SlideShare a Scribd company logo
1 of 66
Components of ecosystem
UNIVERSITY OF HORTICULTURAL SCIENCES,
                  BAGALKOT




Kittur Rani Channamma College of Horticulture, Arabhavi.
Organic farming

“Organic farming is a system which avoids or largely
excludes the use of synthetic inputs (such as fertilizers,
pesticides, hormones, feed additives etc) and to the
maximum extent feasible relay upon crop rotations, crop
residues, animal manures, on-farm organic waste, mineral
grade rock additives and biological system of nutrient
mobilization and plant protection”.

                                       USDA study team
Biofertilizers



   Pest                              Crop rotation
management




                Organic farming




     Disease                         Weed
   management                      management
Commonly used microbes in Organic farming
Pseudomonas




   AM fungi
Why organic farming ?

 Soil is a medium
 Biological activity
 Living soil
 Use of inorganic fertilizers - eutrophication, increased
  soil acidity, enhanced nitrate content in drinking
  water etc
 Indiscriminate use of chemicals – reduced diversity,
  reduced soil fertility and hazards on health
Aims of organic farming


Food of high nutritional quality.
 Interact in a constructive and life enhancing way
 with natural systems.
Encourage and enhance biological cycles.
 Maintain long term fertility of soils.
 Use renewable on farm resources
 Work with materials which can be recycled.
 Minimize all forms of pollutants which may affect
 the farm environment.
B.N : Curcuma longa L.

Family: Zingiberaceae

Order: Scitaminae

Active principle: Curcumin

Origin: South East Asia
 The ancient and sacred spice of India

 Condiment, dye and in cosmetics

   - It is valued as a spice as well as a colourant.

 Widely used in folk medicines and ayurvedic preparations.

 India - Major production and export, monopoly in production.

 Andhra Pradesh, Maharashtra, Tamilnadu, and Bihar are the
  important states producing turmeric.
Fig 1: Area share under major spices crops in India.
                                                       Anon., 2011
Myanmar Nigeria
                                             4%     3%
                               China                  Bangladesh
                                8%                         3%
                                                            Others
                                                             4%


                  India
                  78%




Fig 2: World production scenario of turmeric in different countries.
                                                       Anon., 2011
Gujarat Meghalaya             Kerala
   West Bengal 2%       2%                   1%
        4%                     Others
   Orissa                       5%
    7%
                                                     Andra Pradesh
       Karnataka                                         47%
         11%


                     Tamil Nadu
                        21%




Fig 3: Production scenario of turmeric in different states.
                                                              Anon., 2011
Traditional practices in turmeric cultivation
                                    Sundararaman et al., 2004


 Seed rhizome selection

 Pre-planting treatments

 Land preparation

 Mulching

 Mixed cropping

 Inter-cropping

 Crop protection

 Harvesting
Case studies
Response of bioregulants on nutrient uptake of turmeric cv. BSR 2

                                     Sathish and Paramaguru, 2010, Coimbatore

Treatment details:
 T1 = Panchagavya 2% foliar spray
  T2 = Panchagavya 3% foliar spray
  T3 = Panchagavya 4% foliar spray
  T4 = Vermiwash 10% spray
  T5 = Vermiwash 20% spray
  T6 = Humic acid 0.05% foliar spray
  T7 = Humic acid 0.1% foliar spray
  T8 = Humic acid 0.15% foliar spray
  T9 = Extended EM 1% foliar spray
  T10 = Extended EM 2% foliar spray
  T11 = Extended EM 3% foliar spray
  T12 = 100% RDF
  T13 = Control                         Treatments imposed after 1 month of sowing
Table 1: Response of Bioregulants on nutrient uptake of turmeric cv. BSR 2
                                   Sathish and Paramaguru, 2010 , Coimbatore
                                            Nitrogen     Phosphorous Potassium
           Nitrogen Phosphorous Potassium
Treatments                                     uptake      uptake     uptake
              %         %           %
                                               (kg/ha)      (kg/ha)   (kg/ha)
    T1       0.72       0.17        0.71     221.65         50.11      236.4
    T2       0.79       0.19        0.77     267.02         58.37      263.5
    T3       0.67       0.13        0.65      220.4         49.96      219.4
    T4       0.77       0.18        0.74     257.79         45.16     250.62
    T5       0.81       0.16        0.69     231.72         55.67     230.12
    T6       0.84       0.22        0.88     277.81         64.27     270.52
    T7       0.65       0.13        0.64      216.1         42.12      221.7
    T8        0.6       0.15        0.62      226.6         50.37     222.16
    T9       0.75       0.17         0.6     260.32         40.24      261.2
   T10       0.66       0.14        0.61     244.54          47.6     241.45
   T11       0.71       0.11         0.7     234.17         41.51     232.12
   T12       0.59       0.12        0.72     222.97         53.61      239.2
   T13       0.45        0.1        0.56     201.25          35.8      214.2
Mean        0.6785     0.1562      0.6831   237.1026        48.83     238.66
CD (at5%)   0.0233     0.0081      0.0197    5.2664        1.8517     4.2085
       T6 = Humic acid 0.05% foliar spray
Treatment details
SSP = Single Super Phosphate
MRP = Mussorie Rock Phosphate
RP = Rock Phosphate
GP = Gafsa Phosphate
P uptake in turmeric
Treatments
               (kg/ha)
  SSP          13.6 0
MRP+SSP        13.5 0
 RP+SSP         15.70
 GP+SSP        13.4 0
FYM+MRP         15.20
FYM+RP          16.50
FYM+GP          16.50

FYM+SSP         15.80

  Check         7 .00

CD(P=0.05)      0.51
Effect of organic manures on growth, rhizome yield and quality attributes of turmeric

                                                   Kamal and Yousuf, 2012, Bangladesh

     Treatment details:

         T1 = Cowdung @ 15 t/ha
         T2 = Poultry manure @ 7 t/ha
         T3 = Mustard cake @ 2 t/ha
         T4 = Neem cake @ 2 t/ha
         T5 = Control

     Treatments imposed 1 week before sowing
Table 3 : Effect of organic manures on growth and rhizome yield attributes of turmeric
                                               Kamal and Yousuf, 2012, Bangladesh

                Plant                                          Fresh wt of   Dry wt of
  Treatments             No. of        No. of      Leaf area
                height                                          rhizomes     rhizome
                         leaves    tillers/plant    (cm2)
                 (cm)                                           (g/plant)    (g/plant)
      T1
  Cowdung       73.73     8.13         4.83         36.71        217.8        31.16
   (15 t/ha)
      T2
    Poultry
                 72.8     7.14         5.13         42.12        246.97       38.02
   manure
    (7 t/ha)
      T3
   Mustard      74.33     6.37         5.13         35.62        242.52        33.9
 cake(2 t/ha)
      T4
 Neem cake       79.3     8.67         5.4          44.09        256.21       40.35
   (2 t/ha)

    Control     59.37     5.13         3.47         22.17        87.26        13.91

     LSD
    (0.05)      7.474     0.644       0.767          1.02        1.701        1.017
Table 4 : Effect of organic manures on rhizome yield and quality attributes of turmeric
                                                Kamal and Yousuf, 2012, Bangladesh


                  Fresh rhizome            Cured rhizome Curcumin
  Treatments                    Curing (%)
                   yield (t/ha)             yield (t/ha) content (%)

 T1 Cowdung
   (15 t/ha)           21.17            19.21             4.36              3.31
      T2
Poultry manure         27.30            19.01             5.18               3.5
    (7 t/ha)
      T3
 Mustard cake
   (2 t/ha)             22.8            19.03             4.59              3.67

     T4
 Neem cake (2          29.48                              5.59              3.73
    t/ha)                               20.80
 T5 (Control)          14.84            16.54             2.38              3.23

  LSD(0.05)            0.473            0.309            0.206             0.061
Effect of organic manure and biofertilizers on growth and yield of turmeric
                                              Madhuri et al., 2006,Nagpur

Treatment details:
  T1 = FYM 10 t/ha
  T2 = FYM 10 t/ha + Azoto @ 250 g/ 10 kg of seeds
  T3 = FYM 10 t/ha + PSB @ 250 g/ 10 kg of seeds
  T4 = FYM 10 t/ha + Azoto @ 250 g/ 10 kg of seeds + PSB @ 250 g/ 10
       kg of seeds
  T5 = Vermicompost 5 t/ha
  T6 = Vermicompost 5 t/ha + Azoto @ 250 g/ 10 kg of seeds
  T7 = Vermicompost 5 t/ha + PSB @ 250 g/ 10 kg of seeds
  T8 = Vermicompost 5 t/ha + Azoto @ 250 g/ 10 kg of seeds + PSB @ 250
       g/ 10 kg of seeds
  T9 = Azotobacter @ 250 g/ 10 kg of seeds
  T10 = PSB @ 250 g/ 10 kg of seeds
  T11 = Azoto @ 250 g/ 10 kg of seeds + PSB @ 250 g/ 10 kg of seeds
  T12 =RDF(120:60:60 kg/ha)
  T13 = Control
Days
       Height     No. of            Girth of No. of
Treatm                   Leaf area                       required Fresh yield   B:C
       of Plant   leaves           pseudoste tillers/pla
 ents                      (cm2)                            for     (q/ha)      ratio
         (cm)     /plant            m (cm)        nt
                                                         maturity
 T1      99.7      10.33  1156.22    10.88       2.41     183.48    249.59      1.95:1
 T2     103.02     10.75  1190.15    11.07       2.48     182.09    253.52      2.08:1
 T3     100.64     10.52  1175.92    11.01       2.44      182.8    252.42      2.01:1
 T4     106.59     10.87  1215.27    11.17       2.49     181.48    259.95      2.17:1
 T5      91.8      9.81   1027.27    10.46       2.25     186.56    202.33      1.70:1
 T6      95.36     9.83   1092.62     1.68       2.33     185.21    224.62      1.74:1
 T7       94       9.57   1065.47    10.62       2.28     186.45    207.52      1.71:1
 T8      97.39     9.96   1106.12    10.79       2.39     182.65    239.95      1.75:1
 T9      88.61     9.05   975.63     11.06       2.29     187.19    189.99      1.61:1
 T10     85.85     8.86   929.17     10.16       2.16     187.96    179.59      1.51:1
 T11     90.28     9.29   1024.75    10.62       2.39     186.93    194.3       1.84:1
 T12    108.96     10.97  1235.18    11.22       2.59     184.52    261.52      2.11:1
 T13     83.55     8.64   877.56     10.07       2.08     188.35    174.47      1.40:1
CD at
         5.16     0.26      39.23     0.24       0.21     2.12      10.54
 5%
Effect of Azospirillum, nutrient and FYM on growth and yield of
 turmeric (Curcuma longa L.) cv. Rajendra Sonia.
                                            Singh, 2011, Muzaffarpur

Treatment details:
  T1 = Inorganic N (100%) + Azospirillum (10kg/ ha) + FYM (5 t/ ha)
  T2 = Inorganic N (75%) + Azospirillum (10kg/ ha) + FYM (5 t/ ha)
  T3 = Inorganic N (50%) + Azospirillum (10kg/ ha) + FYM (5 t/ ha)
  T4 = FYM (5 t/ ha) + Azospirillum (10kg/ ha)
  T5 = FYM (5 t/ ha)
  T6 = FYM (10 t/ ha) + Azospirillum (10kg/ ha)
  T7 = FYM (10 t/ ha)
  T8 =RDF 180: 90: 90 Kg NPK/ ha
Table 6: Effect of organic, inorganic and biofertilizer on growth and yield of
       turmeric (Curcuma longa L.) cv. Rajendra Sonia.
                                                            Singh, 2011, Muzaffarpur

              Plant ht      No.of No.of leaves/ Yield per
                                                                 Yield     Cost :
  Treatment      cm      tillers/plt tiller     plot (kg)
                                                                  t/ha     Benefit

       T1      119.38      6.11        12.76         16.98       56.61     1:4.86
       T2      117.21      5.33        12.46         15.59       51.97     1:5.27
       T3      115.08      4.70        12.18         15.11       50.38     1:4.73
       T4      109.51      3.91        11.87         13.42       44.74     1:4.24
       T5      103.51      3.70        11.53         13.73       45.72     1:4.40
       T6      112.00      4.83        12.16         15.03       50.11     1:4.66
       T7      108.78      4.25        11.86         14.79       49.31     1:4.65
       T8      103.93      3.90        11.66         12.60       42.00     1:4.11
  C.D. @5%       4.95      0.59        1.80          1.29         4.32
Table 7 : Effect of different kinds of farmyard manure on growth parameters, maturity and
          yield of turmeric
                                                            Hossain and Yukio, 2007, Japan


                      200 days after planting                        261 days after planting

           Plant No. of       No .of                        Maturit Shoot
                                        Leaf area Yield                              Yield
Treatments height leaves      tillers                       y period biomass
                                        cm2/plant (g/plant)                        (g/plant)
            (cm) /plant       /plant                          days   (g/plant)

            166     20.8      3.2        7447      52.0                             98.6
 Control                                                      240    68.2   6.1c
             7c      1.7a      0.4a       355c      3.2c                             10.1d

 Chicken    175     20.8       3.2       9870      71.6                89.6        133.0
                                                              250
 manure       7b     2.7a       0.4a      1141b     7.4b                11.2b       15.1c

  Goat      216     23.8       4.0      13971      90.6               110.8        156.0
                                                              261
 manure       8a     3.5a       0.9a     1223a      9.4a                5.9a        9.6b

  Cow       204     21.6       3.6      13031      93.3               112.6        175.4
                                                              261
 manure     13ab     2.2a       0.5a      556a      7.1a                9.1a         7.8a
Table 8 : Chemical composition of chicken manure, goat manure and cow manure
                                               Hossain and Yukio, 2007, Japan


                                                                      S
           Na      K       Ca       Mg        Al        Fe     P
Manure                                                              mg/kg
          mg/kg  mg/kg    mg/kg    mg/kg    mg/kg     mg/kg  mg/kg
 type                                                               manure
          manure manure   manure   manure   manure    manure manure

Chicken
           2.38   21.13     1.12     1.41     0.00     0.05     2.86     3.57
manure
 Goat
           0.51   25.01     0.41     0.60     0.01     0.01     1.35     1.12
manure

 Cow
           1.54    7.31     0.42     0.25     0.00     0.02     1.04     1.34
manure
Table 9 : Chemical composition of dark-red soil, red, gray soil
                             Hossain and Yukio, 2007, Japan


                        Ca      Na                  Fe
                K                          P
                      mg/kg    mg/kg              mg/kg
  Soil type   mg/kg                      mg/kg
                       soil     soil               soil
               soil                       soil

   Dark-
              6.39     25.0     30.5      0.52     0.25
  red soil
    Red
              10.32   15.80     55.90     0.76     0.26
    soil
   Gray
              42.89   204.20   102.40     4.60     0.16
   soil
Table 10 : Effect of farmyard manure on growth parameters and yield of turmeric
          cultivated in different soils
                                                  Hossain and Yukio, 2007, Japan

                   Plant       No.of         No.of      Shoot dry wt   Yield (dry)
 Treatments
                height (cm) leaves/plant tiller/plant     g/plant        g/plant


Dark-red soil    141 6bc 18.7       2.6cd 2.5    0.5b    41.2   4.7b    39   6d

Dark-red soil +
                201    5a    24.7   3.1a   4.3   0.4a   104.7   5.5a   219   16b
   manure

   Red soil      130   6c    16.2   2.3d   2.3   0.4b    27.8   2.4c    26   4d

  Red soil +
                150    13b 23.2     1.9ab 4.0    0.6a    44.3   3.6b   110   14c
   manure

  Gray soil     146    10b 20.2     2.7bc 2.7    0.7b    40.7   3.9b    39   4d

 Gray soil +
                204    12a   26.8   4.1a   4.3   0.7a   103.7   6.8a   255   18a
  manure
Manure – Cow manure
Biological control of rhizome rot disease of turmeric
                                 Surajit and Apurba, 2008, Nadia West Bengal

Treatment details:
  T1 = (Recommended NPK) Control
  T2 = (NPK + FYM)
  T3 = (NPK+ Trichoderma viride + Pseudomonas fluorescence seed
       treatment )
  T4 = (NPK+ Trichoderma viride + Pseudomonas fluorescence as as
       soil application @ 12.5 kg/ha and 25 kg/ha as basal and top
       dressing respectively)
  T5 = (T2 + T3 )
  T6 = (T2 + T4 )
  T7 = (T2 + T3 + T4 )
  T8 = ( T2 + Bacillus subtilis 1 ml/L of water)
Table 11 : Biological control of rhizome rot disease of turmeric
                                         Surajit and Apurba, 2008, West Bengal

                          Disease incidence (%)   %
                                                                        Projected
           Germination                         reduction Rhizome yield
Treatments                First      Second                                yield
               %                              in rot over (kg/3m2 plot)
                       observation observation control                   (ton/ha)

T1(Control)    91.11       17.50       19.78       --          7.75       25.83
    T2         88.88       15.72       16.67      15.72        8.33       27.77

    T3         95.56        5.57       10.55      46.66        8.83       29.43
    T4         93.33        7.23        8.69      56.07        8.75       29.17
    T5         93.33        5.62        7.19      63.65        8.8        29.33

    T6         95.56        7.23        7.23      63.45        9.00       30.00
    T7         95.56        5.62        7.23      63.45        9.25       30.83

    T8         91.11       15.58        17.5      11.53        8.2        27.33

CD @ 5%         --          4.72        4.48       --          1.24        --
Table 12: Evaluation of fungal biocontrol agents for suppression of root knot
          nematodes infesting turmeric
                                                   Santosh et al., 2008, Calicut

                                                         Nematode population
                                                            (per g of root)
                 No . of   Height of
 Treatments                              Eggs      Juveniles   Females         Total
                 tillers   plant (cm)
 Paccilomyces
                 2.24 a     129.13 c     5.54 b     0 .00 b     0.46 b     6.00 b
   lilacinus
  Fusarium
                 2.14 a     134.43 a     0.00 b     0.00 b      0.00 b     0.00 b
  oxysporum
Scopulariopsis
                 2.06 a     133.04 b    8.20 ab     1.45 b      1.60 ab   11.25 ab
     sp

Aspergillus sp   2.06 a     134.49 a    10.02 ab    6.07 ab     0.00 b    16.09 ab

   Pochonia
                 2.53 a     134.64 a     3.23 b     8.09 ab     0.00 b    11.32 ab
chlamydosporia

   Control       2.38 a     118.35 d    158.59 a    61.66 a     6.93 a    227.18 a
Effect of various biopesticides and biocides on leaf pest, Udaspes folus of turmeric
                                                 Arutselvi et al., 2011, Tamil Nadu


     Treatment details:
     T1 = Metarhizium anisopliae
      T2 = Beauveria bassiana
      T3 = Trichoderma viride
      T4 = Hirsutella citriformis
      T5 = Nomuraea rileyi
      T6 = Neem extract
      T7 = Imidachloprid
      T8 = Control
Table 13 : Effect of various biopesticides and biocides on mortality leaf pest,
          Udaspes folus of turmeric
                                                    Arutselvi et al., 2011, Tamil Nadu

                       II instar larva                          III instar larva
Treatment
             Day 3       Day 4           Day 5      Day 3            Day 4           Day 5
T1( M a) 0.67 0.58c 3.33 0.58C       4.67 0.58c   1.67 0.58b         2 1d          4.7 0.58c

 T2 (B b) 0.67 0.58d 2.33 0.58d      4.33 0.58c      1 1d         3.33 0.58f       4.33 1.15d

 T3(T v) 0.33 0.58f 1.33 0.58f       2.67 0.58d   0.67 0.58de     2.33 0.58c       2.67 0.58e

 T4(H c) 1.67 0.58b       4 0b       6.33 0.58b   1.33 0.58c      3.33 0.58b       7.67 0.58b

 T5(N r) 0.33 0.58e 1.67 0.58e       2.67 0.58d   0.33 0.58b         2 0d          2.33 0.58e

T6 (Neem)    1 0e      1.67 0.58e    2.67 0.58d   1.33 0.58c         2 0d          4.33 0.58d

T7(Imida) 2.67 0.58a      6 1a       8.67 0.58a      3 0a         6.67 0.58a       9.67 0.58a
   T8
             0 0f         1 1f       2.33 0.58e   0.33 0.58f         0 0e            1 1f
 Control
CD @ 5%       0.8         1.12           1.02        0.97              1              0.89
Table 14 : Effect of various fungal applications on various growth and yield
          characters in turmeric
                                                  Arutselvi et al., 2011, Tamil Nadu

               Plant height No. of leaves         Disease        Fresh rhizome
  Treatment
                  (cm)        affected         incidence(%)        Yield (g)

   T1( M a)       131 1        3.67 0.58             37            420.71 1.43
   T2 (B b)    127.33 0.76     3.67 0.58            37.5           340.84 4.37
    T3(T v)    141.67 1.5       3.00 1              33.3           426.29 6.23
                                                                   428.86 3.25
   T4(H c)     137.33 2.1      2.67 0.58            22.2

    T5(N r)     130.31 13      3.33 0.58            36.3           408.05 3.77
  T6 (Neem) 124.67 2.1         3.67 1.58             50           375.99 12.04
  T7(Imida) 135.33 1.1         2.33 0.58            38.4          370.75 11.62
  T8 Control     128 20        6.33 0.58           41.60           339.47 9.82
  CD @ 5%          4.03           1.29               --               18.9
Table 15 : Formulation of natural insecticide against mortality rate of Panchaetothrips
           indicus in Curcuma longa L. of PTS and Erode varieties in lab conditions
                                                         Arutselvi et al ., 2012, Tamil Nadu

    VARIETY                       PTS                                 ERODE
     conc            10%          15%          20%          10%          15%          20%

Azadiracta indica 21.67±1.5e 23±10e 26.33±0.6d 22.67±1.2d 20.67±1.2d      23±1d
 Neem Kernel -
 Vitex negundo 25.33%±1.5f 25.67±1.2f 27.67±1.5e   23±1d    23.67±1.5e 25.33±0e
Chrysanthemum
  cinearifolium 21.67±1.5e 21.67±2.1d 25.67±1.5d 22.67±1.5d 22.67±1.5e 24.67±0.6de

Gloriosa superba 19.33±0.6d      21±1d        23±1c        18±1c      19.33±0.6d 22.33±0.6d

   Aloe vera      10.33±1.5b 13.33±1.5b       19±1b      16.33±1.2c 15.67±2.1c 19.33±0.6e
    Ocimum.
  tenuiflorum      12.67±2c    17.33±1.5c     19±1b       1.3±0.6a      12±0b     14.67±1.5b

 Imidachloprid    29.33±0.6g     29±1g      29.33±1.2f     27±1e      26.67±1.5f 26.33±0.6f

    Control        0.33±0.6a      3±1a      1.67±1.2a       2±1b      1.67±0.6a       1±0a
B.N : Zingiber officinale R.

Family: Zingiberaceae

Order: Scitaminae

Active principle: Zingerone / Gingerol

Origin: South East Asia
• Commerce - dried rhizome.
• Marketed as raw ginger, dry ginger, bleached ginger, ginger
  oil, oleoresin, beer, wine, squash etc.
• Dry ginger has good demand abroad especially in the Middle
  East markets.
• India is the largest exporter of dry ginger.
• Ginger is cultivated in almost all states in India.
• Major growing states are

     Kerala, Orissa, Meghalaya, Himachal Pradesh and Karnataka.
Table 16: Area, production and productivity of ginger.
                                                     Anon., 2011

                                                         Productivity
    Year             Area (ha)       Production (tons)
                                                          (tons/ ha)
  2003 - 04           1,07,780           5,45,280            4.3
  2004 - 05           1,14,730           6,47,160            4.6
  2005 - 06           1,25,847           8,10,934            4.9
  2006 - 07           1,29,014           7,21,539            5.3
  2007 - 08           1,20,056           7,10,476            5.2
  2008 - 09           1,38,479           7,95,028            5.8
 2010 - 2011          1,49,576           8,25,635            5.9
Traditional practices in ginger cultivation
                                      Prakash et al., 2004

 Selection of seed rhizome
 Sunning and tiring
Pre-sowing treatment
Land preparation
 Planting
Mixed crops
Harvesting
 Drying
Effect of Azospirillum and nutrient on yield, disease incidence and quality
 of ginger cv. Suprabha.
                                                 Dash et al., 2008, Orissa

Treatment details:
   T1 = FYM (10 t/ ha)
   T2 = FYM (20 t/ ha)
   T3 = Azospirillum (10 kg/ ha) + FYM (10 t/ ha)
   T4 = Azospirillum (10 kg/ ha) + FYM (20 t/ ha)
   T5 = N 30% + Azospirillum (10 kg/ ha) + FYM (10 t/ ha)
   T6 = N 75% + Azospirillum (10 kg/ ha) + FYM (10 t/ ha)
   T7 = N 100% + Azospirillum (10 kg/ ha) + FYM (10 t/ ha)
   T8 = RDF ( NPK - 100:50:50 kg/ha )
Table 17: Effect of Azospirillum and nutrient on yield, disease incidence and quality
         of ginger cv. Suprabha.
                                                             Dash et al., 2008, Orissa

                  Fresh
                             Rhizome          Essential Oleoresin
     Treatment   rhizome                                          Benefit: Cost
                             rot (%)           oil (%)    (%)
               yield (t/ ha)
          T1           9.54          21          1.0          4.6          1.27
          T2          10.47          17          1.2          4.8          1.37
          T3          10.23          16          1.0          5.0          1.36
          T4           11.04         14          1.2          5.2          1.44
          T5          13.65          12          1.2          5.3          1.80
          T6          15.12          13          1.0          5.4          1.97
          T7          18.70          11          1.3          5.8          3.46
          T8          17.30          18          1.3          5.2          3.44
    C.D. @ 5%          1.35         1.05         0.09         NS
The effect of AM fungal isolates on the development and oleoresin production
 of micropropagated Zingiber officinale
                                                  Maicon et al., 2008, Brazil


Treatment details:
 Ctl = Control
Mix= Mix of all four isolates
P= Phosphorous
Sh= Scutellospora heterogama
Gd= Gigaspora decipiens
Ak= Acaulospora koskei
Ec= Entrophospora colombiana
Table 18 : The effect of AM fungal isolates on vegetative development of
           micropropagated Zingiber officinale (120 and 210 DAP)
                                                        Maicon et al., 2008, Brazil

                Shoot height          Shoot dry        Shoot height       Shoot dry
 Treatments
                   (cm)              biomass (g)          (cm)           biomass (g)
   Control      3.38    1.50 b      0.056    0.02 bc   3.54   1.36 c    0.061   0.046 a

 Phosphorus 8.18        1.28 a      0.100   0.019 a    7.90   2.32 ab   0.085   0.021 a

     Mix        8.98    13.6 a      0.092   0.17 ab    9.22   1.51 a    0.093   0.038 a
Scutellospora
                4.44    1.60 b      0.054    0.012 c   4.16   1.17 c    0.048   0.031 a
 heterogama
  Gigaspora
                6.10   1.85 ab 0.080        0.029 abc 5.46    1.58 bc   0.061   0.002 a
  decipiens
 Acaulospora
                6.40   2.48 ab 0.082        0.020 abc 10.14    2.35 a   0.092   0.036 a
    koskei
Entrophospora
                6.46   0.68 ab 0.070        0.000 abc 5.56    0.74 bc   0.071   0.003 a
 colombiana
 VAM – 10 ml / 400 ml plastic pot
Table 19: Spore numbers and percentage of mycorrhizal root colonization in
           micro propagated ginger inoculated with different AM Fungi.
                                                    Maicon et al., 2008, Brazil


                  Mycorrhizal colonization (%)       Spore numbers (in 30 g soil)
 Treatments
                     120 d             210 d               120 d             210 d

     Mix         43.45   21.30 a   23.40   8.46 b    154     37.42 a   260    129.34 a

 Scutellospora
                 14.76   9.04 a     5.75   1.30 b    105    121.24 a    60    49.58 a
  heterogama
  Gigaspora
                 17.80   10.00 b   58.95   6.13 a     49    32.22 a     53    41.42 a
  decipiens
 Acaulospora
                 29.82   12.47 a   28.42   16.04 a   123     90.76 a   298    166.45 a
    koskei
Entrophospora
                 26.50   13.75 a    5.39   3.85 a     25    37.14 a    97    136.02 a
 colombiana
Table 20: Rhizome fresh biomass and levels of oleoresin after 210 days of
          micro propagated ginger plants inoculated with different AM
          Fungi                           Maicon et al., 2008, Brazil

                                                  Yield of oleoresin
           Treatments       Fresh biomass (g)
                                                         (%)

             Control         0.1454   0.2333            0.99

          P (25 mg/ kg )     0.3471   0.1836            1.60

               Mix           0.2730   0.1994            1.02
           Scutellospora
                             0.1000   0.2040            1.48
            heterogama
             Gigaspora
                             0.2166   0.2113            1.02
             decipiens
            Acaulospora
                             0.3331   0.2445            1.58
              koskei
           Entrophospora
                             0.1466   0.1488            0.72
            colombiana
C      M      P     MP                      C      M         P      MP


C = Control, M = Mycorrihizal, P = Phosphorous, MP = Mycorrihizal +Phosphorous


Fig 4: Effects of AM fungi and phosphorous fertilization on post vitro
                      growth of micro propagated ginger
                                         Rosilda et al., 2010, Brazil
Table 21 : Shoot, root and rhizome biomass of micro propagated ginger after
           five months under distinct mycorrhizal and phosphorous treatments
                                                   Rosilda et al., 2010, Brazil



      Treatment      Shoot wt (g/plt) Root wt (g/plt) Rhizome wt (g/plt)


       Control         0.17    0.07 b        0.03   0.01 b   0.06   0.08 b


     Mycorrhiza        1.00    0.13 a        0.20   0.08 a   0.19   0.07 a


     P (25 mg/kg)      0.84    0.17 a        0.22   0.05 a   0.20   0.07 a


          MP           0.95    0.13 a        0.20   0.09 a   0.20   0.02 a


     Spore density – 416 spores/50 g soil)
chemical propertiers of Vermicompost and biogas slurry on oven
Table 22 : Productivity of ginger influenced by Vermicompost and biogas
                                   dry basis
          slurry as amendment in saline soils
                                                   Rafiq et al., 2009, Pakistan



      Chemical                Vermicompost               Biogas slurry
     propertiers
    (EC = dS m -1)                    1.8                       6.7
         pH                          6.91                      8.36
       N (%)                          1.8                       1.6
       P (%)                         0.58                      1.65
       K (%)                         0.71                      0.60
       Na (%)                        0.09                      0.23
Productivity of ginger by amendment of vermicompost and
 biogas slurry in saline soils
                                   Rafiq et al., 2009, Pakistan


Treatment details
T1 = Control
T2 = Vermicompost (VC-500 g/20 kg of soil)
T3 = Biogas slurry ( BS – 500 ml/20 kg of soil)
T4 = T2 + T3
Treatments induced after 3 and 7 months of sowing
Fig 5: Productivity of ginger by amendment of vermicompost and
       biogas slurry in saline soils
                                      Rafiq et al., 2009, Pakistan
Fig 6: Productivity of ginger by amendment of vermicompost and
       biogas slurry in saline soils
                                     Rafiq et al., 2009, Pakistan
Fig 7: Productivity of ginger by amendment of vermicompost and
        biogas slurry in saline soils
                                      Rafiq et al., 2009, Pakistan
Fig 8: Productivity of ginger by amendment of vermicompost and
        biogas slurry in saline soils
                                      Rafiq et al., 2009, Pakistan
Table 23 : Evaluation of fungal bioagents for suppression of root knot
              nematodes infesting in ginger
                                                    Santosh et al., 2008, Calicut


                                          Yield                       Nematodes/g root
    Treatment                      (kg - 3 X 1 m bed)
                              1             2           Mean         1           2         Mean

      Control               3.83 b        2.46 c        3.98 c    13.49 b     35.31 b 24.40 b

P. chlamydosporia           5.90 a        5.29 a        5.83 a     2.88 a     1.01 a       1.95 a

   T. harzianum             5.69 a        5.27 a        5.15 a    7.68 ab     6.26 ab 6.97 ab

  F. oxysporoum             4.46 b        5.04 a     4.75 ab     37.55 ab     9.79 ab 23.67 b

       Mean                 4.97          4.77                      15.4       13.09

1 - Incorporation in soil      2 - rhizome coating        Means are of four replications
Bio-intensive management of rhizome rot of ginger under field conditions
                                     Singh and Tomar, 2009, Chhattisgarh



Treatment details
T1 = Control
T2 = Seed treatment with hot water 510c for 10min
T3 = Seed treatment with Mancozeb (3gm L-1 for 30min)
T4 = Seed treatment with T. harzianum 20g L-1 water for 30min
T5 = Seed treatment with hot water 510c for 10min + T3
T6 = Seed treatment with hot water 510c+100gm T. harzianum in 1Kg
    neem cake at sowing time
T7 = Application of neem cake 1Kg in soil at the time of sowing
T8 = Neem cake 1Kg + 100gm T. harzianum in 3Kg FYM mixed for 7
    days before sowing and watering regularly
Table 24: Bio-intensive management of rhizome rot of ginger under field
          conditions
                                         Singh and Tomar, 2009, Chhattisgarh

                                     Pooled Disease                         Pooled
             Disease incidence (%)                       Yield t ha-1
Treatments                           incidence (%)                         Yield t /ha

              2005-06     2006-07                     2005-06    2006-07
    T1          19.5        17.5          18.5          6.8       10.19       8.5
    T2           20          18           19            6.3        10.9       8.6

    T3          20.5         18          19.25          5.8         9         8.4

    T4           22         20.5         21.25          5.5       11.05       8.3

    T5          16.5        14.5          15.5          7.5       11.85       9.8

    T6           8          5.5           6.75          8.2       15.87      12.03

    T7           14          14           14            7.1       12.46       9.7

    T8           6.5        4.5           5.5           9.8       17.08       13.4
CD(0.05%)       1.73        1.69          1.54         1.72        1.37       1.46
Evaluation of biological management module packages against
      rhizome rot of ginger
                                     Savita and Prasad, 2009, Jharkhand

Treatment details:
  T1 = Rhizome treatment with T. harzianum @ 6 g/L
 T2 = Soil amendment with Pongamia glabra oil cake @ 20 q/ha
 T3 = Mulching with Eucalyptus citriodora leaves @ 2.5 kg/m2
 T4 = Rhizome treatment with T. harzianum @ 6 g/L + soil
      amendment with Pongamia glabra oil cake @ 20 q/ha
 T5 = Rhizome treatment with T. harzianum @ 6 g/L + mulching with
      Eucalyptus citriodora leaves @ 2.5 kg/m2
 T6 = Soil amendment with Pongamia glabra oil cake @ 20 q/ha +
      mulching with Eucalyptus citriodora leaves @ 2.5 kg/m2
 T7 = Rhizome treatment with T. harzianum @ 6 g/L + soil
      amendment with Pongamia glabra oil cake @ 20 q/ha +
      mulching with Eucalyptus citriodora leaves @ 2.5 kg/m2
 T8 = Control
Table 25 : Evaluation of biological management module packages against rhizome
           rot of ginger
                                           Savita and Prasad, 2009, Jharkhand

 Treatments Germination(%)    Incidence (%)   Disease control(%)   Yield (q/ha)
     T1            75             33.75             18.83             76.68
     T2           71.25           38.33              7.82             74.4
     T3           67.08           37.92              8.8              71.1
     T4           75.83           29.58             28.86             87.41
     T5           73.33           31.25             24.83             79.08
     T6           71.25           37.08             10.82             76.24
     T7            80             23.33             43.89             97.26
   Control        62.92           41.58               -               69.2
   SEm            2.53             1.86                               3.17
  CD (5%)          NS              5.38                               9.18
   CV%            7.52             9.02                               6.95
• Organic inputs are capable of replacing chemicals from
  agriculture
• Organic farming safeguards soil and human health
• Helps in production of quality food
• It helps in maintaining the yields on long run
• Eco friendly, sustainable and residue free
Ravi final

More Related Content

Viewers also liked

Some medicinal roots and rhizomes
Some medicinal roots and rhizomesSome medicinal roots and rhizomes
Some medicinal roots and rhizomesMarwa A.A. Fayed
 
integrated nutrient management on productivity and soil fertility in rice bas...
integrated nutrient management on productivity and soil fertility in rice bas...integrated nutrient management on productivity and soil fertility in rice bas...
integrated nutrient management on productivity and soil fertility in rice bas...2436524365
 
Importance of integrated nutrient management
Importance of integrated nutrient managementImportance of integrated nutrient management
Importance of integrated nutrient managementMahmooda Buriro
 
Integtared nutrient supply & management
Integtared nutrient supply & managementIntegtared nutrient supply & management
Integtared nutrient supply & managementCSK HPKV, Palampur, HP
 

Viewers also liked (6)

1 integrated nutrient management in various agroecosystems in tropics
1 integrated nutrient management in various agroecosystems in tropics1 integrated nutrient management in various agroecosystems in tropics
1 integrated nutrient management in various agroecosystems in tropics
 
Some medicinal roots and rhizomes
Some medicinal roots and rhizomesSome medicinal roots and rhizomes
Some medicinal roots and rhizomes
 
integrated nutrient management on productivity and soil fertility in rice bas...
integrated nutrient management on productivity and soil fertility in rice bas...integrated nutrient management on productivity and soil fertility in rice bas...
integrated nutrient management on productivity and soil fertility in rice bas...
 
INTEGRATED NUTRIENT MANAGEMENT FOR SUSTAINABLE VEGETABLE CROP PRODUCTION
INTEGRATED NUTRIENT MANAGEMENT FOR SUSTAINABLE VEGETABLE CROP PRODUCTION INTEGRATED NUTRIENT MANAGEMENT FOR SUSTAINABLE VEGETABLE CROP PRODUCTION
INTEGRATED NUTRIENT MANAGEMENT FOR SUSTAINABLE VEGETABLE CROP PRODUCTION
 
Importance of integrated nutrient management
Importance of integrated nutrient managementImportance of integrated nutrient management
Importance of integrated nutrient management
 
Integtared nutrient supply & management
Integtared nutrient supply & managementIntegtared nutrient supply & management
Integtared nutrient supply & management
 

Similar to Ravi final

Effect of integrated nutrient management and mulching practices on performanc...
Effect of integrated nutrient management and mulching practices on performanc...Effect of integrated nutrient management and mulching practices on performanc...
Effect of integrated nutrient management and mulching practices on performanc...PRAVEEN KUMAR
 
IMPORTANCE OF MICRONUTRIENT AND BIOFERTILIZERS FOR ENHANCEMENT OF PULSE PRODU...
IMPORTANCE OF MICRONUTRIENT AND BIOFERTILIZERS FOR ENHANCEMENT OF PULSE PRODU...IMPORTANCE OF MICRONUTRIENT AND BIOFERTILIZERS FOR ENHANCEMENT OF PULSE PRODU...
IMPORTANCE OF MICRONUTRIENT AND BIOFERTILIZERS FOR ENHANCEMENT OF PULSE PRODU...UAS, Dharwad
 
Nutrient management in kharif fodder crops.pptx
Nutrient management in kharif fodder crops.pptxNutrient management in kharif fodder crops.pptx
Nutrient management in kharif fodder crops.pptxanju bala
 
An evaluation of the phytochemical and nutrient composition
  An evaluation of the phytochemical and nutrient composition  An evaluation of the phytochemical and nutrient composition
An evaluation of the phytochemical and nutrient compositionAlexander Decker
 
Integrated nutrient management influence on crop yields in dryland agriculture
Integrated nutrient management influence on crop yields  in dryland agricultureIntegrated nutrient management influence on crop yields  in dryland agriculture
Integrated nutrient management influence on crop yields in dryland agriculturearchana reddy
 
Hi-tech Pre-shooting and Post-shooting Horticultural Technologies in Banana.pptx
Hi-tech Pre-shooting and Post-shooting Horticultural Technologies in Banana.pptxHi-tech Pre-shooting and Post-shooting Horticultural Technologies in Banana.pptx
Hi-tech Pre-shooting and Post-shooting Horticultural Technologies in Banana.pptxDr. Kalpesh Vaghela
 
Effect of Samved Fugall (CO2 absorbent) on BT Cotton
Effect of Samved Fugall (CO2 absorbent) on BT CottonEffect of Samved Fugall (CO2 absorbent) on BT Cotton
Effect of Samved Fugall (CO2 absorbent) on BT CottonBhushan Jambhekar
 
Effect of Organic and Inorganic Manurial Combinations on Turmeric (Curcuma Lo...
Effect of Organic and Inorganic Manurial Combinations on Turmeric (Curcuma Lo...Effect of Organic and Inorganic Manurial Combinations on Turmeric (Curcuma Lo...
Effect of Organic and Inorganic Manurial Combinations on Turmeric (Curcuma Lo...inventionjournals
 
Effect of raw materials and methods on quality and process of composting.
Effect of raw materials and methods on quality and process of composting.Effect of raw materials and methods on quality and process of composting.
Effect of raw materials and methods on quality and process of composting.Tamilnadu agricultural university
 
Current Research on Nano Urea – Problems & Prospectus
Current Research on Nano Urea – Problems & ProspectusCurrent Research on Nano Urea – Problems & Prospectus
Current Research on Nano Urea – Problems & ProspectusAkshay Duddumpudi
 
Herbicide combination for control of complex weed flora in transplanted rice.
Herbicide combination for control of complex weed flora in transplanted rice.Herbicide combination for control of complex weed flora in transplanted rice.
Herbicide combination for control of complex weed flora in transplanted rice.shikharverma26
 
EFFECTS OF ORGANIC FARMING
EFFECTS OF ORGANIC FARMINGEFFECTS OF ORGANIC FARMING
EFFECTS OF ORGANIC FARMINGyamuna1427
 
CROP RESIDUE MANAGEMENT IN Major cropping system.pptx
CROP  RESIDUE  MANAGEMENT IN Major cropping system.pptxCROP  RESIDUE  MANAGEMENT IN Major cropping system.pptx
CROP RESIDUE MANAGEMENT IN Major cropping system.pptxUAS, Dharwad
 
Biofortification of cereal crops to fight hunger.pptx
Biofortification of cereal crops to fight hunger.pptxBiofortification of cereal crops to fight hunger.pptx
Biofortification of cereal crops to fight hunger.pptxajay777agrarian
 

Similar to Ravi final (20)

Response of micronutrient application in soybean under Indian condition
Response of micronutrient application in soybean under Indian conditionResponse of micronutrient application in soybean under Indian condition
Response of micronutrient application in soybean under Indian condition
 
Impact of Secondary and Micronutrients on Fruit and Vegetable Production and ...
Impact of Secondary and Micronutrients on Fruit and Vegetable Production and ...Impact of Secondary and Micronutrients on Fruit and Vegetable Production and ...
Impact of Secondary and Micronutrients on Fruit and Vegetable Production and ...
 
Effect of integrated nutrient management and mulching practices on performanc...
Effect of integrated nutrient management and mulching practices on performanc...Effect of integrated nutrient management and mulching practices on performanc...
Effect of integrated nutrient management and mulching practices on performanc...
 
IMPORTANCE OF MICRONUTRIENT AND BIOFERTILIZERS FOR ENHANCEMENT OF PULSE PRODU...
IMPORTANCE OF MICRONUTRIENT AND BIOFERTILIZERS FOR ENHANCEMENT OF PULSE PRODU...IMPORTANCE OF MICRONUTRIENT AND BIOFERTILIZERS FOR ENHANCEMENT OF PULSE PRODU...
IMPORTANCE OF MICRONUTRIENT AND BIOFERTILIZERS FOR ENHANCEMENT OF PULSE PRODU...
 
Nutrient management in kharif fodder crops.pptx
Nutrient management in kharif fodder crops.pptxNutrient management in kharif fodder crops.pptx
Nutrient management in kharif fodder crops.pptx
 
An evaluation of the phytochemical and nutrient composition
  An evaluation of the phytochemical and nutrient composition  An evaluation of the phytochemical and nutrient composition
An evaluation of the phytochemical and nutrient composition
 
Integrated nutrient management influence on crop yields in dryland agriculture
Integrated nutrient management influence on crop yields  in dryland agricultureIntegrated nutrient management influence on crop yields  in dryland agriculture
Integrated nutrient management influence on crop yields in dryland agriculture
 
Hi-tech Pre-shooting and Post-shooting Horticultural Technologies in Banana.pptx
Hi-tech Pre-shooting and Post-shooting Horticultural Technologies in Banana.pptxHi-tech Pre-shooting and Post-shooting Horticultural Technologies in Banana.pptx
Hi-tech Pre-shooting and Post-shooting Horticultural Technologies in Banana.pptx
 
Effect of Samved Fugall (CO2 absorbent) on BT Cotton
Effect of Samved Fugall (CO2 absorbent) on BT CottonEffect of Samved Fugall (CO2 absorbent) on BT Cotton
Effect of Samved Fugall (CO2 absorbent) on BT Cotton
 
Effect of Organic and Inorganic Manurial Combinations on Turmeric (Curcuma Lo...
Effect of Organic and Inorganic Manurial Combinations on Turmeric (Curcuma Lo...Effect of Organic and Inorganic Manurial Combinations on Turmeric (Curcuma Lo...
Effect of Organic and Inorganic Manurial Combinations on Turmeric (Curcuma Lo...
 
INM MUSTARD
INM MUSTARDINM MUSTARD
INM MUSTARD
 
Effect of raw materials and methods on quality and process of composting.
Effect of raw materials and methods on quality and process of composting.Effect of raw materials and methods on quality and process of composting.
Effect of raw materials and methods on quality and process of composting.
 
Effect of Zn, Fe and B on Uptake, Yield and Quality of sunflower
Effect of Zn, Fe and B on Uptake, Yield and Quality of sunflowerEffect of Zn, Fe and B on Uptake, Yield and Quality of sunflower
Effect of Zn, Fe and B on Uptake, Yield and Quality of sunflower
 
Effect of Foliar Application of Liquid Organic Fertilizers on crop growth and...
Effect of Foliar Application of Liquid Organic Fertilizers on crop growth and...Effect of Foliar Application of Liquid Organic Fertilizers on crop growth and...
Effect of Foliar Application of Liquid Organic Fertilizers on crop growth and...
 
Current Research on Nano Urea – Problems & Prospectus
Current Research on Nano Urea – Problems & ProspectusCurrent Research on Nano Urea – Problems & Prospectus
Current Research on Nano Urea – Problems & Prospectus
 
Herbicide combination for control of complex weed flora in transplanted rice.
Herbicide combination for control of complex weed flora in transplanted rice.Herbicide combination for control of complex weed flora in transplanted rice.
Herbicide combination for control of complex weed flora in transplanted rice.
 
EFFECTS OF ORGANIC FARMING
EFFECTS OF ORGANIC FARMINGEFFECTS OF ORGANIC FARMING
EFFECTS OF ORGANIC FARMING
 
Effect of sowing methods and weed management practices on wheat
Effect of sowing methods and weed management practices on wheatEffect of sowing methods and weed management practices on wheat
Effect of sowing methods and weed management practices on wheat
 
CROP RESIDUE MANAGEMENT IN Major cropping system.pptx
CROP  RESIDUE  MANAGEMENT IN Major cropping system.pptxCROP  RESIDUE  MANAGEMENT IN Major cropping system.pptx
CROP RESIDUE MANAGEMENT IN Major cropping system.pptx
 
Biofortification of cereal crops to fight hunger.pptx
Biofortification of cereal crops to fight hunger.pptxBiofortification of cereal crops to fight hunger.pptx
Biofortification of cereal crops to fight hunger.pptx
 

Ravi final

  • 1.
  • 3.
  • 4.
  • 5. UNIVERSITY OF HORTICULTURAL SCIENCES, BAGALKOT Kittur Rani Channamma College of Horticulture, Arabhavi.
  • 6. Organic farming “Organic farming is a system which avoids or largely excludes the use of synthetic inputs (such as fertilizers, pesticides, hormones, feed additives etc) and to the maximum extent feasible relay upon crop rotations, crop residues, animal manures, on-farm organic waste, mineral grade rock additives and biological system of nutrient mobilization and plant protection”. USDA study team
  • 7. Biofertilizers Pest Crop rotation management Organic farming Disease Weed management management
  • 8. Commonly used microbes in Organic farming Pseudomonas AM fungi
  • 9. Why organic farming ?  Soil is a medium  Biological activity  Living soil  Use of inorganic fertilizers - eutrophication, increased soil acidity, enhanced nitrate content in drinking water etc  Indiscriminate use of chemicals – reduced diversity, reduced soil fertility and hazards on health
  • 10.
  • 11. Aims of organic farming Food of high nutritional quality.  Interact in a constructive and life enhancing way with natural systems. Encourage and enhance biological cycles.  Maintain long term fertility of soils.  Use renewable on farm resources  Work with materials which can be recycled.  Minimize all forms of pollutants which may affect the farm environment.
  • 12. B.N : Curcuma longa L. Family: Zingiberaceae Order: Scitaminae Active principle: Curcumin Origin: South East Asia
  • 13.  The ancient and sacred spice of India  Condiment, dye and in cosmetics - It is valued as a spice as well as a colourant.  Widely used in folk medicines and ayurvedic preparations.  India - Major production and export, monopoly in production.  Andhra Pradesh, Maharashtra, Tamilnadu, and Bihar are the important states producing turmeric.
  • 14. Fig 1: Area share under major spices crops in India. Anon., 2011
  • 15. Myanmar Nigeria 4% 3% China Bangladesh 8% 3% Others 4% India 78% Fig 2: World production scenario of turmeric in different countries. Anon., 2011
  • 16. Gujarat Meghalaya Kerala West Bengal 2% 2% 1% 4% Others Orissa 5% 7% Andra Pradesh Karnataka 47% 11% Tamil Nadu 21% Fig 3: Production scenario of turmeric in different states. Anon., 2011
  • 17. Traditional practices in turmeric cultivation Sundararaman et al., 2004  Seed rhizome selection  Pre-planting treatments  Land preparation  Mulching  Mixed cropping  Inter-cropping  Crop protection  Harvesting
  • 19. Response of bioregulants on nutrient uptake of turmeric cv. BSR 2 Sathish and Paramaguru, 2010, Coimbatore Treatment details: T1 = Panchagavya 2% foliar spray T2 = Panchagavya 3% foliar spray T3 = Panchagavya 4% foliar spray T4 = Vermiwash 10% spray T5 = Vermiwash 20% spray T6 = Humic acid 0.05% foliar spray T7 = Humic acid 0.1% foliar spray T8 = Humic acid 0.15% foliar spray T9 = Extended EM 1% foliar spray T10 = Extended EM 2% foliar spray T11 = Extended EM 3% foliar spray T12 = 100% RDF T13 = Control Treatments imposed after 1 month of sowing
  • 20. Table 1: Response of Bioregulants on nutrient uptake of turmeric cv. BSR 2 Sathish and Paramaguru, 2010 , Coimbatore Nitrogen Phosphorous Potassium Nitrogen Phosphorous Potassium Treatments uptake uptake uptake % % % (kg/ha) (kg/ha) (kg/ha) T1 0.72 0.17 0.71 221.65 50.11 236.4 T2 0.79 0.19 0.77 267.02 58.37 263.5 T3 0.67 0.13 0.65 220.4 49.96 219.4 T4 0.77 0.18 0.74 257.79 45.16 250.62 T5 0.81 0.16 0.69 231.72 55.67 230.12 T6 0.84 0.22 0.88 277.81 64.27 270.52 T7 0.65 0.13 0.64 216.1 42.12 221.7 T8 0.6 0.15 0.62 226.6 50.37 222.16 T9 0.75 0.17 0.6 260.32 40.24 261.2 T10 0.66 0.14 0.61 244.54 47.6 241.45 T11 0.71 0.11 0.7 234.17 41.51 232.12 T12 0.59 0.12 0.72 222.97 53.61 239.2 T13 0.45 0.1 0.56 201.25 35.8 214.2 Mean 0.6785 0.1562 0.6831 237.1026 48.83 238.66 CD (at5%) 0.0233 0.0081 0.0197 5.2664 1.8517 4.2085 T6 = Humic acid 0.05% foliar spray
  • 21. Treatment details SSP = Single Super Phosphate MRP = Mussorie Rock Phosphate RP = Rock Phosphate GP = Gafsa Phosphate
  • 22. P uptake in turmeric Treatments (kg/ha) SSP 13.6 0 MRP+SSP 13.5 0 RP+SSP 15.70 GP+SSP 13.4 0 FYM+MRP 15.20 FYM+RP 16.50 FYM+GP 16.50 FYM+SSP 15.80 Check 7 .00 CD(P=0.05) 0.51
  • 23. Effect of organic manures on growth, rhizome yield and quality attributes of turmeric Kamal and Yousuf, 2012, Bangladesh Treatment details: T1 = Cowdung @ 15 t/ha T2 = Poultry manure @ 7 t/ha T3 = Mustard cake @ 2 t/ha T4 = Neem cake @ 2 t/ha T5 = Control Treatments imposed 1 week before sowing
  • 24. Table 3 : Effect of organic manures on growth and rhizome yield attributes of turmeric Kamal and Yousuf, 2012, Bangladesh Plant Fresh wt of Dry wt of Treatments No. of No. of Leaf area height rhizomes rhizome leaves tillers/plant (cm2) (cm) (g/plant) (g/plant) T1 Cowdung 73.73 8.13 4.83 36.71 217.8 31.16 (15 t/ha) T2 Poultry 72.8 7.14 5.13 42.12 246.97 38.02 manure (7 t/ha) T3 Mustard 74.33 6.37 5.13 35.62 242.52 33.9 cake(2 t/ha) T4 Neem cake 79.3 8.67 5.4 44.09 256.21 40.35 (2 t/ha) Control 59.37 5.13 3.47 22.17 87.26 13.91 LSD (0.05) 7.474 0.644 0.767 1.02 1.701 1.017
  • 25. Table 4 : Effect of organic manures on rhizome yield and quality attributes of turmeric Kamal and Yousuf, 2012, Bangladesh Fresh rhizome Cured rhizome Curcumin Treatments Curing (%) yield (t/ha) yield (t/ha) content (%) T1 Cowdung (15 t/ha) 21.17 19.21 4.36 3.31 T2 Poultry manure 27.30 19.01 5.18 3.5 (7 t/ha) T3 Mustard cake (2 t/ha) 22.8 19.03 4.59 3.67 T4 Neem cake (2 29.48 5.59 3.73 t/ha) 20.80 T5 (Control) 14.84 16.54 2.38 3.23 LSD(0.05) 0.473 0.309 0.206 0.061
  • 26. Effect of organic manure and biofertilizers on growth and yield of turmeric Madhuri et al., 2006,Nagpur Treatment details: T1 = FYM 10 t/ha T2 = FYM 10 t/ha + Azoto @ 250 g/ 10 kg of seeds T3 = FYM 10 t/ha + PSB @ 250 g/ 10 kg of seeds T4 = FYM 10 t/ha + Azoto @ 250 g/ 10 kg of seeds + PSB @ 250 g/ 10 kg of seeds T5 = Vermicompost 5 t/ha T6 = Vermicompost 5 t/ha + Azoto @ 250 g/ 10 kg of seeds T7 = Vermicompost 5 t/ha + PSB @ 250 g/ 10 kg of seeds T8 = Vermicompost 5 t/ha + Azoto @ 250 g/ 10 kg of seeds + PSB @ 250 g/ 10 kg of seeds T9 = Azotobacter @ 250 g/ 10 kg of seeds T10 = PSB @ 250 g/ 10 kg of seeds T11 = Azoto @ 250 g/ 10 kg of seeds + PSB @ 250 g/ 10 kg of seeds T12 =RDF(120:60:60 kg/ha) T13 = Control
  • 27. Days Height No. of Girth of No. of Treatm Leaf area required Fresh yield B:C of Plant leaves pseudoste tillers/pla ents (cm2) for (q/ha) ratio (cm) /plant m (cm) nt maturity T1 99.7 10.33 1156.22 10.88 2.41 183.48 249.59 1.95:1 T2 103.02 10.75 1190.15 11.07 2.48 182.09 253.52 2.08:1 T3 100.64 10.52 1175.92 11.01 2.44 182.8 252.42 2.01:1 T4 106.59 10.87 1215.27 11.17 2.49 181.48 259.95 2.17:1 T5 91.8 9.81 1027.27 10.46 2.25 186.56 202.33 1.70:1 T6 95.36 9.83 1092.62 1.68 2.33 185.21 224.62 1.74:1 T7 94 9.57 1065.47 10.62 2.28 186.45 207.52 1.71:1 T8 97.39 9.96 1106.12 10.79 2.39 182.65 239.95 1.75:1 T9 88.61 9.05 975.63 11.06 2.29 187.19 189.99 1.61:1 T10 85.85 8.86 929.17 10.16 2.16 187.96 179.59 1.51:1 T11 90.28 9.29 1024.75 10.62 2.39 186.93 194.3 1.84:1 T12 108.96 10.97 1235.18 11.22 2.59 184.52 261.52 2.11:1 T13 83.55 8.64 877.56 10.07 2.08 188.35 174.47 1.40:1 CD at 5.16 0.26 39.23 0.24 0.21 2.12 10.54 5%
  • 28. Effect of Azospirillum, nutrient and FYM on growth and yield of turmeric (Curcuma longa L.) cv. Rajendra Sonia. Singh, 2011, Muzaffarpur Treatment details: T1 = Inorganic N (100%) + Azospirillum (10kg/ ha) + FYM (5 t/ ha) T2 = Inorganic N (75%) + Azospirillum (10kg/ ha) + FYM (5 t/ ha) T3 = Inorganic N (50%) + Azospirillum (10kg/ ha) + FYM (5 t/ ha) T4 = FYM (5 t/ ha) + Azospirillum (10kg/ ha) T5 = FYM (5 t/ ha) T6 = FYM (10 t/ ha) + Azospirillum (10kg/ ha) T7 = FYM (10 t/ ha) T8 =RDF 180: 90: 90 Kg NPK/ ha
  • 29. Table 6: Effect of organic, inorganic and biofertilizer on growth and yield of turmeric (Curcuma longa L.) cv. Rajendra Sonia. Singh, 2011, Muzaffarpur Plant ht No.of No.of leaves/ Yield per Yield Cost : Treatment cm tillers/plt tiller plot (kg) t/ha Benefit T1 119.38 6.11 12.76 16.98 56.61 1:4.86 T2 117.21 5.33 12.46 15.59 51.97 1:5.27 T3 115.08 4.70 12.18 15.11 50.38 1:4.73 T4 109.51 3.91 11.87 13.42 44.74 1:4.24 T5 103.51 3.70 11.53 13.73 45.72 1:4.40 T6 112.00 4.83 12.16 15.03 50.11 1:4.66 T7 108.78 4.25 11.86 14.79 49.31 1:4.65 T8 103.93 3.90 11.66 12.60 42.00 1:4.11 C.D. @5% 4.95 0.59 1.80 1.29 4.32
  • 30. Table 7 : Effect of different kinds of farmyard manure on growth parameters, maturity and yield of turmeric Hossain and Yukio, 2007, Japan 200 days after planting 261 days after planting Plant No. of No .of Maturit Shoot Leaf area Yield Yield Treatments height leaves tillers y period biomass cm2/plant (g/plant) (g/plant) (cm) /plant /plant days (g/plant) 166 20.8 3.2 7447 52.0 98.6 Control 240 68.2 6.1c 7c 1.7a 0.4a 355c 3.2c 10.1d Chicken 175 20.8 3.2 9870 71.6 89.6 133.0 250 manure 7b 2.7a 0.4a 1141b 7.4b 11.2b 15.1c Goat 216 23.8 4.0 13971 90.6 110.8 156.0 261 manure 8a 3.5a 0.9a 1223a 9.4a 5.9a 9.6b Cow 204 21.6 3.6 13031 93.3 112.6 175.4 261 manure 13ab 2.2a 0.5a 556a 7.1a 9.1a 7.8a
  • 31. Table 8 : Chemical composition of chicken manure, goat manure and cow manure Hossain and Yukio, 2007, Japan S Na K Ca Mg Al Fe P Manure mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg type manure manure manure manure manure manure manure manure Chicken 2.38 21.13 1.12 1.41 0.00 0.05 2.86 3.57 manure Goat 0.51 25.01 0.41 0.60 0.01 0.01 1.35 1.12 manure Cow 1.54 7.31 0.42 0.25 0.00 0.02 1.04 1.34 manure
  • 32. Table 9 : Chemical composition of dark-red soil, red, gray soil Hossain and Yukio, 2007, Japan Ca Na Fe K P mg/kg mg/kg mg/kg Soil type mg/kg mg/kg soil soil soil soil soil Dark- 6.39 25.0 30.5 0.52 0.25 red soil Red 10.32 15.80 55.90 0.76 0.26 soil Gray 42.89 204.20 102.40 4.60 0.16 soil
  • 33. Table 10 : Effect of farmyard manure on growth parameters and yield of turmeric cultivated in different soils Hossain and Yukio, 2007, Japan Plant No.of No.of Shoot dry wt Yield (dry) Treatments height (cm) leaves/plant tiller/plant g/plant g/plant Dark-red soil 141 6bc 18.7 2.6cd 2.5 0.5b 41.2 4.7b 39 6d Dark-red soil + 201 5a 24.7 3.1a 4.3 0.4a 104.7 5.5a 219 16b manure Red soil 130 6c 16.2 2.3d 2.3 0.4b 27.8 2.4c 26 4d Red soil + 150 13b 23.2 1.9ab 4.0 0.6a 44.3 3.6b 110 14c manure Gray soil 146 10b 20.2 2.7bc 2.7 0.7b 40.7 3.9b 39 4d Gray soil + 204 12a 26.8 4.1a 4.3 0.7a 103.7 6.8a 255 18a manure Manure – Cow manure
  • 34. Biological control of rhizome rot disease of turmeric Surajit and Apurba, 2008, Nadia West Bengal Treatment details: T1 = (Recommended NPK) Control T2 = (NPK + FYM) T3 = (NPK+ Trichoderma viride + Pseudomonas fluorescence seed treatment ) T4 = (NPK+ Trichoderma viride + Pseudomonas fluorescence as as soil application @ 12.5 kg/ha and 25 kg/ha as basal and top dressing respectively) T5 = (T2 + T3 ) T6 = (T2 + T4 ) T7 = (T2 + T3 + T4 ) T8 = ( T2 + Bacillus subtilis 1 ml/L of water)
  • 35. Table 11 : Biological control of rhizome rot disease of turmeric Surajit and Apurba, 2008, West Bengal Disease incidence (%) % Projected Germination reduction Rhizome yield Treatments First Second yield % in rot over (kg/3m2 plot) observation observation control (ton/ha) T1(Control) 91.11 17.50 19.78 -- 7.75 25.83 T2 88.88 15.72 16.67 15.72 8.33 27.77 T3 95.56 5.57 10.55 46.66 8.83 29.43 T4 93.33 7.23 8.69 56.07 8.75 29.17 T5 93.33 5.62 7.19 63.65 8.8 29.33 T6 95.56 7.23 7.23 63.45 9.00 30.00 T7 95.56 5.62 7.23 63.45 9.25 30.83 T8 91.11 15.58 17.5 11.53 8.2 27.33 CD @ 5% -- 4.72 4.48 -- 1.24 --
  • 36. Table 12: Evaluation of fungal biocontrol agents for suppression of root knot nematodes infesting turmeric Santosh et al., 2008, Calicut Nematode population (per g of root) No . of Height of Treatments Eggs Juveniles Females Total tillers plant (cm) Paccilomyces 2.24 a 129.13 c 5.54 b 0 .00 b 0.46 b 6.00 b lilacinus Fusarium 2.14 a 134.43 a 0.00 b 0.00 b 0.00 b 0.00 b oxysporum Scopulariopsis 2.06 a 133.04 b 8.20 ab 1.45 b 1.60 ab 11.25 ab sp Aspergillus sp 2.06 a 134.49 a 10.02 ab 6.07 ab 0.00 b 16.09 ab Pochonia 2.53 a 134.64 a 3.23 b 8.09 ab 0.00 b 11.32 ab chlamydosporia Control 2.38 a 118.35 d 158.59 a 61.66 a 6.93 a 227.18 a
  • 37. Effect of various biopesticides and biocides on leaf pest, Udaspes folus of turmeric Arutselvi et al., 2011, Tamil Nadu Treatment details: T1 = Metarhizium anisopliae T2 = Beauveria bassiana T3 = Trichoderma viride T4 = Hirsutella citriformis T5 = Nomuraea rileyi T6 = Neem extract T7 = Imidachloprid T8 = Control
  • 38. Table 13 : Effect of various biopesticides and biocides on mortality leaf pest, Udaspes folus of turmeric Arutselvi et al., 2011, Tamil Nadu II instar larva III instar larva Treatment Day 3 Day 4 Day 5 Day 3 Day 4 Day 5 T1( M a) 0.67 0.58c 3.33 0.58C 4.67 0.58c 1.67 0.58b 2 1d 4.7 0.58c T2 (B b) 0.67 0.58d 2.33 0.58d 4.33 0.58c 1 1d 3.33 0.58f 4.33 1.15d T3(T v) 0.33 0.58f 1.33 0.58f 2.67 0.58d 0.67 0.58de 2.33 0.58c 2.67 0.58e T4(H c) 1.67 0.58b 4 0b 6.33 0.58b 1.33 0.58c 3.33 0.58b 7.67 0.58b T5(N r) 0.33 0.58e 1.67 0.58e 2.67 0.58d 0.33 0.58b 2 0d 2.33 0.58e T6 (Neem) 1 0e 1.67 0.58e 2.67 0.58d 1.33 0.58c 2 0d 4.33 0.58d T7(Imida) 2.67 0.58a 6 1a 8.67 0.58a 3 0a 6.67 0.58a 9.67 0.58a T8 0 0f 1 1f 2.33 0.58e 0.33 0.58f 0 0e 1 1f Control CD @ 5% 0.8 1.12 1.02 0.97 1 0.89
  • 39. Table 14 : Effect of various fungal applications on various growth and yield characters in turmeric Arutselvi et al., 2011, Tamil Nadu Plant height No. of leaves Disease Fresh rhizome Treatment (cm) affected incidence(%) Yield (g) T1( M a) 131 1 3.67 0.58 37 420.71 1.43 T2 (B b) 127.33 0.76 3.67 0.58 37.5 340.84 4.37 T3(T v) 141.67 1.5 3.00 1 33.3 426.29 6.23 428.86 3.25 T4(H c) 137.33 2.1 2.67 0.58 22.2 T5(N r) 130.31 13 3.33 0.58 36.3 408.05 3.77 T6 (Neem) 124.67 2.1 3.67 1.58 50 375.99 12.04 T7(Imida) 135.33 1.1 2.33 0.58 38.4 370.75 11.62 T8 Control 128 20 6.33 0.58 41.60 339.47 9.82 CD @ 5% 4.03 1.29 -- 18.9
  • 40. Table 15 : Formulation of natural insecticide against mortality rate of Panchaetothrips indicus in Curcuma longa L. of PTS and Erode varieties in lab conditions Arutselvi et al ., 2012, Tamil Nadu VARIETY PTS ERODE conc 10% 15% 20% 10% 15% 20% Azadiracta indica 21.67±1.5e 23±10e 26.33±0.6d 22.67±1.2d 20.67±1.2d 23±1d Neem Kernel - Vitex negundo 25.33%±1.5f 25.67±1.2f 27.67±1.5e 23±1d 23.67±1.5e 25.33±0e Chrysanthemum cinearifolium 21.67±1.5e 21.67±2.1d 25.67±1.5d 22.67±1.5d 22.67±1.5e 24.67±0.6de Gloriosa superba 19.33±0.6d 21±1d 23±1c 18±1c 19.33±0.6d 22.33±0.6d Aloe vera 10.33±1.5b 13.33±1.5b 19±1b 16.33±1.2c 15.67±2.1c 19.33±0.6e Ocimum. tenuiflorum 12.67±2c 17.33±1.5c 19±1b 1.3±0.6a 12±0b 14.67±1.5b Imidachloprid 29.33±0.6g 29±1g 29.33±1.2f 27±1e 26.67±1.5f 26.33±0.6f Control 0.33±0.6a 3±1a 1.67±1.2a 2±1b 1.67±0.6a 1±0a
  • 41.
  • 42. B.N : Zingiber officinale R. Family: Zingiberaceae Order: Scitaminae Active principle: Zingerone / Gingerol Origin: South East Asia
  • 43. • Commerce - dried rhizome. • Marketed as raw ginger, dry ginger, bleached ginger, ginger oil, oleoresin, beer, wine, squash etc. • Dry ginger has good demand abroad especially in the Middle East markets. • India is the largest exporter of dry ginger. • Ginger is cultivated in almost all states in India. • Major growing states are Kerala, Orissa, Meghalaya, Himachal Pradesh and Karnataka.
  • 44. Table 16: Area, production and productivity of ginger. Anon., 2011 Productivity Year Area (ha) Production (tons) (tons/ ha) 2003 - 04 1,07,780 5,45,280 4.3 2004 - 05 1,14,730 6,47,160 4.6 2005 - 06 1,25,847 8,10,934 4.9 2006 - 07 1,29,014 7,21,539 5.3 2007 - 08 1,20,056 7,10,476 5.2 2008 - 09 1,38,479 7,95,028 5.8 2010 - 2011 1,49,576 8,25,635 5.9
  • 45. Traditional practices in ginger cultivation Prakash et al., 2004  Selection of seed rhizome  Sunning and tiring Pre-sowing treatment Land preparation  Planting Mixed crops Harvesting  Drying
  • 46. Effect of Azospirillum and nutrient on yield, disease incidence and quality of ginger cv. Suprabha. Dash et al., 2008, Orissa Treatment details: T1 = FYM (10 t/ ha) T2 = FYM (20 t/ ha) T3 = Azospirillum (10 kg/ ha) + FYM (10 t/ ha) T4 = Azospirillum (10 kg/ ha) + FYM (20 t/ ha) T5 = N 30% + Azospirillum (10 kg/ ha) + FYM (10 t/ ha) T6 = N 75% + Azospirillum (10 kg/ ha) + FYM (10 t/ ha) T7 = N 100% + Azospirillum (10 kg/ ha) + FYM (10 t/ ha) T8 = RDF ( NPK - 100:50:50 kg/ha )
  • 47. Table 17: Effect of Azospirillum and nutrient on yield, disease incidence and quality of ginger cv. Suprabha. Dash et al., 2008, Orissa Fresh Rhizome Essential Oleoresin Treatment rhizome Benefit: Cost rot (%) oil (%) (%) yield (t/ ha) T1 9.54 21 1.0 4.6 1.27 T2 10.47 17 1.2 4.8 1.37 T3 10.23 16 1.0 5.0 1.36 T4 11.04 14 1.2 5.2 1.44 T5 13.65 12 1.2 5.3 1.80 T6 15.12 13 1.0 5.4 1.97 T7 18.70 11 1.3 5.8 3.46 T8 17.30 18 1.3 5.2 3.44 C.D. @ 5% 1.35 1.05 0.09 NS
  • 48. The effect of AM fungal isolates on the development and oleoresin production of micropropagated Zingiber officinale Maicon et al., 2008, Brazil Treatment details: Ctl = Control Mix= Mix of all four isolates P= Phosphorous Sh= Scutellospora heterogama Gd= Gigaspora decipiens Ak= Acaulospora koskei Ec= Entrophospora colombiana
  • 49. Table 18 : The effect of AM fungal isolates on vegetative development of micropropagated Zingiber officinale (120 and 210 DAP) Maicon et al., 2008, Brazil Shoot height Shoot dry Shoot height Shoot dry Treatments (cm) biomass (g) (cm) biomass (g) Control 3.38 1.50 b 0.056 0.02 bc 3.54 1.36 c 0.061 0.046 a Phosphorus 8.18 1.28 a 0.100 0.019 a 7.90 2.32 ab 0.085 0.021 a Mix 8.98 13.6 a 0.092 0.17 ab 9.22 1.51 a 0.093 0.038 a Scutellospora 4.44 1.60 b 0.054 0.012 c 4.16 1.17 c 0.048 0.031 a heterogama Gigaspora 6.10 1.85 ab 0.080 0.029 abc 5.46 1.58 bc 0.061 0.002 a decipiens Acaulospora 6.40 2.48 ab 0.082 0.020 abc 10.14 2.35 a 0.092 0.036 a koskei Entrophospora 6.46 0.68 ab 0.070 0.000 abc 5.56 0.74 bc 0.071 0.003 a colombiana VAM – 10 ml / 400 ml plastic pot
  • 50. Table 19: Spore numbers and percentage of mycorrhizal root colonization in micro propagated ginger inoculated with different AM Fungi. Maicon et al., 2008, Brazil Mycorrhizal colonization (%) Spore numbers (in 30 g soil) Treatments 120 d 210 d 120 d 210 d Mix 43.45 21.30 a 23.40 8.46 b 154 37.42 a 260 129.34 a Scutellospora 14.76 9.04 a 5.75 1.30 b 105 121.24 a 60 49.58 a heterogama Gigaspora 17.80 10.00 b 58.95 6.13 a 49 32.22 a 53 41.42 a decipiens Acaulospora 29.82 12.47 a 28.42 16.04 a 123 90.76 a 298 166.45 a koskei Entrophospora 26.50 13.75 a 5.39 3.85 a 25 37.14 a 97 136.02 a colombiana
  • 51. Table 20: Rhizome fresh biomass and levels of oleoresin after 210 days of micro propagated ginger plants inoculated with different AM Fungi Maicon et al., 2008, Brazil Yield of oleoresin Treatments Fresh biomass (g) (%) Control 0.1454 0.2333 0.99 P (25 mg/ kg ) 0.3471 0.1836 1.60 Mix 0.2730 0.1994 1.02 Scutellospora 0.1000 0.2040 1.48 heterogama Gigaspora 0.2166 0.2113 1.02 decipiens Acaulospora 0.3331 0.2445 1.58 koskei Entrophospora 0.1466 0.1488 0.72 colombiana
  • 52. C M P MP C M P MP C = Control, M = Mycorrihizal, P = Phosphorous, MP = Mycorrihizal +Phosphorous Fig 4: Effects of AM fungi and phosphorous fertilization on post vitro growth of micro propagated ginger Rosilda et al., 2010, Brazil
  • 53. Table 21 : Shoot, root and rhizome biomass of micro propagated ginger after five months under distinct mycorrhizal and phosphorous treatments Rosilda et al., 2010, Brazil Treatment Shoot wt (g/plt) Root wt (g/plt) Rhizome wt (g/plt) Control 0.17 0.07 b 0.03 0.01 b 0.06 0.08 b Mycorrhiza 1.00 0.13 a 0.20 0.08 a 0.19 0.07 a P (25 mg/kg) 0.84 0.17 a 0.22 0.05 a 0.20 0.07 a MP 0.95 0.13 a 0.20 0.09 a 0.20 0.02 a Spore density – 416 spores/50 g soil)
  • 54. chemical propertiers of Vermicompost and biogas slurry on oven Table 22 : Productivity of ginger influenced by Vermicompost and biogas dry basis slurry as amendment in saline soils Rafiq et al., 2009, Pakistan Chemical Vermicompost Biogas slurry propertiers (EC = dS m -1) 1.8 6.7 pH 6.91 8.36 N (%) 1.8 1.6 P (%) 0.58 1.65 K (%) 0.71 0.60 Na (%) 0.09 0.23
  • 55. Productivity of ginger by amendment of vermicompost and biogas slurry in saline soils Rafiq et al., 2009, Pakistan Treatment details T1 = Control T2 = Vermicompost (VC-500 g/20 kg of soil) T3 = Biogas slurry ( BS – 500 ml/20 kg of soil) T4 = T2 + T3 Treatments induced after 3 and 7 months of sowing
  • 56. Fig 5: Productivity of ginger by amendment of vermicompost and biogas slurry in saline soils Rafiq et al., 2009, Pakistan
  • 57. Fig 6: Productivity of ginger by amendment of vermicompost and biogas slurry in saline soils Rafiq et al., 2009, Pakistan
  • 58. Fig 7: Productivity of ginger by amendment of vermicompost and biogas slurry in saline soils Rafiq et al., 2009, Pakistan
  • 59. Fig 8: Productivity of ginger by amendment of vermicompost and biogas slurry in saline soils Rafiq et al., 2009, Pakistan
  • 60. Table 23 : Evaluation of fungal bioagents for suppression of root knot nematodes infesting in ginger Santosh et al., 2008, Calicut Yield Nematodes/g root Treatment (kg - 3 X 1 m bed) 1 2 Mean 1 2 Mean Control 3.83 b 2.46 c 3.98 c 13.49 b 35.31 b 24.40 b P. chlamydosporia 5.90 a 5.29 a 5.83 a 2.88 a 1.01 a 1.95 a T. harzianum 5.69 a 5.27 a 5.15 a 7.68 ab 6.26 ab 6.97 ab F. oxysporoum 4.46 b 5.04 a 4.75 ab 37.55 ab 9.79 ab 23.67 b Mean 4.97 4.77 15.4 13.09 1 - Incorporation in soil 2 - rhizome coating Means are of four replications
  • 61. Bio-intensive management of rhizome rot of ginger under field conditions Singh and Tomar, 2009, Chhattisgarh Treatment details T1 = Control T2 = Seed treatment with hot water 510c for 10min T3 = Seed treatment with Mancozeb (3gm L-1 for 30min) T4 = Seed treatment with T. harzianum 20g L-1 water for 30min T5 = Seed treatment with hot water 510c for 10min + T3 T6 = Seed treatment with hot water 510c+100gm T. harzianum in 1Kg neem cake at sowing time T7 = Application of neem cake 1Kg in soil at the time of sowing T8 = Neem cake 1Kg + 100gm T. harzianum in 3Kg FYM mixed for 7 days before sowing and watering regularly
  • 62. Table 24: Bio-intensive management of rhizome rot of ginger under field conditions Singh and Tomar, 2009, Chhattisgarh Pooled Disease Pooled Disease incidence (%) Yield t ha-1 Treatments incidence (%) Yield t /ha 2005-06 2006-07 2005-06 2006-07 T1 19.5 17.5 18.5 6.8 10.19 8.5 T2 20 18 19 6.3 10.9 8.6 T3 20.5 18 19.25 5.8 9 8.4 T4 22 20.5 21.25 5.5 11.05 8.3 T5 16.5 14.5 15.5 7.5 11.85 9.8 T6 8 5.5 6.75 8.2 15.87 12.03 T7 14 14 14 7.1 12.46 9.7 T8 6.5 4.5 5.5 9.8 17.08 13.4 CD(0.05%) 1.73 1.69 1.54 1.72 1.37 1.46
  • 63. Evaluation of biological management module packages against rhizome rot of ginger Savita and Prasad, 2009, Jharkhand Treatment details: T1 = Rhizome treatment with T. harzianum @ 6 g/L T2 = Soil amendment with Pongamia glabra oil cake @ 20 q/ha T3 = Mulching with Eucalyptus citriodora leaves @ 2.5 kg/m2 T4 = Rhizome treatment with T. harzianum @ 6 g/L + soil amendment with Pongamia glabra oil cake @ 20 q/ha T5 = Rhizome treatment with T. harzianum @ 6 g/L + mulching with Eucalyptus citriodora leaves @ 2.5 kg/m2 T6 = Soil amendment with Pongamia glabra oil cake @ 20 q/ha + mulching with Eucalyptus citriodora leaves @ 2.5 kg/m2 T7 = Rhizome treatment with T. harzianum @ 6 g/L + soil amendment with Pongamia glabra oil cake @ 20 q/ha + mulching with Eucalyptus citriodora leaves @ 2.5 kg/m2 T8 = Control
  • 64. Table 25 : Evaluation of biological management module packages against rhizome rot of ginger Savita and Prasad, 2009, Jharkhand Treatments Germination(%) Incidence (%) Disease control(%) Yield (q/ha) T1 75 33.75 18.83 76.68 T2 71.25 38.33 7.82 74.4 T3 67.08 37.92 8.8 71.1 T4 75.83 29.58 28.86 87.41 T5 73.33 31.25 24.83 79.08 T6 71.25 37.08 10.82 76.24 T7 80 23.33 43.89 97.26 Control 62.92 41.58 - 69.2 SEm 2.53 1.86 3.17 CD (5%) NS 5.38 9.18 CV% 7.52 9.02 6.95
  • 65. • Organic inputs are capable of replacing chemicals from agriculture • Organic farming safeguards soil and human health • Helps in production of quality food • It helps in maintaining the yields on long run • Eco friendly, sustainable and residue free