Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.
MAPPING OF ONE MODEL INTO OTHER MODEL<br />Submitted by:-<br />RATIKA  AGARWAL<br />M.Tech.-CSE<br />
Embedding:<br />Relationship between two networks<br />	G(V,E)  G’(V’,E’)<br />Graph	G, G’<br />Vertices	V, V’<br />Edges...
Process Mapping (Eg.- 2-d Mesh)<br />Underlying Architecture<br />Processes and their interactions<br />Mapping of Process...
Need of Mapping:<br />G(V,E)		G’(V’,E’)<br /><ul><li>Communication structure of an algorithm differs from the interconnec...
Number of processes required by the algorithm exceeds the number of processors available.</li></li></ul><li>Types of netwo...
Types of network topologies: (Hypercube)<br />2-d Hypercube<br />0-d Hypercube<br />1-d Hypercube <br />3-d Hypercube<br /...
Mapping techniques for graphs:<br />Topology embedding:<br />Embed a communication pattern into a given interconnection to...
  2-D Mesh in a Hypercube.
  Linear Array in a 2-D Mesh.
2-D Mesh in a  Linear Array.</li></ul>					And more…<br />
Metrics used forEmbedding:<br />DILATION<br />CONGESTION<br />EXPANSION<br />
<ul><li>Expansion</li></ul>Expansion =	No.of Nodes in V’	= |V’| / |V|<br />				No.of Nodes in V<br />Where ( |V|<|V’| )<br />
<ul><li>Congestion</li></ul>Congestion of k:	 ‘k’Es to one E’<br />k>1<br />
<ul><li>Dilation</li></ul>Dilation of k: 	One E to ‘k’ E’s.<br />
MAPPING<br />
Linear Array/Ring into Hypercube<br />MAP<br />Linear Array 2d nodes<br />d-dimesional Hypercube<br />Node  ‘i’<br />Node ...
Example:	 Say d = 3<br />2d = 23= 8, i.e., 8 nodes in ring and hypercube.<br />
Gray Coding<br />ALTERNATIVE  METHOD<br />3 bit RGC<br />2 bit RGC<br />1 bit RGC<br />0<br />1<br />2<br />3<br />4<br />...
Gray Coding<br />ALTERNATIVE  METHOD<br />3 bit RGC<br />2 bit RGC<br />1 bit RGC<br />0<br />1<br />2<br />3<br />4<br />...
2-D Mesh into Hypercube<br /><ul><li>Wraparound Mesh</li></ul>MAP<br />2r*2s nodes of Mesh		(r+s) dimension Hypercube of 2...
<ul><li>Same row of Mesh  ‘r’ identical MSBs in mapped node
Same column of Mesh  ‘s’ identical LSBs in mapped node</li></ul>00 00<br />01 00<br />11 00<br />10 00<br />10 11<br />10...
Nächste SlideShare
Wird geladen in …5
×

Mapping of one model into other model

3.607 Aufrufe

Veröffentlicht am

Veröffentlicht in: Bildung, Technologie, Business
  • Als Erste(r) kommentieren

Mapping of one model into other model

  1. 1. MAPPING OF ONE MODEL INTO OTHER MODEL<br />Submitted by:-<br />RATIKA AGARWAL<br />M.Tech.-CSE<br />
  2. 2. Embedding:<br />Relationship between two networks<br /> G(V,E)  G’(V’,E’)<br />Graph G, G’<br />Vertices V, V’<br />Edges E, E’<br />MAP<br />E E’<br />V  V’<br />
  3. 3. Process Mapping (Eg.- 2-d Mesh)<br />Underlying Architecture<br />Processes and their interactions<br />Mapping of Processes to nodes<br />
  4. 4. Need of Mapping:<br />G(V,E)  G’(V’,E’)<br /><ul><li>Communication structure of an algorithm differs from the interconnection architecture of the intended parallel machine.
  5. 5. Number of processes required by the algorithm exceeds the number of processors available.</li></li></ul><li>Types of network topologies: (Continued..)<br />Linear Arrays<br />2-d Mesh<br />Binary Tree<br />
  6. 6. Types of network topologies: (Hypercube)<br />2-d Hypercube<br />0-d Hypercube<br />1-d Hypercube <br />3-d Hypercube<br />4-d Hypercube<br />
  7. 7. Mapping techniques for graphs:<br />Topology embedding:<br />Embed a communication pattern into a given interconnection topology.<br /><ul><li>Linear Array in a Hypercube .
  8. 8. 2-D Mesh in a Hypercube.
  9. 9. Linear Array in a 2-D Mesh.
  10. 10. 2-D Mesh in a Linear Array.</li></ul> And more…<br />
  11. 11. Metrics used forEmbedding:<br />DILATION<br />CONGESTION<br />EXPANSION<br />
  12. 12. <ul><li>Expansion</li></ul>Expansion = No.of Nodes in V’ = |V’| / |V|<br /> No.of Nodes in V<br />Where ( |V|<|V’| )<br />
  13. 13. <ul><li>Congestion</li></ul>Congestion of k: ‘k’Es to one E’<br />k>1<br />
  14. 14. <ul><li>Dilation</li></ul>Dilation of k: One E to ‘k’ E’s.<br />
  15. 15. MAPPING<br />
  16. 16. Linear Array/Ring into Hypercube<br />MAP<br />Linear Array 2d nodes<br />d-dimesional Hypercube<br />Node ‘i’<br />Node G(i,d)<br />G(i, d) : Gray code of ith node of Array.<br />RGC : Binary Reflected Gray Code.<br />G(0,1) = 0<br />G(1,1) = 1<br />G(i,x) for i<2x<br />G(i,x+1)<br />2x + G[ (2x+1 –1)-i, x] for i>= 2x<br />
  17. 17. Example: Say d = 3<br />2d = 23= 8, i.e., 8 nodes in ring and hypercube.<br />
  18. 18. Gray Coding<br />ALTERNATIVE METHOD<br />3 bit RGC<br />2 bit RGC<br />1 bit RGC<br />0<br />1<br />2<br />3<br />4<br />5<br />6<br />7<br />0 0 0 0 00 <br />1 0 1 0 01 <br /> 1 1 0 11<br /> 1 0 0 10 <br /> 1 10 <br /> 1 11 <br /> 1 01<br /> 1 00<br />G(0,1) = 0<br />G(1,1) = 1<br />Congestion=1<br />Dilation=1<br /><Mapped Model><br />
  19. 19. Gray Coding<br />ALTERNATIVE METHOD<br />3 bit RGC<br />2 bit RGC<br />1 bit RGC<br />0<br />1<br />2<br />3<br />4<br />5<br />6<br />7<br />0 0 0 0 00 <br />1 0 1 0 01 <br /> 1 1 0 11<br /> 1 0 0 10 <br /> 1 10 <br /> 1 11 <br /> 1 01<br /> 1 00<br />G(0,1) = 0<br />G(1,1) = 1<br />Congestion=1<br />Dilation=1<br /><Mapped Model><br />
  20. 20. 2-D Mesh into Hypercube<br /><ul><li>Wraparound Mesh</li></ul>MAP<br />2r*2s nodes of Mesh (r+s) dimension Hypercube of 2r+s nodes<br />Node (i, j) Node G(i, r) || G(j, s)<br />MAP<br /><ul><li> ‘||’ is concatenation of two Gray codes</li></li></ul><li>Example for 2*4 mesh…<br />Dilation=Congestion =1<br />
  21. 21. <ul><li>Same row of Mesh  ‘r’ identical MSBs in mapped node
  22. 22. Same column of Mesh  ‘s’ identical LSBs in mapped node</li></ul>00 00<br />01 00<br />11 00<br />10 00<br />10 11<br />10 10<br />10 01<br />
  23. 23. Linear Array into 2-D Mesh<br />MAP<br />16 node linear array 2-d Mesh <br />Solid lines: links in array<br />Normal lines: links in the mesh<br />Congestion=1<br />
  24. 24. 2-D Mesh into Linear Array<br />Congestion =5<br />Congestion =5<br />Congestion =5<br />Solid lines: links in array<br />Normal lines: links in the mesh<br /><ul><li> Inversion of the previous mapping.</li></li></ul><li>Summary<br /><ul><li>Applications of Embedding:
  25. 25. To minimize the communication overhead of a parallel algorithm.
  26. 26. Laying out circuits on chips.
  27. 27. Reasons for embedding:
  28. 28. An algorithm can run on many architecture.
  29. 29. Algorithm mapped on interconnection network to achieve maximum parallelism.</li></ul>THANK YOU<br />

×