum Power from Wind Using Fuzzy Logic Controller Based On PMSG
Tracking of Maximum Power from Wind Using Fuzzy Logic Controller Based On PMSGTracking of Maximum Power from Wind Using Fuzzy Logic Controller Based On PMSG
Tracking of Maximum Power from Wind Using Fuzzy Logic Controller Based On PMSGIJMER
 
Droop control method for parallel dc converters used in standalone pv wind po...
Droop control method for parallel dc converters used in standalone pv wind po...Droop control method for parallel dc converters used in standalone pv wind po...
Droop control method for parallel dc converters used in standalone pv wind po...eSAT Journals
 
SUPERVISORY PREDICTIVE CONTROL OF STANDALONE WIND/SOLAR ENERGY GENERATION SYS...
SUPERVISORY PREDICTIVE CONTROL OF STANDALONE WIND/SOLAR ENERGY GENERATION SYS...SUPERVISORY PREDICTIVE CONTROL OF STANDALONE WIND/SOLAR ENERGY GENERATION SYS...
SUPERVISORY PREDICTIVE CONTROL OF STANDALONE WIND/SOLAR ENERGY GENERATION SYS...ijiert bestjournal
 

Similar to Reneable energy (20)

Af04603185190
Af04603185190Af04603185190
Af04603185190
 
H41015660
H41015660H41015660
H41015660
 
Measurement and Analysis of Power in Hybrid System
Measurement and Analysis of Power in Hybrid SystemMeasurement and Analysis of Power in Hybrid System
Measurement and Analysis of Power in Hybrid System
 
A New Simulation Approach of 3-Φ Transformer-less Grid Connected PV Inverter ...
A New Simulation Approach of 3-Φ Transformer-less Grid Connected PV Inverter ...A New Simulation Approach of 3-Φ Transformer-less Grid Connected PV Inverter ...
A New Simulation Approach of 3-Φ Transformer-less Grid Connected PV Inverter ...
 
A New Optimum Power Control Scheme for Low Power Energy Harvesting System
A New Optimum Power Control Scheme for Low Power Energy Harvesting SystemA New Optimum Power Control Scheme for Low Power Energy Harvesting System
A New Optimum Power Control Scheme for Low Power Energy Harvesting System
 
4.power quality improvement in dg system using shunt active filter
4.power quality improvement in dg system using shunt active filter4.power quality improvement in dg system using shunt active filter
4.power quality improvement in dg system using shunt active filter
 
ANALYSIS OF VARIOUS COMPENSATION DEVICES FOR POWER QUALITY IMPROVEMENT IN WIN...
ANALYSIS OF VARIOUS COMPENSATION DEVICES FOR POWER QUALITY IMPROVEMENT IN WIN...ANALYSIS OF VARIOUS COMPENSATION DEVICES FOR POWER QUALITY IMPROVEMENT IN WIN...
ANALYSIS OF VARIOUS COMPENSATION DEVICES FOR POWER QUALITY IMPROVEMENT IN WIN...
 
A Fuzzy Based STATCOM Controller for Mitigating Current Harmonics in Grid Int...
A Fuzzy Based STATCOM Controller for Mitigating Current Harmonics in Grid Int...A Fuzzy Based STATCOM Controller for Mitigating Current Harmonics in Grid Int...
A Fuzzy Based STATCOM Controller for Mitigating Current Harmonics in Grid Int...
 
A Discrete PLL Based Load Frequency Control of FLC-Based PV-Wind Hybrid Power...
A Discrete PLL Based Load Frequency Control of FLC-Based PV-Wind Hybrid Power...A Discrete PLL Based Load Frequency Control of FLC-Based PV-Wind Hybrid Power...
A Discrete PLL Based Load Frequency Control of FLC-Based PV-Wind Hybrid Power...
 
Modeling and Simulation of Wind Energy Conversion System Interconnected with ...
Modeling and Simulation of Wind Energy Conversion System Interconnected with ...Modeling and Simulation of Wind Energy Conversion System Interconnected with ...
Modeling and Simulation of Wind Energy Conversion System Interconnected with ...
 
Tracking of Maximum Power from Wind Using Fuzzy Logic Controller Based On PMSG
Tracking of Maximum Power from Wind Using Fuzzy Logic  Controller Based On PMSGTracking of Maximum Power from Wind Using Fuzzy Logic  Controller Based On PMSG
Tracking of Maximum Power from Wind Using Fuzzy Logic Controller Based On PMSG
 
Ak4101210215
Ak4101210215Ak4101210215
Ak4101210215
 
11.modeling and performance analysis of a small scale direct driven pmsg base...
11.modeling and performance analysis of a small scale direct driven pmsg base...11.modeling and performance analysis of a small scale direct driven pmsg base...
11.modeling and performance analysis of a small scale direct driven pmsg base...
 
Modeling and performance analysis of a small scale direct driven pmsg based w...
Modeling and performance analysis of a small scale direct driven pmsg based w...Modeling and performance analysis of a small scale direct driven pmsg based w...
Modeling and performance analysis of a small scale direct driven pmsg based w...
 
A Wind driven PV- FC Hybrid System and its Power Management Strategies in a Grid
A Wind driven PV- FC Hybrid System and its Power Management Strategies in a GridA Wind driven PV- FC Hybrid System and its Power Management Strategies in a Grid
A Wind driven PV- FC Hybrid System and its Power Management Strategies in a Grid
 
Tracking of Maximum Power from Wind Using Fuzzy Logic Controller Based On PMSG
Tracking of Maximum Power from Wind Using Fuzzy Logic Controller Based On PMSGTracking of Maximum Power from Wind Using Fuzzy Logic Controller Based On PMSG
Tracking of Maximum Power from Wind Using Fuzzy Logic Controller Based On PMSG
 
Ka3617341739
Ka3617341739Ka3617341739
Ka3617341739
 
Using Y-source network as a connector between turbine and network in the stru...
Using Y-source network as a connector between turbine and network in the stru...Using Y-source network as a connector between turbine and network in the stru...
Using Y-source network as a connector between turbine and network in the stru...
 
Droop control method for parallel dc converters used in standalone pv wind po...
Droop control method for parallel dc converters used in standalone pv wind po...Droop control method for parallel dc converters used in standalone pv wind po...
Droop control method for parallel dc converters used in standalone pv wind po...
 
SUPERVISORY PREDICTIVE CONTROL OF STANDALONE WIND/SOLAR ENERGY GENERATION SYS...
SUPERVISORY PREDICTIVE CONTROL OF STANDALONE WIND/SOLAR ENERGY GENERATION SYS...SUPERVISORY PREDICTIVE CONTROL OF STANDALONE WIND/SOLAR ENERGY GENERATION SYS...
SUPERVISORY PREDICTIVE CONTROL OF STANDALONE WIND/SOLAR ENERGY GENERATION SYS...
 

More from Rakshita Upadhyay

More from Rakshita Upadhyay (9)

Rs methodologyandreliability
Rs methodologyandreliabilityRs methodologyandreliability
Rs methodologyandreliability
 
Optimal control system
Optimal control systemOptimal control system
Optimal control system
 
Insulation coordination
Insulation coordinationInsulation coordination
Insulation coordination
 
Fc tcr.newpptx
Fc tcr.newpptxFc tcr.newpptx
Fc tcr.newpptx
 
Dom
DomDom
Dom
 
load shedding
load sheddingload shedding
load shedding
 
Plc and hmi based stenter machine poster
Plc and hmi based stenter machine posterPlc and hmi based stenter machine poster
Plc and hmi based stenter machine poster
 
Plc and hmi baed stenter machine01
Plc and hmi baed stenter machine01Plc and hmi baed stenter machine01
Plc and hmi baed stenter machine01
 
Induction machine modelling
Induction machine modelling Induction machine modelling
Induction machine modelling
 

Recently uploaded

Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersMairaAshraf6
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Servicemeghakumariji156
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTbhaskargani46
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaOmar Fathy
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadhamedmustafa094
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdfKamal Acharya
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayEpec Engineered Technologies
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdfKamal Acharya
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxSCMS School of Architecture
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...drmkjayanthikannan
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdfKamal Acharya
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxmaisarahman1
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
 

Recently uploaded (20)

Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to Computers
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 

Reneable energy

  • 2. CONTENTS…  Introduction  Wind energy conversion system  Types of wind energy systems  Paper 1  Paper 2  References  Conclusion
  • 3. INTRODUCTION  To improve the utilization of wind energy effectively by using power electronic converters.  Keypoints for wind energy systems are 1. Available wind energy 2. Type of wind turbine employed 3. Type of electric generator and power 4. Electronic circuitry employed 5. Interfacing with the grid
  • 4. WIND ENERGY CONVERSION SYSTEM Electrical Generator Wind turbine Power electronic interface Gird variable speed voltage , frequency, operation for optimal active and reactive power power excitation control
  • 5. TYPES OF WIND ENERGY SYSTEM WEC BASED ON GENERATOR GRID INTEGRATION KEY POINTS Fixed speed system Induction generator Direct Constant speed, Low control ability Partially variable speed system DFIG AC-DC –AC voltage source converter Highly controllable, Vector control of Active & reactive power Fully variable System Induction generator or sychronious generator AC-DC –AC voltage source converter or Z source converter Highly controllable, wide range of speed, For Z source Short circuit protection improved
  • 6. Z - source inverter
  • 7. PAPER 1 : F. Blaabjerg, Z. Chen, R. Teodorescu, F. Iov ” Power electronics in wind turbine system”, IPEMC 2006 Fig : control of wind turbine with DFIG system
  • 8. Fig : Basic control of active & reactive power in wind turbine for DFIG system
  • 9. PAPER 2 : yogesh n. murthy, “a review on power electronics applications on wind turbines”, IJRET , vol 2 , nov 2013  Maximum power point tracking algorithm  Maximum wind power control • Generated power (P) = ½*ρ*π*(R^2)*(V^3)*Cp*λ  Methods : • TCR control • PSF control
  • 10. Fig : Output power of a wind turbine as a function of the wind speed Fig : TCR control Fig : PSF control
  • 11. CONCLUSION..  By using both DFIG and ZSI in wind energy systems we can get more efficiency and control over the active and reactive powers. The proposed system has high performance, increased efficiency and reduced cost.
  • 12. REFERENCES  F. Blaabjerg, Z. Chen, R. Teodorescu, F. Iov ” Power electronics in wind turbine system”, IPEMC 2006  yogesh n. murthy, “a review on power electronics applications on wind turbines”, IJRET , vol 2 , nov 2013  Veda Prakash Galigekere and Marian K. Kazimierczuk “role of power electronics for renewable energy system”, Wright State University  Frede Blaabjerg, Florin lov, Remus Teodorescu, Zhe Chen “Power Electronics in Renewable Energy Systems”, EPE- PEMC 2006